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A B S T R A C T

To fully comprehend public understanding of emerging technologies and their risks, from the 
stakeholder perspective, this study categorizes the public into primary and secondary stake
holders. Considering the impact of the spread of risk events on public risk perception of emerging 
technologies, this study adopts complex network theory to construct a two-layer network model 
consisting of “the spread of risk events–the evolution of public risk perception” of emerging 
technologies. The evolutionary threshold of public risk perception is analysed using the micro
scopic Markov chain approach. The influence of public composition and the spread of risk events 
on the evolution of risk perception is further verified through a simulation. The results of the 
study are as follows: First, public risk perception of emerging technologies tends to stabilise 
quickly. Second, the threshold and steady state of the evolution of public risk perception are 
influenced by the spread of risk events. Third, as the proportion of primary stakeholders or risk 
perception gap between primary and secondary stakeholders increases, the threshold for the 
evolution of public risk perception of emerging technologies increases, and the proportion of the 
public who think that emerging technologies are risky gradually decreases.

1. Introduction

There is no uniform academic consensus on the definition of ‘emerging technology.’ Cozzens [1] considers emerging technologies 
as those that have great potential but have not yet proven their value or have not yet reached any consensus. Rotolo et al. [2] further 
point out that emerging technologies are not only innovative but also develop rapidly, and their technological characteristics tend to 
converge and stabilise over time, exerting a far-reaching impact on the socioeconomic field. Importantly, emerging technologies are 
future-oriented and accompanied by a high degree of uncertainty and ambiguity in the process of their emergence. In general, 
emerging technologies are those that are new and rapidly evolving and are not yet widely used in society. The concept of emerging 
technologies is both contemporary and uncertain.

The high potential of emerging technologies often goes hand in hand with high risks, and these risk characteristics often lead to a 
cautious or even negative public attitude towards emerging technologies, which in turn hinders their diffusion and development. In 
recent years, public risk perceptions of emerging technologies have been found to have a major impact on the commercialisation of 
these technologies [3–5]. However, when faced with the same emerging technology, the public’s subjective intuition about risk often 
differs significantly from that of experts based on objective data analysis [6,7]. This discrepancy can change unpredictably through 
communication on social networks [8]. Consequently, new technology companies face difficulty in making decisions based on 
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“scientific quantification” alone, and their decisions may not always be widely accepted by society. If we do not fully comprehend 
public understanding of emerging technologies and their risks, then the development and application of emerging technologies may be 
constrained. Thus, an important undertaking is to understand how the public perceives the risks associated with emerging technologies 
and how public perceptions of risk have changed.

Risk perception is the overall perception and awareness of individuals towards objective and actual external risks based on their 
experiences and instinct [9]. Regarding the risk perception of technologies, risk sociologists Renn et al. [10] described it as opinions 
towards material signals of potential hazards and risks associated with technologies or information processing, as well as people’s 
ability to accept these technologies. In combination with the characteristics of emerging technologies and relevant arguments 
regarding risk perception, this study defines the risk perception of emerging technologies as individuals’ subjective assessment of risks 
under conditions of incomplete information and uncertain risks. This perception process is influenced by several factors. These factors 
range from individual-level factors, such as age, gender, knowledge, education, and experience [11–13], to contextual factors, such as 
media coverage, exchange of information, governance, and culture [14–18].

The construction of public risk perception is not an isolated process but a complex and interactive system. Under conditions of 
information asymmetry and uncertain risks, the public’s subjective risk perception of emerging technologies often deviates from actual 
risks. The social amplification theory of risk further reveals that the risk-diffusion process constantly amplifies the difference between 
the real risk of emerging technologies and the risk perceived by the public [19]. Meanwhile, the occurrence of technological risk events 
can easily attract immense public attention and provoke changes in the public’s perceived risks as they spread [20,21]. By abstracting 
individuals as nodes and relationships between individuals as edges, multiplex network theory allows interactions between individual 
behaviours to be analysed more intuitively. It is widely used in areas such as disease transmission [22,23], information dissemination 
[24,25], knowledge sharing [26,27], risk propagation [28,29]. Multiplex network theory can describe the complexity and variability 
of the evolutionary process of public risk perception.

Taking emerging technologies as the research focus, this study examines the network evolution process of public risk perception 
related to these technologies and delves into the impact of public composition and the dissemination of emerging technology risk 
events on this process. The main contributions of this study are as follows. First, compared to traditional technologies, emerging 
technologies, which are characterized by a high degree of uncertainty, extensive influence, and significant disruptive features, are 
more prone to eliciting widespread social concern and controversy. These characteristics result in faster risk dissemination and a wider 
scope of influence. However, current research on the evolution of risk perception related to emerging technologies remains inadequate, 
particularly in analysing how the public forms differentiated risk perceptions under different types and conditions. To address this gap, 
this study innovatively categorizes the public into primary and secondary stakeholders from a stakeholder perspective and constructs a 
two-layer network model for the propagation of high-tech risk events and the evolution of risk perceptions using complex network 
theory. This model offers a new theoretical framework for understanding the complex and dynamic nature of public risk perceptions 
related to emerging technologies. Second, this study delves into the threshold values of the evolution of public risk perception and 
specifically discusses the impact of public composition and risk-event dissemination on this evolution. These findings provide a sci
entific basis for the formulation of risk management and communication strategies.

The remainder of this paper is organised as follows: Section 2 presents the construction of the evolutionary model of public risk 
perception based on a two-layer network. Section 3 summarises the analysis of the evolutionary threshold of public risk perception 
through the microscopic Markov chain approach (MMCA). Section 4 describes the simulation. Section 6 presents the conclusions.

2. The model

2.1. Construction of two-layer network model

Suppose N = (1,2,⋯, i,⋯, n) denotes the public, with the percentage of primary stakeholders being η(0< η< 1) and that of sec
ondary stakeholders being 1 − η. The top layer is the spread of emerging technology risk events, and the bottom layer is the evolution of 
public risk perception of emerging technologies. The two layers have the same number of nodes. k[1]i denotes the degree of node i at the 
top layer, and k[2]

i denotes the degree of node i at the bottom layer. The higher the degree of a node, the greater its influence. When a 

Fig. 1. A two-layer network model.
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node publishes information or expresses an opinion, its content can be quickly disseminated to a larger number of nodes, thereby 
exerting greater influence within the network. A =

{
aij
}

is the adjacency matrix of the top-layer network, B =
{
bij
}

is the adjacency 
matrix of the bottom-layer network, and (i, j) ∈ E is the connection between the public i and public j. ki represents the degree of node i, 
〈k〉 is the average degree of the network, and p(k) is the degree distribution. Fig. 1 provides a simple illustration of a two-layer network 
model that encompasses the spread of risk events and the evolution of public perception of risk associated with emerging technologies. 
Stars indicate primary stakeholders, and circles indicate secondary stakeholders. The colors of the nodes signify different states.

2.2. Modelling the spread of emerging technology risk events

Risk events have a significant impact on public risk perceptions of emerging technologies [20,21]. When emerging technologies 
suffer from negative events, such as security incidents, data leaks, and substandard performance, these events tend to spread at an 
alarming rate, quickly attracting widespread public attention and triggering deep concerns. Compared to traditional technologies, 
emerging technologies suffer from greater information asymmetry owing to relatively low information transparency. Therefore, when 
risk events occur, their dissemination and over-interpretation tend to exacerbate the gap between the actual risks of emerging tech
nologies and those perceived by the public.

Given the similarity between the spread of emerging technology risk events and diseases, this study introduces the suscepti
ble–infected–recovered (SIR) model to analyse the spread of risk events. Suppose the public has three states regarding the spread of risk 
events: susceptible (S), infected (I), and recovered (R). Specifically, S indicates that the public is unaware of the risk event. I means that 
the public is aware of the risk event and disseminates it. R denotes that the public is aware of the event but does not spread it. By 
communicating with the I-state public, the S-state public can change to the I-state public with a probability of θ (θ ∈ [0,1]). That is, the 
spread rate of the risk event is θ, and a larger θ indicates a faster spread of the risk event. Given the timeliness of the risk event, the 
infected (I) are transformed into the recovered (R) at a probability of λ (λ ∈ [0,1]), which means that they have lost interest in the risk 
event and start to exit from the spread process.

2.3. Modelling of the evolution of public risk perception of emerging technologies

The change in the public’s risk perception of emerging technologies is a complicated process. When the public is unaware of a risk 
event, their cognition of emerging technologies comes mainly from company introductions and publicity. Given the relatively limited 
and often biased information sources that tend to emphasize positive aspects, the public has restricted awareness of the risks associated 
with emerging technologies, resulting in a generally low level of risk perception. However, once a risk event is exposed and 
disseminated through public communication, the situation undergoes a significant transformation. Owing to the public’s lack of 
specialized knowledge in the field of emerging technologies, they are prone to overestimating the hazard level of risk upon receiving 
such information, subsequently falling into a state of panic. Additionally, when media outlets report emerging technology risk events, 
they often employ amplification technological risk to attract public attention [16]. Consequently, compared with the public’s risk 
perception of unknown risk events, the public’s perception of known risk events tends to exhibit a higher level of risk perception [30]. 
Accordingly, this study sets the parameter δ (δ ∈ [0,1]) to moderate the differences in the changes in the risk perception of emerging 
technologies between the informed and uninformed public. Furthermore, it analyses how changes in δ affect the evolution of risk 
perception among the public.

Studies have demonstrated that individuals’ risk perceptions of emerging technologies are intimately tied to the balance between 
their perceived benefits and potential risks [31]. Specifically, when the public pays close attention to the benefits of emerging tech
nologies, the level of risk perception is relatively low. In contrast, when the public pays close attention to the hazards of emerging 
technologies, the level of risk perception is relatively high [32]. Owing to different perspectives and concerns, there is a clear dif
ference between primary (K) and secondary (E) stakeholder perceptions of emerging technology risks [33].

Primary stakeholders, such as investors, firms, and technology developers, tend to perceive emerging technology as an investment 
opportunity to reap benefits [34]. Their concerns primarily revolve around the market potential, economic returns, and potential 
competitive advantages of emerging technologies. Consequently, owing to these benefit-driven motivations, key stakeholders are more 
inclined to assess emerging technologies in an optimistic light and may underestimate or overlook their associated risks.

In contrast, secondary stakeholders, such as environmental protection organizations, exhibit greater concern for the potential 
hazards associated with emerging technologies [34]. Their attention focused on the environmental impacts, safety concerns, and 
socio-ethical implications of these technologies. Consequently, secondary stakeholders tend to be more vigilant towards the risks posed 
by emerging technologies, resulting in potentially higher levels of risk perception.

To explore this difference in more detail, this study sets the parameter ξ (ξ ∈ [0,1]) to moderate the differences in the changes in the 
risk perception of emerging technologies between primary and secondary stakeholders. Additionally, to conduct a thorough analysis of 
the specific impact of variations in this parameter on the evolution of public risk perception, we simulated the risk perception evolution 
process under different values of the parameter and investigated its influence on the outcomes.

Suppose that the public mainly exhibits two states: {L,H}, where L denotes that the public is in a low risk perception state and H 
denotes that the public is in a high risk perception state. The rules of changes in public state are as follows: The L-state public may 
transform into the H-state public by communicating with the H-state public, with a probability of transformation of β (β ∈ [0,1]). With a 
better understanding of risk events and emerging technologies, panic sentiment decreases, and the H-state public can switch to the L- 
state with a probability of γ. Based on the above theoretical analysis, the probability that secondary stakeholders informed about risk 
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events change from L to H status is set to βEI = β, and the probability of uninformed secondary stakeholders switching from L-state to 
H-state is βES = δβ. βKI = ξβ and βKS = δξβ are the probabilities of the informed and uninformed primary stakeholders moving from the 
L-state to the H-state.

In conclusion, the evolution of public risk perception of emerging technologies has 12 states: {KSL,KSH,KIL,KIH,KRL,KRH,ESL,ESH,

EIL,EIH,ERL,ERH}. The evolution of public risk perception of emerging technologies based on the two-layer network is shown in Fig. 2.

3. MMCA analysis

A microscopic Markov chain is a stochastic process model that describes the state transfer characteristics of a system at the micro 
level. It is grounded in the Markov property, meaning that the probability distribution of the future states of the system depends only 
on the current state and is independent of past historical states. In a microscopic Markov chain, the state space of the system consists of 
all possible states, and the transfer between states is described by a matrix of transfer probabilities. These transfer probabilities reflect 
the likelihood of transitioning from the current state to the next state. Microscopic Markov chains are widely used to analyse prop
agation dynamics on complex networks due to their simplicity and flexibility [35,36]. In public risk perception evolution models, 
microscopic Markov chains can be used to establish dynamic equations for transitions between different states, leading to a deeper 
understanding of the processes and mechanisms of risk perception evolution.

Suppose the probabilities of the states of primary stakeholder i at time t are pKSL
i (t), pKSH

i (t), pKIL
i (t), pKIH

i (t), pKRL
i (t), and pKRH

i (t). 
Meanwhile, the probabilities of the states of secondary stakeholder i at time t can be denoted as pESL

i (t), pESH
i (t), pEIL

i (t), pEIH
i (t), pERL

i (t), 
and pERH

i (t). In risk event propagation, suppose that the probability of the public in the S-state not changing to the I-state is ri(t). The 
probability that a public in the H-state does not change to the L-state is assumed to be fi(t). Let qKS

i (t) be the probability that a primary 
stakeholder with the KSL state does not change to the KSH state. Suppose that the probability of a primary stakeholder with status KIL 
or KRL not becoming KIH or KRH is qKI

i (t). The probability that a secondary stakeholder with the ESL state does not change status to the 
ESH state is qES

i (t). Moreover, assume that the likelihood of a primary stakeholder with the state EIL or ERL to not change to the state 
EIH or ERH is qEI

i (t). ri(t), qKS
i (t), qKI

i (t), qES
i (t), qEI

i (t) and fi(t) can be expressed by equations (1)–(6). 

ri(t)=
∏

j

[
1 − ajipI

j(t)θ
]

(1) 

qKS
i (t)=

∏

j

[
1 − bjipH

j (t)β
KS
]

(2) 

qKI
i (t)=

∏

j

[
1 − bjipH

j (t)β
KI
]

(3) 

qES
i (t)=

∏

j

[
1 − bjipH

j (t)β
ES
]

(4) 

qEI
i (t)=

∏

j

[
1 − bjipH

j (t)β
EI
]

(5) 

Fig. 2. Evolution of public risk perception of emerging technologies based on two-layer network.
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fi(t)= 1 − γ = 1 −

∑

j
bjipL

j (t)

k[2]
i

(6) 

Markov state transition trees are drawn to obtain the evolution equations for the MMCA. The root node of each tree represents the 
state of the node at time t, and the leaf nodes represent the possible states of the node at time t+ 1. The model has 12 possible states for 
the public; therefore, the total number of transfer probability trees is 12, as shown in Fig. 3.

Based on the Markov state transition trees shown in Fig. 3, the evolution equation is expressed in equations (7)–(18). 

Fig. 3. Markov state transition trees.
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pKSL
i (t+1)= pKSL

i (t)ri(t)qKS
i (t) + pKSH

i (t)ri(t)(1 − fi(t)) (7) 

pKSH
i (t+1)= pKSL

i (t)ri(t)
(
1 − qKS

i (t)
)
+ pKSH

i (t)ri(t)fi(t) (8) 

pKIL
i (t+1)= pKSL

i (t)(1 − ri(t))qKI
i (t)+ pKSH

i (t)(1 − ri(t))(1 − fi(t))+ pKIL
i (t)(1 − λ)qKI

i (t)
+pKIH

i (t)(1 − λ)(1 − fi(t))
(9) 

pKIH
i (t+1)= pKSL

i (t)(1 − ri(t))
(
1 − qKI

i (t)
)
+ pKSH

i (t)(1 − ri(t))fi(t)+ pKIL
i (t)(1 − λ)

(
1 − qKI

i (t)
)

+pKIH
i (t)(1 − λ)fi(t)

(10) 

pKRL
i (t+1)= pKIL

i (t)λqKI
i (t)+ pKIH

i (t)λ(1 − fi(t))+ pKRL
i (t)qKI

i (t)
+pKRH

i (t)(1 − fi(t))
(11) 

pKRH
i (t+1)= pKIL

i (t)λ
(
1 − qKI

i (t)
)
+ pKIH

i (t)λfi(t)+ pKRL
i (t)

(
1 − qKI

i (t)
)

+pKRH
i (t)fi(t)

(12) 

pESL
i (t+1)= pESL

i (t)ri(t)qES
i (t) + pESH

i (t)ri(t)(1 − fi(t)) (13) 

pESH
i (t+1)= pESL

i (t)ri(t)
(
1 − qES

i (t)
)
+ pESH

i (t)ri(t)fi(t) (14) 

pEIL
i (t+1)= pESL

i (t)(1 − ri(t))qEI
i (t)+ pESH

i (t)(1 − ri(t))(1 − fi(t))+ pEIL
i (t)(1 − λ)qEI

i (t)
+pEAH

i (t)(1 − λ)(1 − fi(t))
(15) 

pEIH
i (t+ 1)= pESL

i (t)(1 − ri(t))
(
1 − qEI

i (t)
)
+ pESH

i (t)(1 − ri(t))fi(t)+ pEIL
i (t)(1 − λ)

(
1 − qEI

i (t)
)

+pEIH
i (t)(1 − λ)fi(t)

(16) 

pERL
i (t+1)= pEIL

i (t)λqEI
i (t)+ pEIH

i (t)λ(1 − fi(t))+ pERL
i (t)qEI

i (t)
+pERH

i (t)(1 − fi(t))
(17) 

pERH
i (t+1)= pEIL

i (t)λ
(
1 − qEI

i (t)
)
+ pEIH

i (t)λfi(t)+ pERL
i (t)

(
1 − qEI

i (t)
)
+ pERH

i (t)fi(t) (18) 

One of the key problems in this study is solving for the proportion of the public in the H-state at steady state. Thus, an ordinal 
parameter ρH, expressed as equation (19), is introduced: 

ρH =
1
N

(
∑

i
pKH

i +
∑

i
pEH

i

)

=
1
N

[
∑

i

(
pKSH

i + pKIH
i + pKRH

i
)
+
∑

i

(
pESH

i + pEIH
i + pERH

i
)
]

(19) 

When t→∞, we can obtain 

pKH
i = pKSL

i ri
(
1 − qKS

i
)
+ pKSH

i rifi + pKSL
i (1 − ri)

(
1 − qKI

i
)
+ pKSH

i (1 − ri)fi + pKIL
i (1 − λ)

(
1 − qKI

i
)

+pKIH
i (1 − λ) fi + pKIL

i λ
(
1 − qKI

i
)
+ pKIH

i λfi + pKRL
i
(
1 − qKI

i
)
+ pKRH

i fi

= pKSL
i ri

(
1 − qKS

i
)
+ pKSH

i fi + pKSL
i (1 − ri)

(
1 − qKI

i
)
+ pKIL

i
(
1 − qKI

i
)
+ pKIH

i fi + pKRL
i
(
1 − qKI

i
)
+ pKRH

i fi

(20) 

By the same token, we can obtain 

pEH
i = pESL

i ri
(
1 − qES

i
)
+ pESH

i fi + pESL
i (1 − ri)

(
1 − qEI

i
)
+ pEIL

i
(
1 − qEI

i
)
+ pEIH

i fi + pERL
i
(
1 − qEI

i
)
+ pERH

i fi (21) 

Another key issue in this study is the threshold for the evolution of public risk perception, where βc is assumed to be the critical 
point. When t→∞, the probability of each node changing to the H-state is infinitely small, assuming pH

i = εi ≪ 1. Therefore, ignoring 
the higher-order infinitesimal of εi, equations (2)–(5) become 

qKS
i ≈1 − βKS

∑

j
bjiεj (22) 

qKI
i ≈1 − βKI

∑

j
bjiεj (23) 

qES
i ≈1 − βES

∑

j
bjiεj (24) 

qEI
i ≈1 − βEI

∑

j
bjiεj (25) 
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Let σi = βEI∑
jbjiεj = β

∑
jbjiεj. Then, equations (22)–(25) can be written as 

qKS
i ≈1 − δξσi (26) 

qKI
i ≈1 − ξσi (27) 

qES
i ≈1 − δσi (28) 

qEI
i ≈1 − σi (29) 

Substituting equations (26) and (27) into equation (20), we obtain 

pKH
i = pKSL

i riδξσi + pKH
i fi + pKSL

i (1 − ri)ξσi + pKIL
i ξσi + pKRL

i ξσi (30) 

Similarly, inserting equations (28) and (29) into equation (21), we obtain 

pEH
i = pESL

i riδσi + pEH
i fi + pESL

i (1 − ri)σi + pEIL
i σi + pERL

i σi (31) 

The proportion of the H-state is close to zero and is thus near the threshold for the evolution of public risk perception. The nodes in the 
network are essentially in the L-state, that is, pi

KH = pKSH
i + pKIH

i + pKRH
i ≈ 0, pi

KL = pKSL
i + pKIL

i + pKRL
i ≈ η, pi

EH = pESH
i + pEIH

i + pERH
i ≈

0, and pi
EL = pESL

i + pEIL
i + pERL

i ≈ 1 − η. pKS
i = pKSL

i + pKSH
i ≈ pKSL

i , pKI
i = pKIL

i + pKIH
i ≈ pKIL

i , pKR
i = pKRL

i + pKRH
i ≈ pKRL

i , pES
i = pESL

i +

pESH
i ≈ pESL

i , pEI
i = pEIL

i + pEIH
i ≈ pEIL

i , pER
i = pERL

i + pERH
i ≈ pERL

i . Ignoring Ο(εi), we can obtain 

pKS
i = pKSL

i ri (32) 

pKI
i = pKSL

i (1 − ri) + pKIL
i (1 − λ) (33) 

pKR
i = pKIL

i λ + pKRL
i (34) 

Substituting equations (32)–(34) into equation (30), we obtain 

pKH
i = pKS

i δξσi + pKH
i fi +

(
pKI

i + pKR
i
)
ξσi (35) 

Similarly, inserting equations (32)–(34) into equation (31), we obtain 

pEH
i = pEH

i fi + pES
i δσi +

(
pEI

i + pER
i
)
σi (36) 

Consider the closeness to the threshold for the evolution of risk perception, fi(t) = 1 −

∑
j
bjipL

j (t)

k[2]i
≈ 0. Combining equations (35) and (36)

yields 

εi = pKH
i + pEH

i =
[
δξpKS

i + pES
i δi +

(
η − pKS

i
)
ξ+
(
1 − η − pES

i
)]

β
∑

j
bjiεj (37) 

Let πij be the unit matrix. Equation (37) can be written as 
∑

j

{
πij −

[
pKS

i δξ+ pES
i δ+

(
η − pKS

i
)
ξ+
(
1 − η − pES

i
)]

βbji
}

εj =0 (38) 

Solving equation (38), we can obtain the threshold for the evolution of public risk perception, as shown in equation (39). 

βc =
1

Λmax(Q)
(39) 

where the matrix Q =
(
Qij
)

N×N, Qij =
[
pKS

i δξ + pES
i δ +

(
η − pKS

i
)
ξ +

(
1 − η − pES

i
)]

bji, Λmax(Q) denotes the maximum eigenvalues of 
the matrix Q.

4. Simulation analysis

In the previous section, the MMCA approach is used to theoretically explain the threshold of the evolution of public risk perception 
under the influence of the diffusion of emerging technology risk events. This section presents a comprehensive simulation analysis of 
the evolution of public risk perception and its influencing factors. The total number of the members of the public in the network is set at 
500 whilst the evolution time is set at 200. Initially, the share of the public in the H-state and I-state is 5 % each. The existing literature 
suggests that both online and offline social networks exhibit a power law distribution [37,38]. Thus, the two-layer network constructed 
in this study is a scale-free network with an average degree of 〈k〉 ≈ 7.
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4.1. Evolution of the public risk perception of emerging technologies

The evolution of the public risk perception of emerging technologies and the effect of the changing rate of risk perception on this 
evolution are analysed by simulation. The basic parameters are set as follows: θ = 0.3, λ = 0.3, η = 0.4, ξ = 0.5, and δ = 0.5.

As shown in Fig. 4 (a), the public’s risk perception gradually stabilises after rapid changes. The percentage of the public within the 
H-state, denoted by ρH, continues to increase in the first 20 time steps, followed by a fluctuation in the interval of (0.6, 0.8). Fig. 4 (b)
shows the effect of the changing rate of the public risk perception of emerging technologies, denoted by β, on ρH in a stable state. When 
β < 0.1, the percentage of the public in the H-state under stabilised conditions is basically 0; when 0.1 ≤ β < 0.7, the percentage of the 
public in the H-state gradually increases and tends to be 1 as β increases. As shown in Fig. 4, the evolution of the public risk perception 
of emerging technologies is highly time-sensitive, and the changing rate of risk perception determines the overall state of public risk 
perception.

4.2. Effect of the spread of risk events on the evolution of public risk perception

In this section, we consider the effect of the spread rate of risk events (θ) and the moderating parameter for the changing rate of 
public risk perception under unknown risk events (δ) on the threshold value of the evolution of public risk perception (βc) and the 
evolution path of public risk perception of emerging technologies. The default parameter settings are as follows: β = 0.4, λ = 0.3, η =

0.4, ξ = 0.5, and δ = 0.5.
Fig. 5 (a) and (b) show the effect of the spread rate of risk events (θ) on the evolution of the public risk perception of emerging 

technologies. In Fig. 5(a), when θ < 0.1, the threshold value of the evolution of public risk perception (βc) gradually decreases with an 
increase in θ; when θ > 0.1, βc exhibits little change with an increase in θ whilst the spread of risk events has an unnoticeable effect on 
the evolution of public perception. Fig. 5 (b) shows the changes in ρH with β as θ takes the values 0, 0.1, 0.5, 0.7, and 1. At θ = 0, ρH is 
0 as β belongs to 0 to 0.2, and ρH gradually increases with β in other circumstances. At θ = 0.1, ρH is equal to 0 within the interval β ∈ [0,
0.1], ρH continuously increases with β within the interval β∈ (0.1,0.8], and ρH ≈ 1 within the interval β∈ (0.8,1]. At θ = 0.5,0.7,1, the 
value of ρH is 0 when β ∈ [0,0.1], ρH continuously increases with an increase in β when β∈ (0.1,0.7], and the value of ρH is 1 when 
β∈ (0.7,1].

Fig. 5(c)–(f) show the effect of the moderating parameter for the changing rate of public risk perception under unknown risk events 
(δ) on the evolution of the public risk perception of emerging technologies. Fig. 5(c) and (d) show the relationships among ρH, βc, and δ 
when θ = 0.1 and θ = 0.3, respectively. Under the condition of θ = 0.1, βc decreases whilst ρH increases continuously as δ increases. 
Under the condition of θ = 0.3, only small changes are noted in the values of βc and ρH with an increase in δ. Fig. 5 (e) and (f) show the 
variations of ρH with β when δ takes the values of 0, 0.25, 0.75, and 1 under the conditions of θ = 0.1 and θ = 0.3, respectively. In Fig. 5 
(e), when δ = 0, that is, the probability that the public risk perception changes from the L-state to the H-state is 0 under unknown risk 
events, ρH is 0 as β ranges from 0 to 0.2; for β is between 0.2 and 1, ρH presents an increasing trend but with significant fluctuations with 
an increase in β. When δ = 0.25, the value of ρH is 0 with β ∈ [0, 0.1]; then, if β is in the range of 0.1–1, ρH continues to rise as β 
increases, eventually approaching 0.75. When δ = 0.5,0.75,1, ρH is equal to 0 within the interval of β ∈ [0,0.1]; for β∈ (0.1,1], ρH 

moves gradually from 0 to 1 as β increases, and the larger the δ, the smaller the value of β as ρH approaches 1. As shown in Fig. 5 (f), ρH 

increases as δ increases when δ takes the values of 0, 0.25, 0.75, 1, and θ = 0.3 but with little variation, indicating that δ has little effect 
on the evolution of the risk perception of emerging technologies.

In conclusion, if the probability that the public risk perception changes from the L-state to the H-state is fixed, the larger the spread 
rate of risk events, the smaller the threshold value of risk perception evolution, and the higher the percentage of the public in the H- 
state in the final step. Specifically, a proportion of the public aware of a risk event tends to panic because of a lack of understanding of 

Fig. 4. Evolution of the public risk perception of emerging technologies based on a two-layer network.
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emerging technologies and has a higher risk perception than those who are unaware of the risk event. Additionally, communicating 
with colleagues and friends tends to cause more people to increase their risk perception of emerging technologies whilst reinforcing 
their own risk sentiments. Meanwhile, when the spread rate of risk events is small, the moderating parameter for the changing rate of 
public risk perception under unknown risk events affects not only the threshold value of the evolution of public risk perception but also 
the value of ρH under the stable state; with an increase in the spread rate of risk events, the effects of δ on βc and ρH gradually become 
insignificant.

Fig. 5. Effect of the spread of risk events on the evolution of public risk perception of emerging technologies.
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4.3. Effect of public composition on the evolution of public risk perception

The simulation results show the changes in the proportion of the public in the H-state (ρH) and the threshold value of the evolution 
of public risk perception (βc) when the percentage of primary stakeholders (η) takes the values of 0.1, 0.3, 0.5, 0.7, and 0.9. To further 
validate the effect of public composition on the evolution of risk perception, we also analyse the effect of the moderating parameter for 
the differences in risk perception between primary and secondary stakeholders, denoted as ξ, on the threshold value of the evolution of 
risk perception and the stable state of public risk perception. The basic parameters are as follows: β = 0.4, θ = 0.3, λ = 0.3, η = 0.4, 
ξ = 0.5, and δ = 0.5.

Fig. 6 (a) and (b) show the effects of the percentage of primary stakeholders on the evolution of public risk perception of emerging 
technologies. The relationships among ρH, β, and η are shown in Fig. 6 (a). As the value of η increases, the threshold for the evolution of 
public risk perception (βc) gradually increases, and ρH gradually decreases. In Fig. 6(b), at η = 0.9, the value of ρH is 0 with β ∈ [0,0.15]; 
ρH continues to increase with an increase in β when β∈ (0.15,1], eventually approaching 1. At η = 0.7 and = 0.5 , ρH is 0 if β ranges 
from 0 to 0.01. At η = 0.3 and η = 0.1, when β ∈ [0,0.05], ρH is equal to 0; when β∈ (0.05,0.6], ρH continues to rise with an increase in 
β; and when β∈ (0.6,1], the value of ρH is 1.

Fig. 6 (c) and (d) show the effect of the moderating parameter for the differences in the risk perception of emerging technologies 
between primary and secondary stakeholders (ξ) on the evolution of public risk perception of emerging technologies. In Fig. 6 (c), the 
evolution of public risk perception is small when ξ < 0.05; when ξ ≥ 0.05, the threshold for the evolution of public risk perception (βc) 
continues to decrease as ξ increases. The variation of ρH with β at different values of ξ is shown in Fig. 6 (d). For ξ = 0, the value of ρH is 
0 when β ranges from 0 to 0.1; ρH continues to rise with an increase in β when β∈ (0.1,1], eventually approaching 0.35. For ξ = 0.25, 
ρH is equal to 0 if β ∈ [0,0.1]; in other situations, ρH gradually approaches 0.9 as β increases. For ξ = 0.5, ρH is 0 if β is in the interval 
from 0 to 0.05; when β∈ (0.05,0.65], as the value of β increases, ρH gradually moves closer to 1. For ξ = 0.75, the value of ρH is 0 if β 

Fig. 6. Effect of public composition on the evolution of public risk perception of emerging technologies.
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ranges from 0 to 0.05; with an increase in β, ρH continues to rise and eventually reaches 1. Specifically, when ξ = 1, that is, the 
probabilities of primary and secondary stakeholders moving from the L-state to the H-state are the same, ρH reaches 1 at the fastest 
rate.

On the one hand, as the percentage of primary stakeholders increases, the threshold for the evolution of the public risk perception 
of emerging technologies increases, and the percentage of the public in the H-state under the stable state gradually decreases. On the 
other hand, with ξ decreasing, the threshold for risk perception βc continues to increase. In particular, when the value of ξ is small, that 
is, the probability that the risk perception of emerging technologies among primary stakeholders changes from the L-state to the H- 
state is extremely small, the public risk perception exhibits little change, and the overall percentage of the public falling into a high risk 
perception level is relatively low.

5. Conclusion

Public risk perception affects the application of emerging technologies, and studying the evolution of public risk perception is a 
prerequisite for effectively promoting risk communication and formulating risk response strategies. From a stakeholder perspective, 
this study divides the public into primary and secondary stakeholders. Based on complex network theory and considering the impact of 
events on the public risk perception of emerging technologies, we construct a two-layer network model. The model consists of the 
diffusion of emerging technology risk events and the evolution of risk perception. The evolutionary threshold of public risk perception 
is captured by using the MMCA. The impact of public heterogeneity and the spread of risk events on the evolution of public risk 
perception is analysed through a simulation. The results of the study are as follows: (1) Public risk perception of emerging technologies 
tends to stabilise rapidly. (2) Changes in the spread rate of emerging technology risk events affect the change threshold and steady state 
of public risk perception. Therefore, when emerging technology risk events occur, companies should engage in crisis public relations in 
a timely manner to control the spread and impact of risk events. (3) As the differences in risk perception between primary and sec
ondary stakeholders increases, the threshold for the evolution of public risk perception of emerging technologies increases, and the 
proportion of the public who think that emerging technologies are risky gradually decreases. (4) With an increase in the proportion of 
primary stakeholders, the change threshold of the risk perception of emerging technologies increases, and the proportion of the public 
who think that emerging technologies are risky gradually decreases in a steady state. In other words, the social risks associated with 
emerging technologies can be reduced by increasing the proportion of primary stakeholders.

This study not only advances the relevant research in terms of theory and methodology but also provides theoretical references for 
the risk management of emerging technologies and obtains the following policy insights. (1) Enterprises should pay attention to and 
actively respond to the risks of emerging technologies as early as possible and gain a deeper understanding of the public’s specific 
perceptions of the risks of emerging technologies through scientific research to accurately grasp the public’s doubts and concerns. On 
this basis, enterprises can guide the public to correctly view the risks of emerging technologies and help them establish a more rational 
and comprehensive risk concept to promote the healthy development of technology and the harmonious progress of society. (2) 
Enterprises should establish a sound crisis public relations handling mechanism, release information on risk events in a timely and 
transparent manner, and strengthen communication with the public to control the spread and impact of risk events. (3) Considering 
that different groups of the public will have different risk perceptions of emerging technologies, it is recommended that enterprises 
build a more refined risk communication system for emerging technologies.

This study has several limitations. The public has different cultural backgrounds, expertise, and so on. Interactions among in
dividuals may also differ. Therefore, the public exerts varying influence on others in the model of the evolution of risk perception. A 
more realistic approach is to consider the differences in influence between nodes. Different types of emerging technologies, such as 
biotechnology, information technology, and energy technology, exhibit distinct risk characteristics and dissemination mechanisms. 
Furthermore, the public perception of the risk associated with these technologies may vary based on various factors, including cultural 
background and knowledge level. Incorporating these factors into an evolutionary model of public risk perception may enhance its 
applicability and accuracy.
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