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Abstract

Rabies is a lethal viral disease and dogs are the major disease reservoir in the Philippines.

Spatio-temporal variations in environmental factors are known to affect disease dynamics.

Some rabies-affected countries considered investigating the role of weather components in

driving rabies cases and it has helped them to strategize their control efforts. In this study,

cointegration analysis was conducted between the monthly reported rabies cases and the

weather components, such as temperature and precipitation, to verify the effect of weather

components on rabies incidence in Davao City, Philippines. With the Engle-Granger cointe-

gration tests, we found that rabies cases are cointegrated into each of the weather compo-

nents. It was further validated, using the Granger causality test, that each weather

component predicts the rabies cases and not vice versa. Moreover, we performed the

Johansen cointegration test to show that the weather components simultaneously affect the

number of rabies cases, which allowed us to estimate a vector-error correction model for

rabies incidence as a function of temperature and precipitation. Our analyses showed that

canine rabies in Davao City was weather-sensitive, which implies that rabies incidence

could be projected using established long-run relationship among reported rabies cases,

temperature, and precipitation. This study also provides empirical evidence that can guide

local health officials in formulating preventive strategies for rabies control and eradication

based on weather patterns.

Introduction

Rabies is an acute viral infection that causes encephalomyelitis [1], which affects the nervous

system of infected mammals. Motor weakness, altered sensorium, and other significant mor-

bidity are some of the effects of rabies infection [2]. Infected animals can transmit this virus to

body openings of humans such as wounds through their excreted saliva. The majority of
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rabies-related human deaths in the world are due to dog bites, although vampire bats are the

main reservoir in some regions [3]. There have been rare cases of rabies transmission through

inhalation [4].

During the early 1930s in the Philippines, 90% of the animal brain specimens that were

examined and recorded to be rabies positive in Manila City came from dog samples. The yearly

number of rabid dogs from 1930 to 1934 ranged from 14 to 38, with a total of 145 rabies cases

[5]. In the late 1950s, the compulsory annual vaccination and the licensing of dogs in Manila

were implemented, resulting in a rabies-free city for seven years [5]. In a recent report, about

635 dogs are infected in the Philippines annually since 2012 [6]. In Davao City, a highly urban-

ized city with 1.632 million inhabitants [7] and the largest city in the country, it was also

observed that most of the animal rabies cases are coming from dog samples (with a few reports

coming from cat samples), with a total of 210 rabies-infected dogs reported from 2006 to 2017

(CVO 2019, personal communication, 30 January).

The Philippines aims to be rabies-free by 2022 [8]. Control interventions have been imple-

mented in various localities of the country to prevent the spread of rabies virus in animals. In

Davao City, mass dog vaccination has been implemented since 2006 and additional control

interventions such as impounding and neutering were implemented in 2011 but despite all

these, the number of rabies cases continues to fluctuate (CVO 2018, personal communication,

30 July). These pose a challenge in achieving a rabies-free community. According to Tohma

and colleagues [9], control interventions are complicated by dog migration between neighbor-

ing islands and by the difficulty of achieving the minimum required 70% vaccination coverage.

Furthermore, rabies is considered as one of the lowest priority diseases by the local health

authorities [10], i.e., a neglected tropical disease.

Natural indicators, e.g. weather conditions, which are related to rabies incidence can pro-

vide additional insights for rabies control (e.g., vaccinating all dogs free of charge [11] and dog

population control [12]). For instance, in Africa, the dry season appears to be a risk factor for

rabies transmission as it was found that dispersal and mating of animals, as well as rabies cases,

are more frequent in this season [13]. Moreover, weather-related information has been used in

predicting the incidence of several health-related conditions [14]. Several papers have also

explored modeling the relationships between weather components and disease incidences

[15–17].

If weather conditions (e.g. precipitation and temperature) are natural indicators of rabies

cases, it follows therefore that the number of cases can be predicted using these parameters,

especially if the two variables have a long-term association with each other. The long-term

association between two or more non-stationary time-series data (i.e., mean and variance of

time-series vary over time [18]) can be detected by using cointegration techniques. Also, coin-

tegration captures the dynamical relationship of a time-series response variable to its previous

observations as well as to other time-series explanatory variables. This approach has potential

utility for the development of strategic interventions on rabies control, e.g. determining the

appropriate intervention for certain seasons.

However, cointegration techniques are commonly applied and well-explored in the field of

economics [19–21], and a few papers demonstrate its use in the context of diseases [22–24]. To

our knowledge, cointegration techniques have not yet been explored in analyzing the pattern

of rabies incidence concerning weather patterns. Since these weather components are known

to be non-stationary (e.g. precipitation and temperature) [25,26], modeling can be done using

cointegration.

In this paper, we demonstrate the use of cointegration techniques in studying both the indi-

vidual and simultaneous long-term relationships of precipitation and temperature with the

rabies cases in Davao City, Philippines. The empirical results of this paper can serve as a basis
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for review, strategic planning, and integration of weather factors in local health programs

related to rabies. Furthermore, the methodology described here is also applicable to other

localities or even to other infectious diseases.

Materials and methods

This section presents the data used in this study and the detailed statistical modeling proce-

dures conducted. Specifically, this section is divided into the following subsections: data, sta-

tionary tests, and lag-length selection (i.e., preliminary analysis), the modeling of rabies cases

via cointegration techniques, and the post-estimation diagnostics (stability, impulse-response,

and forecast-error variance decomposition).

Data

There are three datasets in this study considering 144 monthly observations. The first dataset

is the monthly reported rabies cases in Davao City, Philippines from the years 2006 to 2017,

which were collected from the CVO. The other two datasets included the average monthly

data for temperature (in degrees Celsius) and the average monthly data for precipitation (in

millimeters). These were collected from the Philippine Atmospheric, Geophysical, and Astro-

nomical Services Administration (PAGASA), Davao City [27]. The data before 2006 was not

available since the reported records can no longer be tracked by the local health agency.

Stationarity tests and lag-length selection

For the time-series variables xt and yt to be cointegrated, the obtained first-differenced values

for each of the time-series should be stationary [28]. The first-differenced values, denoted as I
(1), for xt and yt are the change between consecutive observations in the original series, as

shown below respectively.

x0t ¼ xt � xt� 1 and y0t ¼ yt � yt� 1 ð1Þ

By convention, stationarity tests are performed using the Augmented Dickey-Fuller (ADF)

test [29]. The lag-length was specified, based on the Schwarz information criterion (SIC), upon

performing the ADF test. Too small lag-length could invalidate the Cointegration test while

too large lag-length results to a loss of power of the test [30,31]. Furthermore, the criterion

used in selecting the optimal lag-length for Engle-Granger and Johansen cointegration tests is

the [32] and HQIC [33] criteria, respectively. Once stationarity is achieved, cointegration tests

can be performed. Else, an appropriate model framework should be applied (e.g. autoregres-

sive distributed lag model) [34].

Modeling rabies cases via cointegration techniques

Cointegration analysis aims to detect the stable long-run relationship among non-stationary

variables at level but is stationary at I(1) [28]. If two time-series variables xt and yt are station-

ary at I(1), then both variables share similar stochastic trends and their difference is also sta-

tionary. This means that xt and yt do not diverge too far from each other in the long run [34].

Therefore, studying the long-term pattern of one time-series variable in terms of the other var-

iable is possible through Cointegration techniques. Furthermore, a sample size of 144 is

enough for a Cointegration analysis since it is already greater than the considered fairly large

sample size (n� 100) [35].

In this paper, we used the Engle-Granger cointegration test to determine if the rabies cases

are cointegrated to each weather variable namely, temperature and precipitation. Moreover,
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the Johansen’s cointegration test was used to see if the rabies cases are cointegrated simulta-

neously to both weather variables. If there is sufficient statistical evidence of cointegration,

error-correction models (precipitation and rabies cases and/or temperature and rabies cases)

and a vector error-correction model (both weather conditions and rabies cases) are estimated.

These models estimate the rate at which the disturbed long-term pattern of rabies cases and

weather components return to stability. Also, these models measure the short and long-run

effects of the weather components on the changes in the rabies cases. The empirical specifica-

tion of the error-correction model to represent the dynamic relationship between the rabies

cases and a weather component is shown below,

DRt ¼ � aðRt� 1 � b1 � b2Wt� 1Þ þ d0DWt þ d1DWt� 1 þ vt: ð2Þ

In Eq 2, Rt and Wt are the number of rabies case and the measurement of a weather compo-

nent at month t, respectively where ΔRt = Rt−Rt−1 and ΔWt = Wt−Wt−1. The parameter α> 0

is the adjustment/correction coefficient for the disturbances in the long-run relationship of the

rabies cases and the specific weather components. Parameters δ0 and δ1 represent the short-

run effects of the weather component. The parameter β2 represents the long-run effect of the

weather component and vt is the error term. Similarly, the vector error-correction model rep-

resenting the dynamical relationship between the rabies cases and multiple weather compo-

nents is described by,

DRt ¼ d1DRt� 1 þ d2DPrect� 1 þ d3DTempt� 1 � aECTt� 1 þ ut; ð3Þ

where ECTt−1 = Rt−1−β1−β2Prect−1−β3Tempt−1.

In Eq 3, Rt is the number of rabies cases, Prect is the amount of precipitation, and Tempt is

the temperature at month t, respectively. The parameter α of Eq 3 is the adjustment/correction

coefficient for the disturbances in the long-run relationship of the rabies cases to precipitation

and temperature, simultaneously. Parameters δ1, δ2 and δ3 represent the short-run effects of

the changes in the number of rabies cases, precipitation, and temperature. The parameters β2

and β3 represent the long-run effects of the amount of precipitation and temperature to the

number of rabies cases at month t. Eq 2 and Eq 3 were based on the general form of the ECM

and VECM of [18].

Engle-Granger cointegration test. The Engle-Granger method initially obtains the errors

based on the regression model [34]. The dependent and independent variables are regressed to

generate the residuals and are tested for the occurrence of unit roots using the ADF test. If the

time-series are cointegrated, then the residuals are stationary [34]. The null hypothesis of the

Engle-Granger test assumes no cointegration, while its alternative hypothesis assumes that

there is cointegration between variables [28]. To reject the null hypothesis, the test statistic/cal-

culated values should be less than the critical value. After testing for evidence of cointegration

between variables, a confirmatory test was performed to ensure that the weather variable (Wt

−1) predicts the rabies cases (Rt), with four possible situations to consider [36]:

1. Wt−1 causes Rt;

2. Rt−1 causes Wt;

3. there is a bi-directional causality; and

4. Wt−1 is independent of Rt (no causality).

To address this, the Granger causality test was used to confirm that the weather variable/s

(Wt−1) granger cause/s the rabies cases (Rt) and not the other way around [37].
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Johansen’s cointegration test. The Johansen’s cointegration test, on the other hand, was

used to determine whether or not a single variable is predicted by two or more other variables

simultaneously [37]. This test identifies the number of cointegrating variables to the dependent

variable. More precisely, the null hypothesis states that there are at most r cointegrating vec-

tors. The test started from the hypothesis that there are no cointegrating vectors in a vector

autoregression model, that is, r = 0, then r� 1, and so on [38]. Once the null hypothesis cannot

be rejected, the test for the number of cointegrating vectors stops. If the null hypothesis has

been rejected for r� k-1 and is not rejected at r� k, then the number of cointegrating vectors

is k. In some cases, trace statistics and maximum eigenvalue statistics may yield different

results and indicates that in this case, the outcome of the trace test was chosen [39].

Post-estimation diagnostics. Similar to other models, post-estimation diagnostics are

helpful to detect potential model problems. In this study, finding the eigenvalue stability con-

dition [18], and generating the impulse response functions (IRF) and forecast-error variance

decomposition (FEVD) were performed as post-estimation diagnostic procedures. With the

eigenvalue stability condition, the VECM model is said to be stable whenever the modulus of

each eigenvalue is less than one [16, 37]. On the other hand, the IRF and FEVD for 10 months

of the rabies cases were also obtained to examine the behavior of the response variable to cer-

tain impulses (i.e., an unpredictable change) driven by the variables [40]. The impact of the

impulse can either be transitory or permanent [18].

Results

Temporal patterns of rabies cases and weather conditions

In this paper, the time-series plots of the variables and their first differences are presented in

Fig 1 to determine whether or not the time-series satisfies the conditions for cointegration

analysis. Three variables namely monthly positive rabies cases, average precipitation (in milli-

meters), and average temperature (in degree Celsius) were considered. Fig 1 reports the aver-

age rabies cases, average precipitation, and average temperature as 1.4653, 5.3629 millimeters,

and 28.2674˚C. Since using the visual representation of the time-series is not reliable in deter-

mining stationarity, the confirmation is carried out using formal statistical tests.

Test for stationarity

Stationarity testing for both time-series and first differences were performed using the ADF

test. A lag-length of 13 was selected for all time-series variables and their first differences in

conducting the test for data stationarity (see S1 Table). The ADF test, as shown in Table 1,

revealed that the rabies cases, precipitation, and temperature are all non-stationary at level

since the calculated values are all greater than the critical values at 1%, 5%, and 10% level of sig-

nificance. On the other hand, the first differences of the rabies cases, precipitation, and tem-

perature are all stationary since the calculated values are all less than the critical values at 1%,

5%, and 10% level of significance.

Engle-Granger cointegration test and Granger causality test

The Engle-Granger test demonstrated cointegration of both precipitation and temperature to

rabies cases since the calculated values (-11.17 for precipitation and -11.18 for temperature)

were both less than the critical values (between -3.97 to -1.61) at 1%, 5%, and 10% level of sig-

nificance (Table 2). Furthermore, the directionality of the relationship was validated through

the Granger causality test, wherein significant results were obtained (p<0.001) when the

PLOS ONE Cointegration analysis of rabies cases and weather components in Davao City

PLOS ONE | https://doi.org/10.1371/journal.pone.0236278 August 25, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0236278


Fig 1. The time-series (left) and the first difference (right) plots of the monthly observations of rabies cases, precipitation, and temperature.

https://doi.org/10.1371/journal.pone.0236278.g001
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weather variables are treated as the independent variable and the rabies cases as the dependent

variable (Table 3).

Error-correction models. Two error-correction models in the form of Eq 2 were esti-

mated in this paper. The estimated coefficients for each model are presented in Table 4 with

the corresponding Akaike information criterion (AIC) and Bayesian information criterion

(BIC) values: 498.3938 and 504.3055, respectively, when the weather variable is temperature;

and 502.9143 and 517.6935, respectively, when the weather variable is precipitation. The statis-

tical estimate for the correction coefficient parameter α is significant at 1% for both models. In

addition, the statistical estimate for the constant β1 is significant at 1% when the weather vari-

able under consideration is precipitation.

Johansen’s test for cointegration

Based on the HQIC criterion, the optimal lag-length in determining the maximum rank, i.e.,

the number of cointegrating vector, is 1 (see S2 Table). As shown in Table 5, the maximum

rank is 2 since the null hypothesis was rejected at r = 2. Hence, there are two cointegrating vec-

tors (i.e. temperature and precipitation) for a VECM with rabies cases as the dependent

variable.

Vector error-correction model. Table 6 shows the estimated parameters of the reduced

form of the VECM for the rabies cases. Both short-run and long-run parameters were

included. All the statistical estimates for the long-run parameters were significant at 1%.

For the short-run parameters, only the statistical estimate for δ3, i.e., the short-run effects

of the changes in the temperature, was not significant. The VECM had an AIC and BIC val-

ues of 10.5094 and 10.8009, respectively, which are relatively small compared to those of

the ECMs.

Table 1. Augmented Dickey-Fuller tests for the rabies cases and weather components.

Variable Calculated Value Critical Value Implicationc

1% 5% 10%

Number of rabies casesa -1.216 -2.596 -1.950 -1.612 Nonstationary

Number of rabies casesb -5.359 -2.596 -1.950 -1.612 Stationary

Precipitationa -1.718 -2.595 -1.950 -1.613 Nonstationary

Precipitationb -11.839 -2.596 -1.950 -1.613 Stationary

Temperaturea 0.402 -2.596 -1.950 -1.612 Nonstationary

Temperatureb -2.866 -2.596 -1.950 -1.612 Stationary

aAt-level time-series.
bFirst differences time-series.
cH0: Data is nonstationary. H1: Data is stationary. H0 is rejected whenever the calculated value is less than or equal to the critical value.

https://doi.org/10.1371/journal.pone.0236278.t001

Table 2. Statistical values derived from the Engle-Granger cointegration of the weather components to rabies cases.

Variable Calculated Value Critical Value Implicationa

1% 5% 10%

Precipitation -11.172 -3.974 -3.379 -3.074 Cointegrated

Temperature -11.183 -2.596 -1.950 -1.612 Cointegrated

aH0: Weather component and rabies cases is not cointegrated. H0 is rejected whenever the calculated value is less than or equal to the critical value.

https://doi.org/10.1371/journal.pone.0236278.t002
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Post-estimation diagnostics

Table 7 shows the eigenvalues computed to evaluate the stability of the model. As seen in the

table, out of six eigenvalues, the modulus of two eigenvalues was 1 while the remaining were

less than 1.

IRF and FEVD post-diagnostics were performed to reveal how rabies cases respond to the

impulse or shocks from the previous rabies cases, precipitation level, and temperature level. As

seen in the IRF of Fig 2, the rabies cases quickly respond to the one-time positive shock from

the three variables. The IRF also reveals that rabies cases become nearly stable after the first

month (from the impulse of precipitation) and after the fourth month (from the impulse of

rabies cases and temperature). Note that this observation can be linked to the results of the

FEVD (Fig 2) which describes the forecast variance for rabies cases due to shocks from the pre-

vious rabies cases, precipitation, and temperature.

Discussion

We conjectured based on the fluctuations we have seen earlier in the time-series plots of the

variables and their first differences that each time-series at level is non-stationary while each

corresponding first difference is stationary. These observations were confirmed by the ADF

test. Monthly rabies cases, average precipitation (in millimeters), and average temperature (in

degree Celsius) are all nonstationary at level while their first differences were all stationary.

These stationarity results allow the use of the Engle-Granger cointegration test in examining

the long-term association of the weather components and rabies cases.

Table 3. Granger causality test for rabies cases and the weather components.

Dependent Variable (yt) Independent Variable (xt-1) p-valuea

Rabies cases Precipitation p<0.001���

Precipitation Rabies cases 0.078

Rabies cases Temperature p<0.001���

Temperature Rabies cases 0.457

a If significant:

�� p-value < 0.05 is significant at 0.05

��� p-value < 0.01 is significant at 0.01 where H0 (xt-1 does not cause yt) is rejected when p-value < 0.05.

https://doi.org/10.1371/journal.pone.0236278.t003

Table 4. Estimated parameter values of the error-correction models for rabies cases.

ECM Parameters Parameter Coefficienta

Wt is temperature Wt is precipitation

α 0.9357��� 0.9337���

β1 7.8874 1.2900���

β2 -0.2276 0.0297

δ0 -0.1636 -0.0301

δ1 0.2745 0.0025

AIC 498.3938 498.0861

BIC 504.3055 503.9978

aIf significant: � p-value < 0.10 is significant at 0.10; �� p-value < 0.05 is significant at 0.05

��� p-value < 0.01 is significant at 0.01.

https://doi.org/10.1371/journal.pone.0236278.t004
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The Engle-Granger test revealed that each weather component is cointegrated with rabies

cases. Furthermore, the Granger causality test validated that the weather variables are the inde-

pendent variables, that is, each weather component (Wt−1) predicts the number of rabies cases

(Rt) and not vice-versa. The results of the Engle-Granger and Granger causality tests also

allowed the estimation of two error correction models wherein rabies cases are independently

driven by the weather components. The first model assumes that rabies cases are affected by

precipitation [13, 41], while the second one assumes that rabies cases are affected by tempera-

ture [42, 43]. From our observations on the fluctuations in the time-series plots and the esti-

mated empirical error correction models, we ask: when will the disturbed long-term

relationships of the weather variables and rabies cases become stable? The feedback or adjusted

effect parameter α estimates how much disequilibrium is corrected per unit time (month). For

temperature, an α of 0.9357 was obtained, which means that 93.57% of the disturbances in the

temperature is corrected/adjusted per month. This implies that the disturbed long-run rela-

tionship between temperature and rabies cases becomes stable after approximately one month

(|α−1| = 1.069). On the other hand, the estimated ECM corrects the disturbances in the precipi-

tation at a rate of 0.9337. This means that the disturbed long-run relationship between precipi-

tation and rabies cases becomes stable after approximately one month (|α−1| = 1.0701).

On the other hand, the Johansen’s test revealed that temperature and precipitation both

affect the rabies cases, simultaneously. Hence, a VECM for rabies cases was estimated to simul-

taneously take into consideration both variables as drivers. The information criteria revealed

that the estimated VECM is relatively better compared to the two independent ECMs, suggest-

ing that VECM has less information loss in terms of the long-run relationship of the rabies

cases and the weather components and thereby validates the concurrent effect of temperature

and precipitation on the number of rabies cases.

The preceding results point out that both temperature and precipitation affect the pattern

of rabies cases. From Eq 3, the equation below shows the empirical VECM based on the

Table 5. Johansen’s test for cointegration of rabies cases and weather conditionsa.

Maximum Rank No. of Parameters LL Eigenvalue Trace Statistics Critical Value

0 0 -807.7434 182.6143 24.31

1 5 -761.0272 0.4797 89.1817 12.53

2 8 -716.4503 0.4639 0.0281 3.84b

3 9 -716.4363 0.0002

aFor lag-length 1, HQIC = 10.2410, for lag-length 2, HQIC = 10.4104, for lag-length 3, HQIC = 10.5202. Hence, lag-length 1 was specified in performing the Johansen’s

cointegration test using the vecrank Stata function.
bMaximum rank is 2 since Trace Stat < Critical Value.

https://doi.org/10.1371/journal.pone.0236278.t005

Table 6. Coefficients of the parameters in the VECM for rabies cases in Eq 2a.

Short-run Equation Parameters Coefficientb Long-run Equation Parameters Coefficient

δ1 -0.3206��� α 0.3973���

δ2 -0.0753� β2 -0.6424���

δ3 0.3719 β3 0.0706���

aInformation criteria: AIC = 10.5094, BIC = 10.8009.
bIf significant

� p-value < 0.10 is significant at 10%, �� p-value < 0.05 is significant at 5%

��� p-value< 0.01 is significant at 1%.

https://doi.org/10.1371/journal.pone.0236278.t006
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estimated coefficients of the parameters presented in Table 6:

DRt ¼ � 0:3206DRt� 1 � 0:0753DPrect� 1 � 0:3973Rt� 1 � 0:2552Prect� 1 þ 0:0280Tempt� 1: ð4Þ

The VECM in Eq (4) has a smaller correction parameter value (α = 0.3973) compared to the

correction parameter values of the ECMs. The VECM estimates that the disturbed long-term

Table 7. The eigenvalues and their corresponding moduli for eigenvalue stability condition post-diagnostics.

Eigenvalue Modulus

1 1

1 1

-0.3513 + 0.0347i 0.3530

-0.3513–0.0347i 0.3530

0.1259 + 0.1143i 0.1700

0.1259 + 0.1143i 0.1700

https://doi.org/10.1371/journal.pone.0236278.t007

Fig 2. Plots of Impulse Response Function (IRF) and Forecast-Error Variance Decomposition (FEVD) of positive rabies cases to impulse on positive rabies cases (top),

precipitation (middle), and temperature (bottom) using Stata 15.1.

https://doi.org/10.1371/journal.pone.0236278.g002
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relationship of the rabies cases and weather components takes a longer time, i.e., |α−1| = 2.5

months, to go back to the equilibrium state than the estimated time of the ECMs (1 month).

Apparently, accounting for the different disturbances of the weather conditions simulta-

neously will make the feedback or adjusted effect parameter of the VECM relatively lower than

with the ECMs. Furthermore, the obtained moduli of the eigenvalues for the estimated VECM

coefficients are mostly less than 1 [18, 44]. This implies that the eigenvalue stability condition

is satisfied and so the number of cointegrating equations of the estimated VECM in this paper

is correctly specified.

It is evident in this study that there is a negative relationship between precipitation and the

number of dog rabies cases (i.e., fewer rabies cases during high precipitation). Although this

finding has been reported by Lachica and colleagues [17] using count regression analysis, the

dynamic relationship of rabies cases and precipitation has been further considered in this anal-

ysis. Specifically, we analyzed the short-run and long-run effects of this weather component to

the rabies cases. From the long-term estimated parameter coefficient of precipitation in Eq 4,

we found that in the long run, an approximate decrease by 1.3686 rabies case per month is

expected in Davao City if the precipitation of the preceding month remains on the average at

5.3629 millimeters (i.e., -0.2552 � 5.3629 = -1.3686). According to Kurachi and colleagues [45],

rabid dogs are naturally hydrophobic and so the fear of rabid dogs to any form of liquid,

despite its furious nature, immobilizes them to move from place to place during rainy periods.

Aside from hydrophobia, some dogs develop storm phobia [45]. In an anticipated occurrence

of a storm, dogs tend to look for spots wherein storm-related stress is minimal (e.g. loud noises

of rain and thunderstorms) [46]. Furthermore, the dispersal and mating season of animals

usually occur during the dry season [11], i.e. when precipitation is low, as rain acts as a natural

barrier. Thus, during rainy seasons, the possibility of an interaction between a rabid dog to a

non-rabid dog decreases [13] thereby slowing down the spread of rabies. Similar findings have

been reported for cattle rabies in Costa Rica where rainfall was negatively correlated with

rabies incidence in cattle, presumably due to reduced foraging of vampire bats as an effect of

rain [47].

This study also revealed that the canine rabies cases will increase when the temperature

rises. In the long-run, an approximate increase by 0.7916 rabies case per month is expected in

Davao City if the temperature of the preceding month remains on the average at 28.27˚C (i.e.,

0.0280 � 28.27 = 0.7916). A similar finding has been observed for human rabies cases in China

[48–50]. Increased dog activity on months with high temperatures is a probable cause of the

rise in the number of dog bites [50]. Temperature is a potential risk factor of rabies spread as

the dog’s temper is sensitive to high temperatures [48]. Furthermore, animals are more active

and travel with greater distance at warmer temperatures, thereby contributing to rabies spread

especially with warmer climate [49].

In this paper, we also studied how the number of rabies cases in the next 10 months respond

to various disturbances in the present measurements of weather variables and the number of

rabies cases. Using the IRF, it can be observed that the number of rabies cases responds largely

to its own shocks relative to the shocks in precipitation and temperature. For instance, a one-

time impulse in rabies case by 1 unit leads to a permanent increase in the rabies cases by 0.38

units in the long run. On the other hand, a one-time 1-mm impulse in the precipitation level

leads to a permanent increase in the rabies cases by 0.19 units while a 1˚C impulse in the tem-

perature level leads also to a permanent increase in the rabies cases by 0.13 units in the long

run. Moreover, the FEVD of the estimated VECM for rabies cases reveals that the shocks in

the rabies cases have the largest contribution to the variability of the rabies cases over time.

However, it should be noted that the IRFs applied in this study do not account for simulta-

neous impulses in the weather variables. Hence, the above results should be carefully
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interpreted in the light of vector autoregressive (VAR) models, where IRFs are deemed appro-

priate to use [18]. Unlike with the VAR that the impulse dies out (or termed as transitory), the

effect of the impulse for the VECM is permanent as reflected in Fig 2.

The foregoing results imply that, although weather conditions like precipitation and tem-

perature drive the decrease and increase of rabies cases in the long run, respectively, interven-

tions directly targeted to dogs should be intensified to eradicate rabies since the impulse in the

present number of rabies cases has the largest contribution to the future number of rabies

cases. Nevertheless, precipitation and temperature, being natural indicators of rabies cases,

will guide the implementation of control interventions strategically. In the long run, it is strate-

gic to intensify the catching of free-roaming dogs when dogs are more active which usually

falls during the summer season. Furthermore, we suggest that the mass dog vaccination and

castration campaigns should be conducted before the summer season since we expect that the

rabies cases will rise after summer. This targeted vaccination schedule would ensure the dogs’

immune protection against rabies even before the onset of the projected peak during the sum-

mer season. Also, early castration will keep the dog population from increasing dramatically,

thereby minimizing interactions and maintaining herd immunity. Therefore, we recommend

the inclusion of these findings in the information campaign materials of the CVO to educate

the community about the effects of weather on the future trends of rabies cases. In this way,

dog owners will also be properly informed and be able to apply proper precautionary measures

on their own volition.

The study is mainly focused in Davao City, Philippines, hence the application of this meth-

odology to other localities in the country may result in unique findings. On a global scale,

applying the methodology of this paper to other countries with more than two seasons (e.g.

USA [11]) will potentially result in different co-integrating relationships between the rabies

cases and weather components. We would also like to point out that the quantitative analysis

may be affected by underreporting of rabies cases, which is a major constraint in data collec-

tion of notifiable diseases [17]. Finally, all the statistical modeling procedures conducted were

based on the protocols of Becketti [18].

Conclusion

The Philippines’ goal is to be rabies-free by 2022. The local government of Davao City has

been intensifying campaigns to eliminate rabies with the following strategies: vaccination, cas-

tration, impounding, and the conduct of information and education campaign (IEC) sessions.

To our knowledge, this is the first report in the country which demonstrates the impact of

weather components such as precipitation and temperature on canine rabies incidence via

cointegration analysis. Our results show that canine rabies in Davao City is weather-sensitive,

therefore projecting the rabies incidence using the established long-run relationship of

reported rabies cases and the weather components obtained in the study is possible. These

results can be useful in formulating targeted strategies for rabies control based on weather pat-

terns, e.g. intensification of mass dog vaccination prior to the summer season. The analysis of

this paper can be further applied to other infectious diseases that are hypothesized to be driven

by weather patterns provided that sufficient time-series data for disease incidence and weather

variable (e.g. amount of rainfall, the temperature in degree Celsius, etc.) are available.
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