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AbstrAct
In-hospital fall incidence is a critical indicator 
of healthcare outcome. Predictive models for 
fall incidents could facilitate optimal resource 
planning and allocation for healthcare 
providers. In this paper, we proposed a tensor 
factorisation-based framework to capture the 
latent features for fall incidents prediction over 
time. Experiments with real-world data from 
local hospitals in Hong Kong demonstrated 
that the proposed method could predict the fall 
incidents reasonably well (with an area under 
the curve score around 0.9). As compared with 
the baseline time series models, the proposed 
tensor based models were able to successfully 
identify high-risk locations without records of fall 
incidents during the past few months.

IntroductIon
The incidence of falls is a commonly used 
indicator of healthcare outcome. Inju-
ries related to falls are the most common 
causes of accidental death for individuals 
over the age of 65 years in the USA and 
many developed countries.1 Fall preven-
tion is a major challenge in the care 
continuum, especially for in-hospital 
patients. The incidence of in-hospital fall 
has drawn recent attention due to the 
ageing population and limited resources 
for public health systems.2 

Researchers have categorised risk factors 
for inpatient falls into patient-related 
factors (such as age and cognitive func-
tion) and treatment-related factors (such 
as admission department functions).3 
Existing research on fall prevention 
mainly relies on the analysis of patient-re-
lated factors obtained with criterion-refer-
enced assessment tools, like balance and 
mobility tests.4 For instance, Neumann et 
al5 evaluated the performance of two fall 
risk screening methods to identify high-
risk groups using a retrospective analysis 

of hospitalised patients. Kim et al6 evalu-
ated three fall assessment tools to identify 
patients at high risk for falls. Schwendi-
mann et al7 researched on the fall inci-
dents across multiple clinical departments 
in hospitals and found that the occurrence 
of inpatient falls was largely varied among 
different departments. In particular, 
department-specific system on patients at 
risk of fall has been implemented in depart-
ments including Orthopaedics & Trauma-
tology, Clinical Oncology and Medicine in 
Hong Kong.8 Studies showed that themes 
such as information systems for falls and 
guidance of the prevention programme by 
a multidisciplinary committee were associ-
ated with successful implementation of fall 
prevention programmes.9

There are a number of data mining 
studies focusing on predicting the fall 
incidence of different cohorts. Hill et al10 
conducted a field study to identify the 
common features in falls incidents and 
explored the feasibility of predicting falls 
using a multivariate logistic regression 
model. Hausdorff et al11 explored the 
potential use of gait variability to eval-
uate the prospective fall risk in commu-
nity-living older adults. In another study, 
Stalenhoef et al12 identified a set of 
important intrinsic risk factors for fall 
incidents. Halfon et al investigated the 
Poisson regression model for fall incidents 
(first fall during a hospitalisation). Their 
study presented that Poisson modelling 
is appropriate without overdispersion.13 
Marschollek et al14 exploited the data 
mining methods for fall prediction of geri-
atric inpatients’ assessment data. The two 
adopted classification models (decision 
tree and logistic regression model) were 
able to identify around half of the patients 
who would suffer a fall during their stay 
in hospital, making them not applicable to 
fall preventions.

http://www.aiims.edu/
http://innovations.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjinnov-2017-000221&domain=pdf&date_stamp=2018-03-27
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Because of the small sample size of longitudinal data 
and the complexity of the data of hospital operations 
and individuals’ health conditions, it is very difficult 
to identify representative data and proper methods for 
reliable fall prediction. In fact, existing studies may not 
be able to achieve better performance than a simple 
clinical judgement of risk of falls.15 This research aims 
at location-specific fall prediction instead of predic-
tion for individual patient. In addition, typical time 
series models make prediction with historical data. 
The disadvantage is that such models could not predict 
the incidents at specific location without fall records. 
This research aims to fill this important knowledge 
gap through using structured data of fall incidents 
reports from public hospitals to predict the occur-
rence of falls at different locations and departments in 
hospitals. To accomplish this task, we focused on using 
treatment-related factors to inpatient fall predictions 
instead of patient-related factors.

The department and hospital of patients are related 
to the falls at different locations because of the char-
acteristics of patients and healthcare services. For 
example, patients in Medicine and Geriatrics depart-
ment are mostly older adults with balance and 
mobility impairment who are at high risk of falls. For 
another example, certain hospitals could have recently 
installed newer fall prevention facilities (like warning 
signs, chrome knurled grab bars and so on). The fall 
incidents are usually associated with the workload 
of the hospital staff. Therefore, the implementation 
of fall prevention programmes could also change the 
risk of different locations. For example, hospitals may 
make changes of the nursing practice to increase the 
nurse patient ratio; the patient would be assisted to the 
toilet by staff with commode chair. This practice could 
reduce the risk of fall at bedside, making toilet with 
higher risk on the other hand. Therefore, predicting 
the occurrence of falls in different locations could help 
health providers to develop proactive prevention strat-
egies to effectively allocate resources and implement 
prevention programmes for high-risk locations. The 
proposed method could potentially benefit healthcare 
operations, answering practical questions like ‘Is there 
a risk of falls at the bedside in the Medicine & Ther-
apeutics department in Hospital A in next month?’ 
or ‘Which location in the department are facing an 
increasing risk of falls?’.

Different from previous research, our study explored a 
novel tensor factorisation-based approach to predicting 
fall incidents across different departments and locations. 

In particular, the advantage of tensor factorisation-based 
models is the capability to capture the inherent rela-
tions between patients, locations and other information 
without explicitly incorporating patient characteris-
tics.16 Tensor factorisation is the higher order extension 
of matrix factorisation that provides a powerful frame-
work for various applications including biomedical data 
mining and precision medicine.17 18

In this research, we proposed a fourth-order tensor 
factorisation-based method to capture the latent 
relations between the four dimensions of attributes 
in the fall incidents data for reliable fall prediction 
over time. The record of fall incidents maintained 
by hospitals contains important information of the 
identity and characteristics of patients, the time of 
the incidents, the locations and departments of falls. 
This location-based information of in-hospital fall 
incidents has not been fully used for fall predic-
tion. In particular, we evaluated the model using the 
fall in seven public hospitals in Hong Kong, from 
January 2014 to September 2014. The data contains 
the following information: (A) time and date of the 
fall incidents, (B) the location of falls (eg, bedside and 
toilet), (C) department (eg, surgery and medicine) 
and (D) hospital.

dAtA And methodologIes
data
In this research, we used the fall incidents data 
from seven public hospitals in Hong Kong from 
1 January 2014 to 30 September 2014. The data 
contains occurrence date and time, department and 
specific location (eg, bedside and toilet) of each fall 
incident. The identity-related information of patients 
was excluded from the dataset. Figure 1 presents a 
hypothetical example of one incident in the dataset. 
In the table, ‘Case_No’ is the identifier of the incident. 
‘Occ_Dt’ and ‘Occ_Time’ represent the date and time 
when the incident occurred. ‘Location’ represents the 
specific location in the hospital where the incident 
occurred. ‘Rep_Dept’ represents the hospital depart-
ment of the patient.

methodologies
Tensor factorisation
Tensors are multidimensional arrays describing the 
linear relations between objects. Tensors provide a 
natural mathematical framework for representing 
and solving problems in a wide range of areas. 

Figure 1 One incident in the dataset (hypothetical data).
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Tensor factorisation is the higher order extension 
of matrix factorisation, which is able to capture 
the latent patterns in multiway datasets.19 Tensor 
factorisation (or tensor decomposition) has been 
successfully applied to a rich set of data mining 
problems including computer vision, link predic-
tion, recommender systems, precision medicine and 
and so on.17 20–22 The most widely used decompo-
sition methods are CANDECOMP/PARAFAC (CP) 
decomposition and Tucker decomposition.19 The 
Tucker decomposition, also referred as higher order 
singular value decomposition (SVD), or M-model 
SVD, decomposes a tensor into a core tensor multi-
plied by a matrix along each mode. CP decomposi-
tion decomposes the tensor into the sum of rank one 
tensors. CP decomposition is a special case of Tucker 
decomposition, whose core is superdiagonal.

CP decomposition is a highly interpretable factorisa-
tion that can be used to address the temporal predic-
tion problems. In addition, CP is unique under very 
mild assumptions,23 making it suitable to uncover and 
interpret the actual latent factors. Different from CP, 
matrix SVD is not unique unless all singular values are 
distinct. Therefore, compared with matrix decompo-
sitions and Tucker, CP has an advantage because, in 
general, there is no equivalent rotated decomposition 
yielding the same fit.24 For the rest of this paper, we 
adopted CP decomposition to factorise the tensor.

To illustrate tensor factorisation, we present the 
decompositions of matrix, third-order tensor and 
fourth-order tensor in figure 2. Typically, a matrix 
could be decomposed to the sum of a number of 
rank-1 components as shown in figure 2A. Similarly, 
CP decomposition method decomposes a tensor into 
the summation of a number of rank-1 tensors, as illus-
trated by figure 2B,C. In this research, we perform 
CP decompositions of fourth-order tensors, so we use 
χ ∈ RI×J×K×L to represent a fourth-order tensor for 
illustration purpose.

Therefore, a fourth-order tensor can be expressed 
as follows,

 χ ≈
D∑
r=1

ar ◦ br ◦ cr ◦ dr (1)
where ◦ denotes the outer product, a ∈ RI, b ∈ RJ, 

c ∈ RK, d ∈ RL are feature vectors in four dimensions. 
The entry in the tensor can also be written as

 xijkl ≈
D∑

r=1
airbjrckrdlr (2)

With a proper estimation of these latent feature 
vectors a, b , c and d based on known entries, we could 
use the factorised features as a predictor of unobserved 
entries in X.

Simple moving average (SMA)
SMA is a useful forecasting method for predicting the 
time series, particularly when there is no observed 

Figure 2 An illustration of the decomposition of (A) matrix, (B) the third-order tensor and (C) the fourth order tensor.
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seasonality.25 Given time series Y
t
, the value of Yt+1 is 

estimated as the average of data in the previous N time 
periods. The calculation is expressed as

 Yt+1 =
Yt+Yt−1+...+Yt−N+1

N  (3)

Exponentially weighted moving average (EWMA)
EWMA is a method using a weighted average of the 
past observations.26 Different from SMA, the weight for 
older historical data decreases exponentially and could 
react to the change trend of data, particularly recent 
patterns with a higher sensitivity. In this research, we 
adopted EWMA to calculate the prediction as follows:
 Yt+1 = αYt +

(
1− α

)
Yt−1 (4)

where α is the smoothing coefficient.

Proposed tensor-based method
In this study, we developed models to incorporate the 
CP factorisation results with SMA and EWMA methods 
to predict the future fall incidence. Because we focused 
on location-specific fall prediction, plus we do not have 
information of patients’ identity, we did not include 
personal information of patients in our models. Instead, 
we aimed to model the temporal patterns of fall inci-
dence at specific locations. As discussed in the introduc-
tion section, the department and hospital that patients 
belong to are related to the falls at different locations 
because such information could imply the different char-
acteristics of patients and healthcare services. Therefore, 
the location-specific data used in this method includes 
location, department and hospital. The multiway rela-
tions between locations, departments and hospitals 
could be naturally represented as a third-order tensor as 
shown in figure 3.

Then, the temporal patterns could be represented 
using a fourth dimension. In this case, we can define a 
tensor X of size L×D×H× T, such that
 χ

(
l, d, h, t

)
= s (5)

where s ∈
{
0, 1, 2, . . .

}
 represents the number of 

fall incidents occurred at location l of department d  in 
hospital h at time t. The goal of this research is to esti-
mate the risk of fall incidence and predict the occur-
rence of fall at a single time period T+1 by analysing 
the tensor for each period of time T,…,T−N+1. 
Figure 4 illustrates such a fourth-order tensor data for 
our dataset from January 2014 to September 2014.

As introduced in earlier in this section, the fourth-
order tensor could be factorised as the summation of D 
rank-1 components, and each component is the outer 
product of four latent feature vectors.

 χ ≈
D∑
r=1

hr ◦ dr ◦ lr ◦ tr (6)
And each entry in the original tensor is approxi-

mated as below

 xijkn ≈
D∑

r=1
hirdjrlkrtnr (7)

CP decomposition has the advantage of interpret-
ability to extract the latent factors to capture the clus-
tering information of certain hospitals, departments, 
locations and, particularly, the temporal information in 
the latent feature vector t

r
. The extension to the fourth-

order tensor enables further processing of the temporal 
dimension for prediction over time as shown in figure 5.

The values in the tensor are the number of fall inci-
dents at each location during a time period. So, we 
used the commonly used Poisson distribution to model 
the count data.13 Therefore, two non-negative CP 

Figure 3 Tensor representation of fall incidents data.
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decomposition methods under the Poisson distribution 
assumption were adopted in our methods. One is the 
Non-negative Multiple Tensor Factorization (NMTF) 
that employed the generalised Kullback-Leibler diver-
gence and multiplicative update rules.27 The other is 
the CP Alternating Poisson Regression (CP-APR) based 
on a majorisation–minimisation approach for multi-
linear modelling of sparse count data.28

After we factorised the tensor, we applied 
an SMA-based heuristic approach proposed 
in Dunlavy et al’s study20 to generate a risk score for 
predictions. SMA method is simple but usually very 
effective when there is no clear seasonality and trend. 
Similar to the equation 15 in Dunlavy et al,20 we calcu-
lated the fall risk score for each location as follows:

 

xijk
(
n+1

) ≈
D∑
r=1

hirdjrlkrt(n+1)r, where t(n+1)r

=
t(n−W+1

)
r + t(n−W+2

)
r+...+tnr

W
 (8)

In addition, we also proposed another model 
using EWMA instead of SMA. The prediction of the 
temporal dimension could be calculated recursively in 
the selected sliding window.

 

xijk
(
n+1

) ≈
D∑

r=1
hirdjrlkrt(n+1)r, where t(n+1)r

= αtnr +
(
1− α

)
t(n−1)r

 (9)

The risk score is set to be the predicted number of 
fall incidents for corresponding location. We can rank 
the score of each location to identify those with high 
risk of fall incidents.

results
In order to validate the effectiveness of the proposed 
tensor-based method, we performed two experiments 
with the 9-month in-hospital fall incident data. In the 
first experiment, we used a 3-month sliding window 
(N=3) for forecast: we used the proposed method to 
predict the fall incidents in a month using the data 
of last 3 months. In the second experiment, we used 
a 5-month sliding window (N=5) to predict the fall 
incidents in a month using the data of last 5 months. 
The reason we chose these two sliding windows is as 
follows: (A) if the sliding window was too narrow (eg, 
N=1 or N=2), we could not get sufficient data to 
forecast. If the sliding window is too broad (eg, N=7 
or N=8), we could not get sufficient data to test the 
performance. (B) We could test the sensitivity of the 
proposed model using two sliding windows.

We implemented the proposed method by using 
MATLAB with the tensor_toolbox for CP-APR 
decomposition-based models,29 and we used Python 
to implement other models. We also applied the SMA 
and EWMA model with periods of 3 and 5 months 
to forecast the fall incidents as the baseline. Deter-
mination of the rank of tensor decomposition is still 

Figure 5 Illustration of temporal prediction based on fourth-order tensors.

Figure 4 Illustration of the fourth-order tensor.
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an open problem,30 so we evaluated the performance 
with different rank for tensor decompositions and 
presented the results with rank equal to 10, 20 and 30. 
This is widely used in tensor-based machine learning 
models, because the higher accuracy of approxima-
tion does not necessarily lead to better prediction 
performance.24

To evaluate the capability of the proposed models in 
predicting the risk of fall incident of specific locations, 
we conducted two sets of experiments. First, we used the 
models to predict whether there would be fall incidents 
(true or false). Second, we used the models to predict 
the actual number of fall incidents. The first experiment 

is very practical for clinical decision making, as health-
care providers usually care about which locations should 
be taken care of. The second experiment, though still 
practical, is less conclusive as there are still a lot of 
uncertainties not covered by the dataset. In addition, the 
experiment results demonstrated some expected results 
such as the bedside being the location with the high-risk 
for fall incidents.

Predicting whether there would be fall incidents
In the first experiment, we adopted the receiver oper-
ating characteristic (ROC) curve and the area under 
the curve (AUC) to evaluate the performance. ROC 

Figure 6 ROC curves and AUC score for fall prediction (n=3). We used the data in the last 3 months (T-1, T-2 and T-3) to predict 
the fall incidence of a specific month T. AUC, area under the curve; CP, CANDECOMP/PARAFAC; CP-APR, CP Alternating Poisson 
Regression; EWMA, Exponentially Weighted Moving Average; NMTF, Non-negative Multiple Tensor Factorisation; ROC, receiver 
operating characteristic; SMA, simple moving average.
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and AUC are widely used performance measures on 
continuous or ordinal scales.31 32 The ROC curve 
presents the complete information of all possible 

combinations of true-positive rate (TPR) and 
false-positive rate (FPR) by presenting the TPR on the 
vertical axis and FPR on the horizontal axis. AUC is a 
normalised value (between 0 and 1) measuring the area 
under ROC. AUC is a robust measure, which is inde-
pendent of decision threshold.33 Therefore, a higher 
ROC curve with a larger AUC value indicates a better 
performance. We presented the ROC curves and AUC 
scores of our experiments for the two sliding windows 
(N=3 and N=5) in figure 6 and figure 7, respectively. 
We evaluated the performance with different value of 
the smoothing coefficient α for EWMA and presented 
the results with α = 0.5.

The average AUC score is shown in table 1. We found 
that more historical data (second column) achieved 
better performance than less historical data (first 
column). This observation is reasonable because we 
did not observe clear seasonality. The overall perfor-
mance of the proposed CP based methods were consis-
tently better than the baseline methods with a higher 
AUC value. As shown in table 1, SMA and EWMA 
models had identical performance, indicating that the 
temporal feature was without a clear trend or season-
ality. For tensor-based approaches, the performances 

Figure 7 ROC curves and AUC score for fall prediction (n=5). We used the data in the last 5 months (T-1, T-2, T-3, T-4 and T-5) to 
predict the fall incidence of a specific month T. AUC, area under the curve; CP, CANDECOMP/PARAFAC; CP-APR, CP Alternating 
Poisson Regression; EWMA, Exponentially Weighted Moving Average; NMTF, Non-negative Multiple Tensor Factorisation; ROC, 
receiver operating characteristic; SMA, simple moving average. 

table 1 Average AUC of fall incidents prediction

# of historical periods n=3 n=5

SMA 0.835 0.900
EWMA 0.835 0.900
CP-APR-SMA (rank=10) 0.883 0.925
CP-APR-SMA (rank=20) 0.893 0.917
CP-APR-SMA (rank=30) 0.875 0.929
CP-APR-EWMA (rank=10) 0.883 0.923
CP-APR-EWMA (rank=20) 0.892 0.916
CP-APR-EWMA (rank=30) 0.875 0.928
NMTF-SMA (rank=10) 0.889 0.933
NMTF-SMA (rank=20) 0.893 0.932
NMTF-SMA (rank=30) 0.888 0.932
NMTF-EWMA (rank=10) 0.880 0.915
NMTF-EWMA (rank=20) 0.884 0.916
NMTF-EWMA (rank=30) 0.880 0.916

AUC, area under the curve; CP, CANDECOMP/PARAFAC; CP-APR, CP 
Alternating Poisson Regression; EWMA, Exponentially Weighted Moving 
Average; NMTF, Non-negative Multiple Tensor Factorisation; SMA, simple 
moving average. 



82 Wang H, et al. BMJ Innov 2018;4:75–83. doi:10.1136/bmjinnov-2017-000221

HeAltH It, SYStemS And proceSS InnovAtIonS

of CP-APR and NMTF based models are comparable. 
CP-APR-SMA and NMTF-SMA with rank 20 have 
better overall performance by taking both sliding 
window size into consideration.

The ROC curve provides the visualisation for the 
selection of the threshold for positive outcomes 
(occurrence of fall incidents). From experiments with 
both sliding windows, we observed similar results:
1. If a high threshold is used for prediction, both TPR and 

FPR are very low for all models. This is due to the fact 
that with a higher threshold, only those locations where 
fall incidents occurred in the past few months would be 
selected.

2. If a low threshold is used for prediction, the TPR is very 
high with high FPR for all models. This is not acceptable 
with too many false predictions.

3. If a proper threshold in the middle is used for prediction, 
the performance of the proposed tensor-based models 
(both CP-APR and NMTF) are better than baseline 
models (SMA and EWMA). The results are expected 
because pure time series models are not able to predict 
fall incidents at the ‘safe’ locations with no fall record 
in the past few months. Unlike SMA and EWMA, the 
proposed methods are able to predict such incidents 
through exploring the structure of other dimensions.

From the comparison of ROC curves, we found that 
the proposed tensor-based models were able to achieve 
better performance than the baseline time series 
models in identifying high-risk locations, especially 
those without a record of fall incidents in the last few 
months.

Predicting the actual number of fall incidents
We adopted the commonly used root-mean-square 
error (RMSE) metric to evaluate the performance of 
proposed models in predicting the actual number of 
fall incidents, as shown in table 2. CP-APR consistently 

performed better than other methods, though the 
difference was not significant. In the previous section, 
NMTF presented better performance in identifying 
high-risk locations for fall prevention. However, 
RMSEs of NMTF-based models are not as good as 
other methods. This is partly caused by the poor fitting 
ratio of the decomposed tensor because of the addi-
tional non-negative constraints of NMTF and assigned 
rank. CP-APR-based models had a very similar RMSE 
as time series (SMA and EWMA) models. This is 
expected because in this task (predicting the actual 
counts), tensor-based models’ advantage of identifying 
the emerging risk of falls in ‘safe’ locations (those do 
not have previous fall record) is not significant.

conclusIon
We proposed a tensor-based framework to exploit 
the multidimensional structure for temporal predic-
tion of fall incidents in hospitals. We developed a set 
of tensor-based machine learning models to predict 
the occurrence of fall incidents. After evaluating the 
performance of the proposed models in two sets of 
experiments, we draw the conclusion that tensor-based 
models are useful tools to identify the risk of locations. 
However, the advantage of using tensor-based models 
to predict the actual number of fall incidents at specific 
locations is not significant.

There are several limitations of this research. First 
due to the highly sensitive nature of medical-related 
data, it is very difficult for us to obtain other datasets 
for cross-validation. The performance of the proposed 
tensor-based models was only evaluated using one 
dataset in this study. It is important to identify public 
benchmark data to further demonstrate the efficacy of 
the proposed models. Second, we only investigated the 
risk of fall incidents at specific locations (part of treat-
ment-related factors), instead of individual patients 
(patient-related factors). Our proposed models have 
potential to be applied in individualised fall risk assess-
ment for patients. In our ongoing research, we plan to 
work with nurses and hospital authorities to extract 
patient-level demographic information including 
anonymous identifier, so that we could predict the risk 
of falls for each patient.

The proposed fall prediction models could generate 
data-driven insights of patients’ fall incidence and 
could inform more effective and timely fall preven-
tion programmes. This is of particular importance for 
Hong Kong because of its  ageing population. It is also 
applicable for other ageing societies (like Japan). In 
our follow-up research, we plan to work with nurses 
and health authorities to develop an automatic early 
warning system to predict fall incidents at different 
locations and for individual patients.
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