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Abstract

Collective rhythmic dynamics from neurons is vital for cognitive functions such as memory formation but how neurons self-
organize to produce such activity is not well understood. Attractor-based computational models have been successfully
implemented as a theoretical framework for memory storage in networks of neurons. Additionally, activity-dependent
modification of synaptic transmission is thought to be the physiological basis of learning and memory. The goal of this
study is to demonstrate that using a pharmacological treatment that has been shown to increase synaptic strength within in
vitro networks of hippocampal neurons follows the dynamical postulates theorized by attractor models. We use a grid of
extracellular electrodes to study changes in network activity after this perturbation and show that there is a persistent
increase in overall spiking and bursting activity after treatment. This increase in activity appears to recruit more ‘‘errant’’
spikes into bursts. Phase plots indicate a conserved activity pattern suggesting that a synaptic potentiation perturbation to
the attractor leaves it unchanged. Lastly, we construct a computational model to demonstrate that these synaptic
perturbations can account for the dynamical changes seen within the network.
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Introduction

A major focus in dynamical neuroscience is identifying the

neural patterns of activity that characterize human behavior as

well as its surroundings. For example, it is thought that organized

network activity in the form of synchronized depolarization is

critical to cognitive processes such as attention and memory

consolidation [1,2,3,4,5,6]. How neurons code the diversity of

features in the environment and the assessment of the dynamic

range of temporal responses when presented with external stimuli

are some of the fundamental questions currently under investiga-

tion. However, an equally important question is how neurons self-

organize into clusters or assemblies of coherent activity. These

clusters of neural activity are thought to represent patterns that

define different features within the external environment and the

cluster constituents might change to reflect different environmen-

tal elements such as color and shading. While it is thought that the

timing between neurons or neural assemblies is involved, how

neural signals cluster or self-organize within a circuit to retrieve

information that is related to a particular sensory stimulus or

simply to recall a long-term memory is largely unknown. It is

thought that a stimulus-dependent persistence in neural activity

underlies active, i.e., working memory [7,8,9,10] and was first

postulated by Hebb [7]. This persistent activity is thought to be the

result of strong reciprocal or recurrent excitatory connections

between co-active neurons. The self-organization of activity

displayed by neurons in these types of recurrent circuits accounts

for the ‘delay between stimulation and response, that seems so

characteristic of thought’ [7].

This neural correlate of memory has been incorporated into

computational models of memory and it is believed that the

dynamical correlate of working memory is the attractor state

[8,11,12,13,14,15]. An attractor is a stable dynamical pattern of

activity to which a system evolves over time [12,16,17]. When the

system is slightly perturbed, it will continue to evolve towards the

attractor. Attractors have been widely used to model memory

states because the dynamics of attractors are self-sustaining, i.e.,

they exhibit persistent activity in the absence of external

stimulation [13]. Attractor models consist of recurrently connected

networks of neurons via excitatory synapses, the connection

between neurons, to reflect what was hypothesized by Hebb.

When the network is presented with an external pattern, this

pattern is stored via the modification of the recurrent excitatory

synapses and results in a persistent increase in firing rates [18]. As

experimental studies support the presence of attractors in vivo

during hippocampal-dependent memory tasks [19,20], this led us

to ask whether similar patterns of activity might be retained in

networks of hippocampal neurons in the absence of an intact

anatomical architecture. Our experiments assess the impact on
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network dynamics after applying a pharmacological treatment that

modulates the strength of excitatory synapses.

Network activity can evoke changes in the density of the 2-

amino-3-(5-methyl-3-oxo-1, 2- oxazol-4-yl) propanoic acid

(AMPA) glutamate receptor subunits that are present on the

spines found in excitatory synapses [21,28]. Such perturbations

can influence action potential probability and the resulting firing

rate within a network of neurons. These types of synaptic

modulations have been observed in association with learning

and memory and are thought to underlie the neural substrate of

memory known as long-term potentiation, LTP

[22,23,24,25,26,27]. LTP results from the increase in synaptic

efficacy between neurons and can be induced via high frequency

electrical stimulation between pairs of neurons, or chemical

stimulation and has been shown to last from several hours to many

days [30,31]. If a population of neurons is subjected to this

modification, they can self-organize and cluster into active

assemblies of elevated activity. If this activity persists, these

assemblies might exhibit attractor dynamics.

LTP has been well studied between pairs of neurons within the

hippocampus, specifically on synapses between the Schaffer

collateral axons and apical dendrites of the CA1 pyramidal

neurons [29,33,34]. However the impact on network dynamics

due to the synaptic modifications modulated by LTP protocols has

not been widely studied in experimental systems. In addition,

computational models have successfully incorporated the attractor

paradigm as a mechanism through which information storage can

be reliable invoked. Therefore, the goal of our experiments and

computational modeling is to assess whether a synaptic perturba-

tion that is thought to underlie the physiological basis of memory is

characterized on the network level by the theoretical postulates of

memory.

Consequently, this paper reports on the temporal network

activity that arises when a pharmacological paradigm of LTP-

chemical LTP – is introduced in cultured hippocampal neurons.

Chemical LTP is a method to induce potentiation of neurons

without direct synaptic stimulation [35,36,37]. When applied to

cultured networks, the need for electrical stimulation is eliminated.

Chemical LTP has been shown to activate various biochemical

pathways, such as increasing the concentration of cAMP that in

turn is believed to increase the AMPA receptor density and is a

useful technique to manipulate potentiation in large neural

populations such as cultured networks. A cocktail of two drugs

are used to induce chemical LTP. Forskolin activates adenylyl

cyclase, and rolipram is a phosphodiesterase inhibitor. Together,

this cocktail increases the levels of cyclic AMP thereby potentiating

a large fraction of synapses in the network [36]. This results in an

increase in the probability of neuronal spike generation. These

separately performed experiments are consistent with our prior

observations that were recorded at a later time point showing

chemical LTP dependent effects on firing rate and increased

bursting [38]. This current study focuses on an earlier time point

and, along with more sophisticated analyses, tests the hypothesis

that these in vitro results facilitate memory-like attractor dynamics.

Additionally, we constructed a computational model consisting of

biologically plausible neurons found in the hippocampus to assess

whether manipulation of AMPA receptor density can account for

the dynamical effects recorded in the experiments.

Experimentally, we use an array of extracellular electrodes, a

multi-electrode array (MEA), to record spontaneous electrical

activity when networks of hippocampal neurons have been

pharmacologically perturbed. MEAs have been widely used to

characterize dynamical activity from in vitro networks of neurons

[39,40,41,42]. In addition, MEA studies that implement electrical

stimulation protocols on in vitro networks of either hippocampal or

cortical neurons have been established demonstrating precedence

for an in vitro learning paradigm [43,44,45,46,47,48]. Lastly, an

important temporal pattern found within developing in vivo circuits

is the widespread prevalence of bursting activity [49,50,51]. Bursts

are important during development as they facilitate normal

functioning in developing neurons that in turn helps to create

viable connections. We use young networks of cultured hippo-

campal neurons to study how a chemical LTP paradigm

modulates network activity. We study network interactions at a

time when the dynamics display a rich mix of vigorous bursting

and spiking activity suggesting that these early periods are when

the competition between spikes and bursts is at maximal levels. In

our experiments, we show that network-wide firing rates increase

but the variability in inter-spike intervals decrease. In addition, we

show that the bursting frequency dramatically increases after

chemical LTP evoking an elevation of network activity reminiscent

of attractor dynamics. Our computational model shows that

increasing AMPA receptor density can account for the increased

epochs of network activity seen after chemical LTP. Furthermore,

we show that increasing this receptor density on the pyramidal

neuron population plays a predominant role. Therefore, our

results suggest that the molecular modulations at the synapse,

stimulated by the increased potentiation, results in the restructur-

ing of the bursts as they form tightly compacted epochs of

persistent activity, which may be indicative of an attractor basin of

memory formation within the neural circuit.

Materials and Methods

A. Cell Cultures
Ethics Statement. All experimental procedures were ap-

proved by the Georgetown University Animal Care and Use

Committee (GUACUC). Hippocampal tissue was extracted from

embryonic day 18 Sprague-Dawley rats using a protocol modified

from [52]. Briefly, the neural tissue was finely chopped and

digested with 0.1% trypsin followed by mechanical trituration.

Upon reaching a single cell suspension, 200,000 cells were added

to multi-electrode arrays (MEA, Multi Channel Systems MCS

GmbH, Reutlingen, Germany) that were previously treated with

poly-d-lysine and laminin (Sigma, St. Louis, MO) resulting in an

approximate density of 600 cells/mm2. Cells were counted using a

hemacytometer (Hausser Scientific, Horsham, PA) and Trypan

Blue (Sigma, St. Louis MO) was used to exclude non-viable cells.

Cultures were maintained in Neuralbasal A medium with B27,

penicillin/streptomycin and fetal bovine serum (Invitrogen,

Carlsbad, CA) with bi-weekly changes and kept in a humidified

5% CO2 and 95% O2 incubator at 37uC.

B. Electrophysiological recordings
We recorded all spontaneous electrical activity using a multi-

electrode array. This MEA is composed of 59 titanium nitride

electrodes, one reference electrode and four auxiliary analog

channels each of which is 30 mm in diameter, arranged on an 868

square array. The inter-electrode spacing is 200 mm. Upon

plating, the cells in suspension adhere to the silicon nitride

substrate of the MEA and after seven days spontaneous electrical

activity is detectable. We use the MEA1060 preamplifier and

sample electrical activity at a 10 kHz acquisition rate in order to

allow the detection of multi-unit spikes. The data was digitized and

stored on a Dell personal computer (Round Rock, TX). Possible

exposure to contaminants and fluctuations in osmolality and pH

were significantly reduced during the data acquisition period by

the use of an MEA cover made of a hydrophobic membrane [53].

Chemical LTP Modulates In Vitro Neuronal Networks
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This membrane provides a tight seal, is semi-permeable to CO2

and O2 and is largely impermeable to water vapor. Experiments

from at least three MEAs for each condition, including controls,

were performed on a heated stage at 37uC for at least 45 minutes

at 14 days in vitro (14DIV), a time point during development in

which the network displayed vigorous spontaneous electrical

activity and for which network connectivity is well-established

[54]. To ensure reproducibility of results across animals, all

reported experimental groups were comprised of multiple cultures

derived from multiple experimental preparations. Results obtained

from cultures within and across different preparations were not

significantly different.

C. Pharmacological Induction of LTP
We used the pharmacological agents forskolin (50 mM) and

rolipram (100 nM) to induce chemical LTP. Forskolin was

dissolved in dimethyl sulfoxide (DMSO) to a stock concentration

of 50 mM. Rolipram was dissolved in DMSO to a stock

concentration of 100 mM. Both chemicals and DMSO were

acquired from Sigma-Aldrich (St. Louis, MO).

We applied this chemical LTP treatment to the cultured

hippocampal neurons on 14DIV. Initially, baseline electrical

activity was recorded for 20 minutes on a heated stage at 37uC. To

induce chemical LTP, 100 mL of conditioned media, the media in

which the cells are continually maintained, was first removed from

the MEA. Into this conditioned media, 1 mL of each stock solution

of forskolin and rolipram was diluted. The treated media was then

slowly added back into the MEA. MEAs were returned to the stage

and recordings resumed immediately lasting for at least 30

minutes. Results are presented for the period 20 minutes after

recording.

To control for possible solvent effects as well as mechanical

artifacts arising from the exchange of solutions, a series of MEA

recordings were performed on cultures in which 1 mL of DMSO

was diluted into the conditioned media of another set of cultures

prior to returning it to the MEA. Neither forskolin nor rolipram

were added to these MEAs (vehicle experiments).

D. Data Analysis
We removed low frequency components by high-pass filtering

all traces at 200 Hz. Extracellularly recorded spikes, i.e.,

downward voltage deflections from baseline, were detected using

a threshold algorithm from Offline Sorter (Plexon Inc., Dallas

TX), which was calculated as a multiple of the standard deviation

{5sð Þ of the biological noise. We made no attempt to

discriminate and sort spikes by electrode since the shape of a

spike changes significantly during a burst due to changes in

membrane excitability. In addition, for this study we concentrate

on network activity and the signal from each electrode suitably

reflects these dynamics.

We used custom software written in MATLAB (The Math-

Works, Natick, MA) to analyze dynamical activity in the cultured

hippocampal networks. To investigate changes in overall network

activity, we calculated the average firing rate, FR, over a binned

(10-second binsize), five-minute window for each electrode within

an MEA. Values are reported as averages 6SEM. We then

calculated the ratio of firing rates after treatment with respect to

baseline for both the chemical LTP experiments and the vehicle.

Next, to obtain a measure of spiking regularity, we calculated the

coefficient of variation, CV, defined as the following:

CV~
s ISIð Þ
SISIT

where s is the standard deviation of the inter-spike interval (ISI)

distribution.

Next, we investigated changes in a common temporal feature

found in cultured networks, the burst, as it represents a collective

network response. In our experiments, we analyzed bursts from

each individual electrode. After the spike detection process

described above each electrode has a resulting spike train,

tST tð Þ, expressed as:

tst(t)~
XN

n~1

d(t{tn)

where N is defined to be the total number of spikes, tn is the time

of the nth spike and d(t)is a delta function that indicates a spike

taking place at time t~tn. The inter-spike interval between spike n

and spike n21 (n.1) is:

tISI
n ~tn{tn{1

For both the control and chemical LTP experiments, we define a

burst from each electrode to consist of no less than four spikes with

a maximum inter-spike interval (ISI) of 100 ms. Log histograms of

the ISIs indicated that this corresponded to the cutoff of the first

peak (fig. 1–described below) in both conditions. Lastly, the burst

durations, Di, are defined to be:

Di~tspikefinal
{tspikeinitial

Figure 1. Log histograms of inter-spike intervals (ISI) display a
bimodal distribution after chemical LTP (grey bars). The first
peak is clustered around short ISIs – this defines the intervals within the
bursts whereas the second peak is near 10 second and corresponds to
the interval between bursts.
doi:10.1371/journal.pone.0057144.g001

Chemical LTP Modulates In Vitro Neuronal Networks
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The final result of the burst identification process resulted in an

M6N matrix where M corresponds to the electrode number and

N’s are the time stamps of the spikes within the bursts.

Lastly, we generated return maps of voltage activity to

investigate the presence of nonlinear dynamical structures in the

envelope of each bursting episode before and after chemical LTP

treatment. The objective was to investigate the presence of a

preserved structuring of the burst profile after chemical LTP. As

with the initial assessment of the bursts, i.e., number of bursts and

durations of bursts, we start with the high-pass filtered voltage

signal from each electrode in order to exclude low frequency, field

potential components. Since we were interested in studying how

the shape or profile of the bursts evolves, we then low-pass filtered

(10 Hz) each electrode. This removes the details, i.e., spikes, within

the burst and leaves the envelope of the burst. From this time trace

we plotted Vi,t vs. Vi,t+1 where Vi is the voltage corresponding to

electrode i at time, t. A regularly repeating motif suggests the

presence of a conserved activity pattern.

E. Computational Model
To investigate whether the trafficking of AMPA receptors to the

synapse can account for our observed network-wide effect, we used

the simulator NEURON [55] to model the dynamics of a two-

dimensional network consisting of 1000 biologically plausible

neurons. We incorporated three cell types into the model that are

believed to reflect the dynamics of hippocampal neurons (numbers

of cells are parenthetically indicated): an excitatory pyramidal cell

with simplified dendritic morphology (800), and two types of

GABAergic interneurons: oriens-lacunosum moleculare (OLM;

100) and basket cells (BAS; 100) [56,57,58,59]. The pyramidal cell

consists of five compartments: three apical dendrites, one basal

dendrite coupled to the soma and both the basket and OLM cells

were single compartment models. Cells are randomly connected

within each type and these clustered homogeneous populations are

connected to each other according to the diagram and connec-

tivity schema in figure 2. There were a total of 124,000 synapses

and they were randomly activated using a Poisson distribution.

Synaptic and background activity parameters were taken from

[59].

Results

A. Experimental
Fig. 3 is a representative screenshot of spontaneous, high-pass

filtered activity as recorded by the MEA. Each box corresponds to

one second of activity from one electrode. Each electrode records

activity from neurons in its vicinity and a majority of these

electrodes reveal robust activity. Panel A corresponds to baseline

activity from one MEA and panel B is activity after treatment of

chemical LTP from the same MEA. This image shows that is a

large increase in spiking and bursting activity after chemical LTP

and will be further quantified below.

Next, we created raster plots to highlight activity from all

channels over a longer temporal scale. Fig. 4 presents raster plots

of spiking activity over a 20-second time window from the control

hippocampal networks (fig. 4A) and the hippocampal networks 20

minutes after the application of chemical LTP (fig. 4B). One row

in each panel corresponds to one electrode and in each row each

small vertical tick mark is a detected spike. Below each raster plot

is an expanded view of activity that shows a mix of bursts and

single spikes. The raw voltage trace from a selected electrode is

presented at the bottom. The control network exhibits bursts of a

long duration. After chemical LTP, the bursts appear to cluster

into tightly organized episodes of shortened duration and higher

frequency.

We began our analysis by investigating changes in overall

network activity. Fig. 1 is a log histogram of the inter-spike

intervals from the chemical LTP and vehicle experiments showing

that there is considerably more activity after chemical LTP. In

addition to the large increase in activity, there is a leftward shift in

the distribution. Within the short interval regime, usually

corresponding to the spike intervals within bursts, is a well-defined

peak around 5 ms embedded within a log normal-like distribution.

In the longer interval regime there is a singular, pronounced peak

near 10 seconds, an interval associated with being between bursts.

The average ratio of firing rates (firing rate ratio after treatment

relative to baseline) across the vehicle MEAs was 1.9660.73

whereas the average ratio for the chemical LTP MEAs was

6.1962.25 (one-way ANOVA, p,1029). The vehicle increase

might be attributed to mechanical perturbations. Fig. 5 highlights

these differences in a spike count histogram using representative

electrodes from the vehicle and chemical LTP treatments. There is

Figure 2. Schematic for computation model. The red triangle represents the population of excitatory pyramidal cells (PYR); blue circles are the
inhibitory basket (BAS) cell population and oriens-lacunosum moleculare (OLM) cell population. Cells are randomly connected within each cell
population. Truncated lines represent sites in which the synaptic weights were modified: red filled circles-AMPA, red open circles – NMDA and blue
filled stars–GABAA. Numbers of AMPA, NMDA and GABA synaptic connections are listed in panel B.
doi:10.1371/journal.pone.0057144.g002

Chemical LTP Modulates In Vitro Neuronal Networks
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Figure 3. Spontaneous activity on an MEA before and after chemical LTP treatment. Each box represents one second (x-axis) of recording
from one electrode and the voltage scale (y-axis) ranges from 650 mV. A) Screen shot of spontaneous, high-pass filtered recording of baseline
activity from an MEA. B) Screen shot of spontaneous, high-pass filtered recording of activity after chemical LTP performed on the MEA from panel A.
In general, approximately 66% of the electrodes on each MEA displayed activity after chemical LTP (N = 4).
doi:10.1371/journal.pone.0057144.g003

Chemical LTP Modulates In Vitro Neuronal Networks
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an increase in spiking activity in the chemical LTP electrode while

the activity in the electrode from the vehicle culture remains

largely unchanged.

Next we looked at the relationship between the aggregate

number of spikes within a five-minute window before and 20

minutes after chemical LTP or vehicle treatment. Electrodes from

all MEAs within each treatment were pooled and their spike

counts are displayed on a log scale (fig. 6). The diagonal line

represents y = x and therefore points falling on this line have no

change in activity. Nearly all of the electrodes from the chemical

LTP MEAs are above this line indicating an increase in activity,

with a majority showing an increase of more than two orders of

magnitude (fig. 6A). MEA vehicle experiments showed negligible

change in the number of spikes (fig. 6B).

The profile of the time evolution of spiking activity in fig. 5

suggests that there is a change in the variability of inter-spike

intervals (ISI) after chemical LTP. To address this, we calculated

the coefficient of variation, CV, for all MEAs (fig. 7). There is a

uniform decrease in the CV across all electrodes that experienced

the chemical LTP treatment indicating that the variability in

network activity was reduced. This reduction in CV for the

chemical LTP networks is in sharp contrast to a negligible change

for the vehicle MEAs (one-way ANOVA, p,1025).

The increase in the firing rate and the decrease in variability of

inter-spike intervals led us to ask how the chemical LTP treatment

affected bursts, a subset of network activity. The burst, which is a

tight barrage of spikes, is a dominant temporal motif in cultured

networks, it is present in developing in vivo systems, and is believed

to represent coordinated activity from neural assemblies

[49,50,51]. It has been suggested that a burst may be more

efficient to modulate information leaving a diminished role in

information transmission for individual spikes [60,61,62]. If the

bursts were positively impacted by the chemical LTP treatment,

this would contribute to the increase in network regularity as seen

in the reduction of the CV.

Fig. 8 presents the number of bursts and burst durations from

the chemical LTP and vehicle MEAs. Values are reported as

averages 6SEM. There is a significant increase in the number of

bursts after chemical LTP and this increase clearly contributes to

the increase in the overall firing rate within the network as seen in

the raster plots of figure 4. In the vehicle and pre-chemical LTP

networks, the average number of bursts was approximately

20586148 and 15646429, respectively. However, the post-vehicle

treatment increased the average number of bursts to approxi-

mately 24386208 whereas 20 minutes after chemical LTP the

average number of bursts increased to 10,30062363 (one-way

ANOVA, p = 0.0003). In addition, the burst durations decreased

considerably after chemical LTP (fig. 8B). The average burst

duration for the pre-chemical LTP MEAs was 140618 ms and

after treatment, 81612 ms whereas the vehicle treatment the

average was 13063 ms before and 13365 ms after treatment

(one-way ANOVA, p = 0.0004). This decrease in event duration

suggests that the collective network activity contracted and

experienced a re-organization into short episodes.

Bursts represent the collective network response to our

pharmacological perturbation and only those spikes that partici-

pate within a burst are considered in the burst analyses. The raster

plots of figure 4 suggest that there may be a reduced number of

spikes in between the bursts and therefore, we calculated the

fraction of spikes not in bursts as a percent change from baseline.

In the baselines of both the vehicle and chemical LTP experiment,

approximately 20% of the spikes were not in bursts. However,

there was a marked change after chemical LTP; this fraction

decreased nearly 50% while the fraction in the vehicle fluctuated

minimally. Chemical LTP appears to incorporate more of the

‘‘errant’’ spikes into bursts, leaving the inter-burst regions

quiescent.

Lastly, fig. 9 presents a representative return map of the low-

pass filtered voltage for 10 seconds of activity from an electrode

before (fig. 9A) and after (fig. 9B) chemical LTP. These filtered

Figure 4. Network spiking activity is increased after chemical LTP treatment. A) Raster plots of 20 seconds of spontaneous activity at 14
days in vitro from untreated cultured hippocampal networks. There is a large degree of activity with each electrode displaying bursting and spiking
dynamics. The duration of the burst shown in the expanded view is 300 ms. B) Raster plots 20 minutes after application of chemical LTP. The
expanded views show that the bursts increase in frequency and appear to shorten in duration to an average of 81612 ms. Scale bar = 100 ms.
doi:10.1371/journal.pone.0057144.g004

Chemical LTP Modulates In Vitro Neuronal Networks
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traces represent the envelope of each bursting epoch of activity.

Whenever there is a peak or trough in the envelope, the return plot

will cross the identity line. Figure 9A shows that the baseline

bursting activity pattern appears to be stable – each envelope

shares a similar shape, an ellipse, and each ellipse represents the

profile of one single burst. Within this time window, there were

two bursts before treatment as reflected by the two ellipses in

figure 9A. This elliptical shape is preserved after the chemical LTP

treatment (fig 9B). The large increase in bursting activity after

treatment is also reflected by the increase in the number of ellipses

in figure 9B. The fact that the elliptical shape is preserved after the

chemical LTP treatment suggests that synaptic potentiation

conserves a spatiotemporal pattern of activity.

Figure 5. Variability in spiking activity is reduced after chemical LTP. A,B) Spike count histograms from a representative electrode in the
vehicle networks. There is robust but highly variable spiking activity. C) Spike count histogram in an electrode before chemical LTP. D) While the initial
baseline is low in this example (C), the spike rate increases dramatically after chemical LTP treatment and the variability is low (one-way ANOVA,
p,1029).
doi:10.1371/journal.pone.0057144.g005

Figure 6. There is a persistent increase in spiking activity after chemical LTP. A) Spike counts from all electrodes before and chemical LTP.
Most electrodes have an increase in activity with a large cluster displaying an increase of at least two orders of magnitude. (one-way ANOVA,
p,1029) B) Spike counts from the DMSO-treated MEAs show no increase in activity. (one-way ANOVA, p,1027). Each symbol corresponds to a
different MEA. Three MEAs were used for the vehicle and four MEAs were used for the chemical LTP studies. The diagonal line denotes y = x.
doi:10.1371/journal.pone.0057144.g006

Chemical LTP Modulates In Vitro Neuronal Networks
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B. Computational Model
While it has been shown that the trafficking of AMPA receptors

to the synapse accounts for the biological mechanism underlying

LTP on a small spatial scale [28,31,32], collective neural activity is

not linear and we investigated whether the manipulation of AMPA

receptors might account for our observed network-wide dynamical

effects. Increasing AMPA receptor density can conceivably take

two forms. The synaptic inputs could increase their strength or

weight by increasing the number or density of AMPA receptor

sites. In this model, the truncated lines represent the synaptic

inputs, as a global parameter, as drawn in figure 2. Alternatively,

the number of synaptic connections onto a given postsynaptic cell

could increase while the overall density of synaptic inputs remains

unchanged. This is represented by the connection from one cell to

another in figure 2. Figure 10 is a raster plot of baseline network

activity before we manipulated the presence of the AMPA

receptors. The pyramidal cells are very sparsely active and only

the inhibitory OLM cells have a large degree of spiking activity.

Bursting activity had a frequency of 0.756.02 Hz (one-way

ANOVA, p = 0.0003).

Next, we increased the AMPA synaptic weights at different cell

sites that contain AMPA synapses according to figure 2. Figure 11

is a raster plot of network activity after a 30% increase in the

synaptic weights of the pyramidal, basket and OLM cells’ somas as

well as at the apical dendrite of the pyramidal cell. Each cell

population displays an increase in spiking activity and the activity

is organized into bursting epochs. Bursting activity had a

frequency of 4.761.3 Hz. This persistent spiking activity was very

similar when we increased the AMPA strength by 30% at both the

pyramidal cell soma and apical dendrite or only at the pyramidal

cell soma while leaving the AMPA weights at control levels on the

OLM and basket cell soma sites (data not shown).

However, when only the apical dendrite AMPA weights were

increased or when the soma sites of both basket and OLM cells

were increased, leaving the pyramidal cell soma parameters

unchanged, spiking activity did not increase (data not shown).

Lastly, we varied the total number of AMPA connections at each

cell population (fig. 12). Spiking activity did not appreciably

increase above the baseline.

Figure 7. The coefficient of variation (CV) of inter-spike intervals is reduced after chemical LTP. A) CV from the chemical LTP MEAs. There
is an overall reduction in the CV indicating that variability in activity has been reduced. (one-way ANOVA, p,1025) B) MEAs treated with only DMSO
show no change in the CV. (one-way ANOVA, p,1028) Each symbol corresponds to a different MEA. Three MEAs were used for the vehicle and four
MEAs were used for the chemical LTP studies. The diagonal line denotes y = x.
doi:10.1371/journal.pone.0057144.g007

Figure 8. Number of bursts and burst durations of spontaneous and evoked activity. A) The bursting activity significantly increases (one-
way ANOVA, p = 0.0003) after the application of chemical LTP, contributing to the overall increase in network firing rates as seen in fig. 4. B) The
durations of the bursts decreases after chemical LTP (one-way ANOVA, p = 0.0004). Error bars represent SEM. Three MEAs were used for the vehicle
and four MEAs were used for the chemical LTP studies.
doi:10.1371/journal.pone.0057144.g008
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Discussion

In these studies, we perform a global, biological manipulation

that is believed to preferentially target a subset of structures

residing on a small spatial scale – excitatory synapses ending on

spines. We investigate the resulting dynamical effects on a large

spatial scale-the network of cultured hippocampal neurons. The

synapse was treated with a pharmacological paradigm that is

known to increase the probability of action potential firing and

quantified changes in spiking activity reflecting the response from

the network. This increased likelihood of firing is due to the

Hebbian-like strengthening of synapses that might occur during

the creation of a memory [26,65,66,67]. In addition, using a

computational network model, we show that AMPA receptor

trafficking results in the generation of persistent bursting activity

within the network.

While the application of this drug cocktail may effect changes

on the microscopic level other than synaptic modification, our

results strongly indicate that synaptic perturbations can account

for the observed modifications on the macroscopic level – overall

network spiking activity. We suggest there may be two phenomena

that could explain these changes. The chemical LTP treatment

elevates network activity but the state remains stable. There is a

major increase in overall network activity, as seen in the network

firing rates. This is due to the increase in potentiation of a large

fraction of synapses. This persistent activity due to an increase in

connection strength has been theoretically described using

attractor models.

In addition, there is a reduction in the coefficient of variation,

CV, after chemical LTP. This reduction in the CV implies that the

variability in the inter-spike intervals from the electrodes is

reduced. The firing pattern becomes relatively constant with no

large fluctuations of high activity. Regulation of neural activity

must be preserved to prevent extremes in neural output – either

hyperexcitability, which can lead to neurotoxic or neuropatholog-

ical conditions, or insufficient excitation, which can cause the

neuron to cease firing altogether [63,64,68]. These regulatory

mechanisms on the cellular level must also propagate to the

network level in the form of circuit-stabilizing mechanisms and it

Figure 9. Conserved burst activity pattern is maintained after chemical LTP. A) Phase plot of bursts during 10 seconds of baseline activity.
B) Phase plots of bursts during 10 second of activity after chemical LTP. Each motif repeats suggesting the preservation of an attractor state.
doi:10.1371/journal.pone.0057144.g009

Figure 10. Basal network activity is sparse with only inhibitory
OLM cells displaying high frequency spiking activity. Raster plot
of simulated activity in which the red tick marks represents the
excitatory pyramidal cells; green tick marks are inhibitory basket (BAS)
cells and the blue tick marks are the inhibitory OLM cells.
doi:10.1371/journal.pone.0057144.g010

Figure 11. Synchronized bursting activity appears after
synaptic weights have been increased. Raster plot of simulated
network activity after AMPA synaptic weights were increased through-
out the network. Red tick marks represents the excitatory pyramidal
cells; green tick marks are inhibitory basket cells and the blue tick marks
are the inhibitory OLM cells.
doi:10.1371/journal.pone.0057144.g011

Chemical LTP Modulates In Vitro Neuronal Networks

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e57144



has been suggested that appropriately modulated activity within a

neural circuit could be maintained via the modulation of firing

rates [63,64]. There may be a tuning range of firing rates over

which the neural circuit operates most effectively. While it is too

early after the treatment to assess long-term regulation of activity,

our results suggest that the process of chemical LTP may facilitate

the reduced variability of firing rates in the short term.

All of the firing rates from the electrodes increased dramatically

after the chemical LTP treatment. However, the relative increase

was not uniform across all electrodes and may be indicative of the

different developmental stages of the neurons. These differences

may also affect the ability of each neuron to respond to a synapse-

strengthening perturbation. There is a small fraction of electrodes

that displayed at least an eight-fold increase in multi-unit firing

rate activity after treatment. This effect is further emphasized by

the log scale presentation of spike counts produced by each

electrode. As previously stated, we did not spike sort the data from

these experiments. With our relatively low plating density, we

rarely saw more than one unit per electrode (analysis not shown).

We therefore introduce a possible scenario with the understanding

that targeted biochemical assays are necessary to confirm our

hypothesis. Chemical LTP modulates the neuron via several

mechanisms and it will be the integrated effect that produces an

increase in network-wide spiking activity. We focus, in this case, on

one of these mechanisms and suggest that some of the neurons

with this large firing rate increase are glutamatergic, i.e.,

excitatory, neurons with immature spines that responded with a

vigorous spine expansion under chemical LTP induction. The

spine expansion caused the firing rates of those cells to ‘‘catch up’’

to those of glutamatergic neurons with presumably more

developed spines. This brought the previously immature cells

within the range of the firing rates of the rest of the network. As a

result, it appears from the dynamics within the network that all of

the neurons, regardless of their initial developmental phase, had

similar firing rates after treatment. Therefore, a striking network

dynamical effect has materialized after chemical LTP in the

reduced spiking variability. Chemical LTP has a differential effect

on the increase in firing rates on clusters of neural assemblies, and

these clusters may represent different information storing units.

Bursting activity in the network also displayed dramatic changes

after synaptic potentiation. There is an increase in burst frequency,

and the individual bursts are of a shorter duration and the shape of

the attractor describing the burst profile was an ellipse. We

perturbed the attractor using chemical LTP. Despite the fact that

burst durations decreased, the shape of the attractor remained the

same. The additional spikes generated by strengthening of the

synapses need not have contributed to bursting activity and could

have simply raised the background level of single spikes.

Interestingly, not only did the burst frequency increase but there

also was a large reduction in the fraction of spikes that are not

participating in bursts accompanied by the preservation of the

attractor profile. The large increase in the inter-spike interval

histogram combined with the reduction of the number of spikes

that do not participate in bursts suggest that the previously

‘‘errant’’ spikes were either recruited into existing bursts or, more

likely, created new bursts with a shortened duration. It has been

speculated that bursts may be more efficient at information

processing within a neural circuit [60,61,62]. In these experiments,

processing efficiency may represent information storage. We

observe a repeating spatiotemporal pattern in the burst envelope

return maps before and after treatment. The peaks and troughs of

the envelope determined where the return maps crossed the

identity line and the resulting similarity in shape before and after

chemical LTP suggests that the system maintains a stable state of

activity despite the persistent increase in activity. We note that

assessing the shape of the attractor was not the intended focus of

the study. The question was whether the shape, regardless of its

type, would change after this particular perturbation. Neverthe-

less, the fact that the shape was an ellipse is intriguing.

Perturbations performed outside the scope of this study resulted

in a non-elliptical shape after treatment (data not shown but see

ref. 40 for return maps of cortical cultured networks) suggesting

that the elliptical profile can indeed be modified. This is currently

under further investigation. Lastly, the reduction in the coefficient

of variation of inter-spike intervals suggests a more ‘‘regular’’

network temporal structure. These combined results demonstrate

that synaptic potentiation evokes physiological events that

restructure the burst profile. These restructured bursts represent

the creation of a new functional entity that appears to facilitate

information storage within the network.

Our computational model illustrates the importance of the

contribution of AMPA receptor trafficking to the persistent state of

increased activity. Increasing the synaptic strength appears to have

the largest effect on the pyramidal cell rather than on the basket or

OLM cells. This suggests that there may be a differential impact of

AMPA receptor trafficking and will require further experimental

investigations. Lastly, we show that increasing the AMPA synaptic

strength rather than the number of AMPA connections plays the

predominant role in the generation of our observed tightly

compacted epochs of persistent activity. Given that we are

assessing changes to overall network activity a short time after

application of the treatment, it would not be expected that entirely

new connections would be created within this time interval.

Conclusions

In conclusion, our integrated results demonstrate that a synaptic

perturbation can account for a profound change in network

dynamics. We used a chemical paradigm that facilitates synaptic

strengthening to stimulate specific changes in network activity

from cultured hippocampal neurons that are similar to results

obtained from attractor-based computational models that describe

memory storage. Our computational model provides a dynamical

mechanism for our observations by demonstrating the role of

AMPA receptors in the creation of increased persistent activity.

An applied stimulus to a neural system will influence its output,

the spike. We asked the question, ‘‘Does a perturbation known to

Figure 12. Increasing the number of AMPA connections does
not result in synchronized bursting activity. Raster plot of
network activity after AMPA connections were increased throughout
the network. Red tick marks represents the excitatory pyramidal cells;
green tick marks are inhibitory basket cells and the blue tick marks are
the inhibitory OLM cells.
doi:10.1371/journal.pone.0057144.g012
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facilitate synaptic potentiation manifest as a dynamical correlate of

memory on the global network scale?’’ While future studies are

required for validation, the presence in vitro attractor dynamics in

the form of persistent elevated activity suggests that fundamental

principles of neural self-organization might be retained in the

absence of anatomy.
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