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Polyphenol compounds found in green tea have a great therapeutic potential to influence

multiple human diseases including malignancy and inflammation. In this mini review, we

describe effects of green tea and the most important component EGCG in malignancy

and inflammation. We focus on cellular mechanisms involved in the modification of T cell

function by green tea polyphenol EGCG. The case is made that EGCG downregulates

calcium channel activity by influencing miRNAs regulating expression of the channel at

the post-transcriptional level.
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BIOLOGICAL EFFECTS AND ACTIVE COMPONENTS OF
GREEN TEA

The global consumption of tea is estimated to be 273 billion L/year, and its putative impact on
health has attracted considerable scientific interest (1–3). It is believed that green tea (Camellia
sinensis) was first cultivated fromChina and has beenmanufactured and used for drinking purposes
for several centuries (1). Green tea is the part of Theaceae plant family that encompasses several
other plants and shrubs of medicinal and ornamental interest and is chiefly consumed in East
Asia, the Indian subcontinent, and Southeast Asia (4). After water, green tea is probably the second
most consumed beverage worldwide (4, 5). Green tea has health-promoting effects in a number of
pathological disorders, such as cardiovascular disease, neurodegeneration, stroke, obesity, diabetes,
and viral or bacterial infections (6–8). Furthermore, due to the anti-cancer properties of green tea,
its components may be used for protection against cancer (9–15).

Tea is produced in various forms due to distinct manufacturing processes (4). Green tea is
produced from fresh tea leaves; however, steaming or pan-frying process is used further for
enzyme deactivation, which precludes the oxidation of polyphenols termed catechins present in
the tea leaves (6, 12). Tea mainly contains catechins that roughly contribute 30–40% in brewed
desiccated green tea including (–)-epigallocatechin-3-gallate (EGCG), (–)-epigallocatechin (EGC),
(–)-epicatechin gallate (ECG), and (–)-epicatechin (EC) (5, 6, 12, 16–19). EGCG is the utmost
catechin available in green tea and roughly embodies 50–80% of catechins in a 200–300 mg/brewed
cup of green tea (20). EGCG is the best-studied green tea component and the principal polyphenol
involved in health benefiting actions such as anti-inflammatory and anti-carcinogenic effects
(12, 21).
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INFLUENCES OF EGCG AND RELATED
SUBSTANCES

Green tea and its components were already demonstrated to
counteract malignancy in several animal experiments (8, 9,
11, 22), but their biological activity in human subjects is
still a matter of controversy (12, 23, 24). EGCG has been
shown to affect angiogenesis and apoptosis, and acts as an
antioxidant in different types of cancer and neurodegenerative
diseases (6, 14, 20, 25). However, the significance of these
findings was questioned, as most of the experiments performed
in these studies had used a concentration range from 20 to
200µM EGCG, which is higher than the serum concentration
of EGCG encountered in humans (<10µM) (12). The EGCG
concentrations in human serum or plasma can be found in a
range of 0.1 and 1µM following drinking few cups of green tea
and may approach 7µMwith supplements (12, 13, 26, 27).

Some reports have suggested that these dietary compounds
may need some modification or changes in their structure to
improve the safety and effectiveness so that they can achieve
their maximum bioavailability and function (28–30). Therefore,
EGCG has been modified by modulation of hydroxyl groups
with peracetate groups called pEGCG (prodrug of EGCG,
EGCG octa-acetate) to augment the bioavailability and stability
of green tea polyphenol EGCG (12, 30, 31). The resulting
polyphenolic compounds displayed enhanced anti-proliferative
activity in breast cancer (12). A nanoparticle-based EGCG
delivery system is already considered for oral dispensation in
murine xenograft model (nudemice) with human prostate cancer
(nanochemoprevention), resulting in 10 times dose advantage
for pro-apoptotic and anti-angiogenic effects in vitro and in
vivo (14).

The mechanism that causes the health-promoting properties
of EGCG is the suppressive effect on growth of different cell
types (1, 8, 11–13, 15, 22, 32–37). Conversely, the cell growth
suppressed by EGCG is not only restricted to the tumor or
cancerous cells, but it can also reduce the growth of cells that
are not cancerous in nature such as bovine vascular smooth
muscle cells (5). EGCG oxidizes easily and this can significantly
affect its binding properties, thus impacting on cell adhesion
ligand accessibility and matrix rigidity of cancer cells (38). In
addition to several beneficial effects of green tea polyphenols, it
can also have some potential side effects, which are summarized
in recent reviews (27, 39). In brief, excessive consumption of
green tea could lead to several side effects including dehydration
(as green tea has diuretic property), deranged bile acid synthesis,
gastroesophageal reflux disease and interference with iron
metabolism (4, 39). Further research is warranted to investigate
the beneficial and adverse effects of EGCG.

INTERACTION BETWEEN DIETARY
POLYPHENOLS AND GUT MICROBIOME

The interaction between polyphenols including their metabolites
and gut microbiota is critical to understanding the biological
mechanisms of polyphenols, since polyphenols are poorly

absorbed and most of them are metabolized by the microbiome
to form phenolic metabolites (40). Dietary polyphenols could
play a key role in growth of several beneficial bacteria including
Lactobacillus and Bifidobacterium spp. by modulating the growth
of other pathogenic bacteria (41, 42). Green tea may change
the human intestinal and oral microbiota of healthy individuals
(43). Two weeks of green tea liquid usage may increase the
Firmicutes-to-Bacteroidetes ratio, elevate short-chain fatty acids
producing genera, and reduce bacterial lipopolysaccharide (LPS)
synthesis, effects maintained even after 1 week of washout
period (43). In addition to this, green tea is also able to
change the salivary and oral epithelium microbiota in humans
(43, 44). Mouse studies revealed that green tea extract or its
components, EGCG caffeine, and theanine, given for 7 days
are also able to modulate the gut, cecum, as well as skin
microbiome and metabolites following a single ultraviolet (UV)
light stress (41, 45). The strongest effect was observed on
Firmicutes-to-Bacteroidetes ratio after green tea extract, which
was decreased after UV light (UV stress vs. green tea extract)
(41). A human study also showed that 7 days consumption
of green tea extract can lead to a change in metabolite
production (46). This study highlights the important role of
gut bacteria in the metabolism of green tea extract. In plasma,
after 2 h of consumption, green tea extract was metabolized
into different components ECGG, GC, and GCG and 16 out of
163 endogenous metabolites were affected including hippurate,
taurine serotonin, and 3,4-dihydroxyphenylethylene-glycol (46).

FIGURE 1 | Gut microbiota in modulation of green tea into different

metabolites and possible immune T cells dysregulation. EGCG and EGCG

derived metabolites produced by gut microbiota could be modifying the

effector functions of immune T cells by different mechanisms such as

upregulating the miRNAs, cytokine production, or Ca2+ activity.
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This study did not explore the change in the gut microbiota
but highlights the potential role of commensals in breaking
down green tea extracts. Furthermore, an in vitro study also
investigated the metabolic fate of EGCG and its influence
on gut microbiota and found that EGCG itself can be
degraded into several metabolites (47). Microbiome profiling
suggested that EGCG treatment increased the growth of several
beneficial bacteria such as Bacteroides and Bifidobacterium and
inhibited the growth of pathogenic bacteria Fusobacterium and
Enterobacteriaceae (47). On a metabolic level, 4-phenylbutyric
acid was positively or negatively correlated with 11 bacterial
genera (Lachnoclostridium and Fusobacterium are positively
related whereas others including Alistipes and Bacteroides
are negatively correlated) (47). 4-Hydroxybenzoic acid had a
negative correlation with Haemophilus bacterial genera while
phenylacetic acid showed positive or negative correlation with
bacterial genera (positively with Fusobacterium and negatively
with Haemophilus and Streptococcus) (47). Nonetheless, animal
and human reports suggest that the degradation of EGCG in the
gastrointestinal tract and the function of metabolites should be
considered for better understanding the mechanisms of EGCG
and immune responses (Figure 1).

EFFECT OF EGCG ON CALCIUM
SIGNALING IN CD4+ T CELLS

The active component of green tea is EGCG, which is able to
ameliorate symptoms and diminish the pathological conditions
linked with autoimmune inflammatory diseases in a number
of different animal models (1, 8, 20, 35–37, 48, 49). Key cells
involved in autoimmune disease promotion or regulation are
CD4+ T cells and their helper subsets (50). CD4+ T helper
(Th) cells perform a crucial role in adaptive immune responses
(51). These Th cells employ and activate other adaptive immune
cells including B cells, and CD8T cells, as well as other cells
involved in the innate immune response (52). Naïve T cells
can differentiate into various effector Th cells such as Th1,
Th2, Th9, Th17, Th22, T follicular helper (Tfh), and induced
regulatory T cells (iTregs) (49, 52–63). These cells secrete
different repertoires of cytokines and recruit various arms of the
immune response (52, 58). Th1 and Th17 cells are entailed for
protection against intracellular pathogens and fungal infections
and cancers, whereas Th2 cells are required for protection
against helminths (56, 64–66). Th9 and Th22 cells are less well-
defined but appear to be important for airway, tumor and skin

TABLE 1 | Effects of green tea polyphenol such as EGCG and its different components on immune T cells.

Green tea and T cells Effect References

1 EGCG and CLL B and T cells Apoptosis (87)

2 EGCG in vivo in MPTP induced Parkinson’s disease

model

Ratio of CD3+CD4+/CD3+CD8+ increased and reduced serum IL-6

and TNF-α

(18)

3 EGCG and mouse T cells as well as Jurkat lymphoblasts Reduced SOCE expression in T cells (48)

4 EGCG and arsenic induced inflammation and apoptosis Decreased the CD4+ T cell frequency (8)

5 EGCG and T cells in aging in Swiss albino mice Increase frequency of CD3+CD8+ and reduced IgA, IgE, and

IgG1/igG2a and IL-6 and TNF-α

(3)

6 EGCG and Graft-versus-Host Disease Increased regulatory CD4+ T cells and reduced oxidative stress (17)

7 Green tea metabolites (EGC-M) and T cells activity Reduced T cell activity by EGCG and EGC

Enhanced T cell activity by EGCG-metabolites

(88)

8 EGCG in autoimmune arthritis Change in the balance in between Th17/Tregs and inhibition of

osteoclastogenesis by STAT3

(89)

9 EGCG in autoimmune arthritis Increase in Tregs (90)

10 EGCG and vitiligo in human subjects Reducing the inflammatory cytokines from T cells by JAK2 pathway (91)

11 Green tea EGCG and human mast leukemic cell line

(HMC-1)

Modulation of the NF-κB/ERK1/2/MAPK signaling pathway (92)

12 EGCG and autoimmune arthritis Restraint STAT3 and HIF-1α with Th17/Treg ratio (1, 21)

13 EGCG and obesity and autoinflammatory arthritis Change in balance in CD4+ T cells subsets (37)

14 Green tea and chronic lymphocytic leukemia Change in Tregs and reduced IL-10 and TGF-β in serum (93)

15 EGCG and T cells differentiation in EAE model Reduced IL-6 and IL-6R and increase soluble gb130 in plasma from

EAE mice

(49, 86)

16 EGCG and increased inflammation High dose of EGCG leads to increased IL-6, IL-1β, PGE2, and

deceased IL-4

(36)

17 EGCG and proliferation of T cells Impaired IL-2/IL-2R signaling and IL-2 signaling, cell cycle and

proliferation

(5, 94)

18 EGCG and T cell receptor signaling Inhibition of ZAP-70 kinase signaling (95)

19 EGCG and TCR binding for HIV TCR CD4 binding with HIV-1 protein (96)

20 Green tea EGCG and neuroprotection NFκB inhibition in EAE model (97)

21 Green tea and T cell apoptosis Increased apoptosis in peripheral T lymphocytes in adult leukemia

patients

(98)
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inflammation, whereas Tfh cells are vital for the activation of
B cells and the formation of germinal centers in secondary
lymphoid organs (52, 57, 61, 62, 67–77). In contrast, Tregs help
to maintain immune homeostasis by suppressing the immune
response and preventing reactions against host organs and
autoimmunity (51, 52, 78–85).

Recent studies demonstrated that EGCG supplemented in
a diet mitigated experimental autoimmune encephalomyelitis
(EAE) in a murine model, which was correlated with a lower
number of Th1 and Th17 cells and an augmented number of
Treg cells in the central nervous system as well as in peripheral
lymphoid organs (49, 86). These studies also suggested that
EGCG is able to inhibit inflammatory cytokines, namely, IL-
12, IL-1β, IL-6, IL-23, and TNF-α. Furthermore, these cytokines
were already proven to promote the development of Th1 (IL-12
helps in development and differentiation), Th17 (IL-1β, IL-6, IL-
23—all three key cytokines promote the pathogenicity of these
cells), and Th9 (TNF-α required for improved differentiation)
cells, albeit IL-10 and IL-4 (Th2 cytokines) cytokines were
not affected by EGCG (49, 86). Therefore, EGCG is able to
modulate the CD4+ T cell differentiation (49). Nevertheless,
further experimental support for this notion and an in-depth
explanation of underlying mechanisms are desirable as Th9
cells are known to induce EAE (54) and EGCG can ameliorate
EAE as described above; therefore, examining the impact of
EGCG on Th9 cells in detail is required. Nonetheless, EGCG is
effective against metabolic syndrome, obesity, and autoimmune
arthritis by managing the fine balance of CD4+ T cells (37).
The multifaced role of green tea and its different components in
controlling diverse functions are summarized in Table 1.

In several diseases, EGCG affects the outcome by modulating
the function of T cells. Differential effects of EGCG are observed

on the proliferation of B and T cells from B-cell chronic
lymphocytic leukemia (CLL) patients compared with healthy
controls in a dose-dependent fashion (87). T or B cells are
more prone to apoptosis in CLL patients compared with healthy
controls (87). EGCG is shown to inhibit murine CD4+ T
cell proliferation and induces apoptosis in vitro (Table 1) (5,
48, 94). However, EGCG in the gut of human and mice can
also be converted into different metabolites, which could exert
different effects on immune T cell functions. Kim et al. reported
that 11 EGCG metabolites have a differential effect on murine
CD4+ T cells compared with EGCG (88). EGCG and EGC
green tea catechins decrease ATP levels, thus suggesting an
inhibitory role in T cell activation. However, EGC metabolites
(7 out of 11 metabolites) increased ATP levels compared
with control and EGCG, thus reflecting activating effects on
T cell functions (88). These results highlight the importance
of gut bacteria on differential outcome of EGCG and their
metabolites for regulating the functions of immune T cells. This
could be a potential explanation why different people observe
such heterogenic effects. Clearly, caution is warranted during
interpretation of findings.

After engagement of the T cell receptor (TCR) with its cognate
antigens leads to an activation of T cells, further activation
triggers an increase in intracellular Ca2+ levels that is needed
for the essential physiological functions of T cells such as gene
expression, proliferation, cell motility, and cytokine production
(99, 100). In naïve or resting T cells, Ca2+ accumulates in the
endoplasmic reticulum (ER) of the cells and levels of Ca2+

are gauged by stromal cell-interaction proteins (STIM) 1 and
2 (101). Once TCRs are activated (after antigenic stimulation),
inositol trisphosphate (IP3) is produced followed by binding
to IP3 receptors expressed on the ER and results in the

TABLE 2 | Effects of green tea and its different componment on miRNAs expression in cancer and T cells.

SN Cells Dysregulated miRNAs Functions References

1 Non-small-cell lung cancer (NSCLC) treated

with EGCG

hsa-miR-485-5p Inhibits cell growth and cell apoptosis

RXRα gene

(15)

2 EGCG and EGC in hypertensive model miR-126a-3p and

miR-150-5p

Hypertension

SP1/AT1R pathway

(133)

3 EGCG on mouse CD4+ T cells and human

Jurkat lymphoblasts

miR-15b-5p Calcium functions–SOCE pathway (48)

4 EGCG IL-1β-stimulated human osteoarthritis

chondrocytes

miR-140-3p and

miR-199a-39

Anti-arthritic of EGCG by ADAMTS5 and

downregulation of COX2 pathway

(16, 19)

5 EGCG and hepatic stellate cells (HepG2) miR-221, miR-181a, and

miR-10b

OPN mRNA degradation and protective in liver injury (134)

6 EGCG and Mouse lung adenocarcinoma miR-449c-5p Myb pathway regulation (22)

7 EGCG and melanoma cells miR-let-7b Laminin receptor signaling (135)

8 EGCG and osteosarcoma miR-1 Cell growth (34)

9 EGCG and tobacco carcinogen-induced lung

tumor in A7J mice

miR-210 and other miRNAs HIF-1α, cell growth AKT, NF-κB, MAP kinase, and

cell cycle

(11)

10 EGCG and SH-SY5Y and SK-N-DZ miR-7-1 Induction of apoptosis (10)

11 Human lung cancer and EGCG or green tea miR-7 Apoptosis induction and inhibition of proliferation (136)

12 Polyphenon-60 and MCF-7 miR-21 and miR-27 Downregulation of the tumor suppressor

gene-tropomyosin-1

(137)

13 EGCG and human hepatocellular carcinoma

HepG2

miR-16 Induction of apoptosis (by downregulating the

apoptotic protein BCL2)

(9)
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release of intravesicular Ca2+ into the cytosol (102, 103). The
calcium store exhaustion stimulates Ca2+ influx across the
plasma membrane of the T cells, a process called store-operated
Ca2+ entry (SOCE) (104–106). SOCE results from assembly
of calcium release-activated calcium (CRAC) channel protein
1, which is encoded by the Orai1 gene with the ER Ca2+

sensing proteins STIM1 and STIM2 (106). Orai1-mediated Ca2+

influx in T cells depends on a negative membrane potential
delivering the electrical driving force for Ca2+ entry into the
cells (100, 106). The membrane is polarized by opening of K+

channels and depolarized by opening of Na+ channels. Two
K+ channels are known to be activated upon Ca2+ influx—
the voltage-gated K+ channel (KV1.3) and the calcium-activated
K+ channels (KCa3.1) (107–111). Negative feedback provided
to these K+ channels is established by the transient receptor
potential cation channel, subfamily M, member 4 (TRPM4),
which mediates Na+ entry, thus depolarizing the membrane
and curtailing Ca2+ entry through Orai1 (112). Further, the cell
membrane potential also affects Cl− flux through Cl− channels
and thus cell volume. When cells are exposed to hypotonic
conditions, this results in swelling of T cells and Cl− channels
start to operate. Cell swelling triggers the efflux of Cl− and
eventually water from the cells, which returns the cell to its
normal volume (102). The movement of Ca2+, K+, Na+, and
Cl− ions ultimately affects the release of Ca2+; thus, regulating
the performance of these ion channels would help to shape
the signaling in T cells pivotal in development of Th cells and
function (102).

The significance of ion channel function in T cells is mostly
derived from genetic studies performed in murine models
using either ion channel-specific gene knockout or siRNA
knockdown (103). STIM1/2 or Orai1 (CRAC) knockout murine
models have improved our knowledge on how these proteins
participate in defective T cells’ development contemplating the
functions of these proteins in Ca2+ signaling (100, 102, 113).
Furthermore, patients with mutations in these genes also have
profound defects in T cell development and function and are
therefore immunodeficient (104). In mice, depletion of these
genes disrupts the production of IL-2, IFN-γ, IL-17 and TNF-
α, and thereby inhibits development of all Th cell classes
(106, 114). The knockout of KCa3.1 or KV1.3 results in the
reduction of Ca2+ influx upon stimulation of T cells (108,
109, 111). Inflammatory cytokines, namely, IFN-γ and IL-17,
are attenuated, indicating a defect in the development and/or
function of these inflammatory Th cell types (115). However,
Treg development and function appear normal and these mice
are resistant to autoimmune disorders (108). Deletion of KCa3.1
protects mice from developing colitis whereas KV1.3 gene
deletion prefers T cells toward immunoregulatory in function
and renders the gene knockout mice impervious to autoimmune
encephalomyelitis (109, 116, 117). Therefore, K+ channels are
differentially required for the development and function of the
various Th cell types. In addition, the KV1.3 channel is specifically
upregulated in Th17 cells and is required for its activation
and cytokine production (108). With regard to Na+ channels,
gene array analysis indicates that TRPM4 is expressed more in
Th2 compared to Th1 cells (112). Experiments performed in

T cells for TRPM4 gene silencing using siRNA increases Ca2+

influx in Th2 cells, whereas it decreases Ca2+ influx in Th1
cells (102, 112). It also affects the T cell cytokine production
of IL-2, IL-4 and IFN-γ in addition to cell mobility. However,
the mechanisms underlying those effects are incompletely
understood because the expression of Th1 and Th2 transcription
factors Tbet and GATA3 are not affected, respectively (112,
118). In summary, these studies suggest that ion channels are
differentially involved for the development and function of Th
cell subtypes.

So far, only few studies were performed to understand
the influence of green tea on SOCE pathway in CD4+

immune T cells (5, 48, 92, 94, 119–121). Other immune
cells such as mast cells were given the treatment of EGCG in
varying doses, which could inhibit the functions of mast cells
such as degranulation, leukotriene C4 secretion, and SOCE
(Ca2+ flow) through mitochondrial calcium dysfunctions
(119). In human Jurkat T cells, it is demonstrated that
EGCG is capable to diminish the calcium influx (48, 120).
Recently, one study in murine primary CD4+ T cells

FIGURE 2 | Effect of EGCG on miRNA and Ca2+ signaling in T cells. EGCG is

able to upregulate miR-15b-5p, thus decreasing Calcium influx (SOCE)

proteins Orai1/STIM2. As a result, Ca2+-sensitive functions of T cells such as

cell proliferation and cell growth in mice CD4+ T cells are blunted. As shown in

human Jurkat lymphoblasts, EGCG also downregulates the PTEN/mTOR

pathway and mitochondrial potential in addition to the Calcium influx, thus

affecting the cell growth and proliferation.
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suggested that EGCG is able to inhibit the SOCE in a dose-
dependent fashion and affects cell proliferation and apoptosis
(48). Thus, EGCG inhibits Ca2+ influx in immune cells
including T cells.

EGCG CONTROLS MIRNAS EXPRESSION
IN CANCER AND IMMUNE T CELLS

MicroRNAs (miRNAs) are non-coding very small (single-
stranded ∼19–23 nucleotides) RNA molecules that regulate
at least one third of genome (gene expression) at the post-
transcriptional level (122). These miRNAs are instructed by
host genes and appear to present in both intronic and
exonic regions of protein-coding genes as well as in non-
coding genes (123–125). In general, the process of miRNAs
biogenesis begins in the nucleus of a T cell or other cell types
from a primary miRNA (pri-miR) transcript, which changes
into a secondary structure comprising either one or more
hairpin loops or lollipop structures (126–128). These hairpin
loops or lollipop structures are identified and processed by
the microprocessor complex enzymes constituted of DiGeorge
syndrome critical region 8 (DGR8) and Drosha (127, 129, 130).
This enzymatic process yields a stem loop precursor miRNA
(pre-miR) that consists of roughly 60–70 nucleotides. The pre-
miR is transported to the cytoplasm by another protein called
exportin-5 where it undertakes a secondary processing stage
by another RNase III enzyme called Dicer yielding a RNA
duplex of 19–23 nucleotides (130). This double-stranded RNA
duplex is amalgamated into the RNA-induced silencing complex
(RISC), where one of the RNA strands results in degradation
while the subsequent RNA strand forms the mature miRNA
involved in a post-translational process (131). Overall, most
of the mature miRNA attaches to the 3′ UTR untranslated
region (UTR) of its target mRNA transcript. However, in some
instances, mature miRNAs could also attach to the 5′ UTR and
the protein coding region of the gene (128). Once the binding is
completed, then RISC either inhibits the translational process or
degrades the targeted mRNA, thus decreasing protein expression
(123, 132). Dysregulated miRNAs are involved in several
pathological conditions including autoimmunity, infection, and
cancer (125).

Various studies suggested that EGCG is able to upregulate
several different miRNAs and also downregulates several of
them; however, most of the studies focused on the miRNAs
that were upregulated after green tea and its components
such as EGCG (Table 2), thus affecting gene regulation
and the respective cell functions such as cell proliferation,
apoptosis, etc.

The contribution of miRNAs in the modification of Th
cell development and function by EGCG has recently been
uncovered (48, 138). One study suggested that EGCG upregulates
miR-15b with subsequent suppression of Orai1/STIM2 protein
synthesis and blunted SOCE (48). This study suggested that
miR-15b could be a powerful post-transcriptional regulator of
calcium entry and thus of calcium-sensitive functions of T cells
(Figure 2).

EGCG differentially augments the expression of several
miRNAs (Table 2) that are involved in the NF-κB inflammatory
pathway (11), the retinoid X receptor α (RXRα) signaling
pathway (15), downregulation of apoptotic protein (10) such
as BCL2 (9), downregulation of tumor suppressor genes
tropomyosin-1 (137), laminin receptor signaling (135), Myb
pathway modulation (22), Cox2 signaling (16, 19), and calcium
signaling (139). As scientific advances are developed in miRNA
and tea research, an increasing number of molecular effects are
recognized due to miRNA regulation. miRNAs induced by green
tea have wide-ranging beneficial effects: tumor suppression by
negatively regulating gene expression of oncogenic factors,
reduction in hypertension and neurodegeneration, and
improvement in arthritis (10, 16, 19, 34, 133, 137). Generally,
green tea is safe to consume even at high concentrations.
Thus, if the cytotoxic effects of green tea can be associated to
a specific miRNA, it is plausible that treatments targeting the
overexpressed miRNA could be harnessed for treatment of
several pathologies. Prospective studies are needed to define
which miRNAs could be exploited for therapeutic applications.

CONCLUDING REMARKS AND SUMMARY

In recent decades, there is a growing trend in the use of alternative
therapies, and plant-based medicinal phytochemicals are among
the most suited in inflammatory diseases. Therefore, an
appropriate record of traditional herbal medicine in combination
with modern scientific/pharmacological investigation is needed
to corroborate or disprove the medicinal properties of these
countless traditional Phytotherapies used in ancient times in
many countries throughout the world (140). In this regard,
EGCG from green tea is one of the substances with several
historical beneficial effects on various disorders such as cancer,
metabolic diseases, and inflammation (89). In CD4+ T cells, it
appears that EGCG is a powerful regulator of Ca2+ signaling by
miRNA expression and, thus, by modification of gene expression
at the post-transcriptional level. Therefore, it is worth exploring
the potential mechanisms of polyphenols in the regulation of
other biological processes in addition to immune response.
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