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ABSTRACT
Stable isotope analysis of feces can provide a non-invasive method for tracking the
dietary habits of nearly any mammalian species. While fecal samples are often collected
for macroscopic and genetic study, stable isotope analysis can also be applied to expand
the knowledge of species-specific dietary ecology. It is somewhat unclear how digestion
changes the isotope ratios of animals’ diets, so more controlled diet studies are needed.
To date, most diet-to-feces controlled stable isotope experiments have been performed
on herbivores, so in this study I analyzed the carbon and nitrogen stable isotope ratios in
the diet and feces of the meerkat (Suricata suricatta), a small omnivorousmammal. The
carbon trophic discrimination factor between diet and feces (113Cfeces) is calculated to
be 0.1± 1.5h, which is not significantly different from zero, and in turn, not different
than the dietary input. On the other hand, the nitrogen trophic discrimination factor
(115Nfeces) is 1.5 ± 1.1h, which is significantly different from zero, meaning it is
different than the average dietary input. Based on data generated in this experiment
and a review of the published literature, carbon isotopes of feces characterize diet, while
nitrogen isotope ratios of feces are consistently higher than dietary inputs, meaning a
discrimination factor needs to be taken into account. The carbon and nitrogen stable
isotope values of feces are an excellent snapshot of diet that can be used in concert
with other analytical methods to better understand ecology, diets, and habitat use of
mammals.

Subjects Animal Behavior, Biogeography, Ecology, Ecosystem Science, Zoology
Keywords Stable isotopes, Ecology, Dietary ecology, Mammalogy, Meerkats, Trophic ecology,
Feces

INTRODUCTION
Small mammals are often overlooked in favor of larger more charismatic species, but they
fill vital roles as ecosystem engineers, prey base, and seed dispersal agents (Huntly & Inouye,
1988; Brown & Heske, 1990; Davidson, Detling & Brown, 2012). They can live in colonies
or in large numbers; therefore their plentiful modern and historical remains can provide
records of changing environments and shifting ecological conditions (Terry, 2010). Non-
invasive monitoring is an ideal way to track changes in modern mammalian communities,
as shed hair and feces can provide a substrate for examining population trends, diets,
and health of groups using genetic or chemical methods (Crawford, McDonald & Bearhop,
2008; Pompanon et al., 2012; Rodgers & Janečka, 2013). Specifically examining feces is
useful, as it can be collected from rare or cryptic species that are hard to monitor and often
avoid humans. Also, feces is plentiful and relatively inexpensive to analyze. Traditionally,
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vertebrate diets have been assessed macroscopically through physical examination of gut
contents and feces (e.g., Hermsen, Kerle & Old, 2016). With the advent of affordable high-
throughput sequencing, fecal studies are becoming more common for barcoding dietary
DNA, which allows for a more complete dietary picture not as easily biased by differing
digestibility of food (e.g., Shehzad et al., 2012;Kartzinel et al., 2015). Stable isotopemethods
can provide a useful complement to these barcoding studies that are growing in popularity.
Fecal stable isotopes have been useful for detecting dietary shifts in mammals such as
gorillas (Blumenthal et al., 2012), for understanding weaning time in primates (Reitsema,
2012), and as a climate record from bats (Royer et al., 2015), so understanding isotopic
discrimination and variability of this material is vital for future research.

Stable isotope ratios of nitrogen (15N/14N, written δ15N) and carbon (13C/12C, written
δ13C) are incorporated in animal tissues and excretions following digestion of food
products. Changes in stable isotope ratios can elucidate information about food webs,
trophic structure, and habitat use (Ben-David & Flaherty, 2012). It is assumed that carbon
isotope ratios do not change drastically as they propagate through the food web (DeNiro
& Epstein, 1978), and in terrestrial ecosystems, these ratios are generally used to indicate
the primary production at the base of the food web. Carbon isotope ratios of plants that
use different metabolic pathways (C3, C4, or CAM) are systematically different, and this
difference is incorporated into the tissues or byproducts of consumers. On the other hand,
δ15N values are known to become enriched as trophic level increases (DeNiro & Epstein,
1981), and differences in δ15N of tissue over time or between populations can be used to
discern changes in food webs, habitat, or prey composition (Post, 2002).

To use stable isotopes in dietary ecology, there has to be a comprehensive understanding
of the difference in isotope ratios between diet and tissue (or feces); this difference is called
the trophic discrimination factor (also fractionation factor or discrimination factor) and is
caused by isotopic fractionation during digestion and metabolism. Trophic discrimination
factor is denoted as 1 and defined as 1= δtissue–δdiet (Martínez del Rio et al., 2009).
Trophic discrimination factors (abbreviated TDFs) are widely variable among animals
and differ depending on species, tissue examined, and diet type and quality (Caut, Angulo
& Courchamp, 2009). General TDFs are used in many mixing model studies for animal
diet reconstruction, but it has been shown that small differences in TDFs in these types of
studies can lead to vastly different conclusions about dietary makeup (Ben-David & Schell,
2001). Experimental work by Caut, Angulo & Courchamp (2008) shows that mixing models
are most accurate when species-specific TDFs are obtained.

In this study, I calculate TDFs for carbon and nitrogen isotopes in meerkat (Suricata
suricatta) feces in order to obtain fecal TDFs in a small mammalian omnivore. Meerkats
are small, diurnal mammals that are members of Carnivora and are herpestids, closely
related to mongoose. They have generalist diets and in the wild consume insects, berries,
reptiles, and other small invertebrates (Doolan & Macdonald, 1996). The diets of generalist
consumers are difficult to study in the wild due to unknown variability in their diet, so a
zoo-based study of meerkats in this instance will provide dietary control, allowing for less
variation in the determination of a TDF. Studies like this one are necessary, as TDFs are
not often determined for terrestrial mammalian omnivores and carnivores or even feces in
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Table 1 Fecal trophic discrimination factors of carbon (113C) from this study and from the literature. Average δ13C of diet used to calculate
each TDF is included from the original listed publication. All isotope values are presented±1 standard deviation if it was available in the original
publication. Asterisks (*) indicate when one species from the same experiment was divided into different diet treatments. The column ‘‘n’’ repre-
sents the number of fecal samples used to calculate the TDF in each experiment. The 113C values in bold are statistically significantly different from
zero in their original experiments (in some cases this was not specifically tested).

Species δ13C diet 113C n Diet class Reference

Peromyscus maniculatus −19.4± 0.3 −3.2 5 Herbivore Hwang, Millar & Longstaffe (2007)
Myodes gapperi −19.4± 0.3 −4.2 5 Herbivore Hwang, Millar & Longstaffe (2007)
Microtus longicaudus −19.4± 0.3 −2.7 5 Herbivore Hwang, Millar & Longstaffe (2007)
Microtus pennsylvanicus −19.4± 0.3 −3.6 5 Herbivore Hwang, Millar & Longstaffe (2007)
Tamias amoenus −19.4± 0.3 −3.0 5 Herbivore Hwang, Millar & Longstaffe (2007)
Zapus princeps −19.4± 0.3 −5.9 5 Herbivore Hwang, Millar & Longstaffe (2007)
Lama glama* −13.3± 0.3 −1.2± 0.4 4 Herbivore Sponheimer et al. (2003a)
Lama glama* −27.0± 0.2 −0.4± 0.5 4 Herbivore Sponheimer et al. (2003a)
Capra hircus* −27.0± 0.2 −0.8± 0.1 4 Herbivore Sponheimer et al. (2003a)
Capra hircus* −13.3± 0.3 −1.0± 0.4 4 Herbivore Sponheimer et al. (2003a)
Bos taurus* −13.3± 0.3 −0.9± 0.2 4 Herbivore Sponheimer et al. (2003a)
Bos taurus* −27.0± 0.2 −1.00± 0.2 4 Herbivore Sponheimer et al. (2003a)
Oryctolagus cuniculus −27.0± 0.2 −0.3± 0.1 4 Herbivore Sponheimer et al. (2003a)
Vicugna pacos* −27.0± 0.2 −0.4± 0.4 4 Herbivore Sponheimer et al. (2003a)
Vicugna pacos* −13.3± 0.3 −1.3± 0.2 4 Herbivore Sponheimer et al. (2003a)
Equus caballus* −27.0± 0.2 −0.5± 0.4 4 Herbivore Sponheimer et al. (2003a)
Equus caballus* −13.3± 0.3 −0.7± 0.2 4 Herbivore Sponheimer et al. (2003a)
Uncia uncia −23.61± 3.15 2.30± 1.66 10 Carnivore Montanari & Amato (2015)
Panthera tigris −23.61± 3.15 1.25± 0.62 7 Carnivore Montanari & Amato (2015)
Gorilla gorilla −28.4 0.3 121 Herbivore Blumenthal et al. (2012)
Clethrionomys gapperi* −29.23 −0.51± 1.19 11 Herbivore Sare, Millar & Longstaffe (2005)
Clethrionomys gapperi* −25.49 −1.95± 1.04 10 Herbivore Sare, Millar & Longstaffe (2005)
Clethrionomys gapperi* −28.22 0.24± 1.20 10 Herbivore Sare, Millar & Longstaffe (2005)
Myotis myotis* −24.54± 0.76 −0.17± 1.10 15 Insectivore Salvarina et al. (2013)
Myotis myotis* −20.50± 0.81 −0.25± 0.75 21 Insectivore Salvarina et al. (2013)
Rhinolophus ferrumequinum* −24.54± 0.76 0 15 Insectivore Salvarina et al. (2013)
Rhinolophus ferrumequinum* −20.50± 0.81 0.09± 0.39 21 Insectivore Salvarina et al. (2013)
Suricata suricatta −24.9± 3.3 0.1± 1.5 24 Omnivore This study

general (Tables 1 and 2). Even though feces represent a snapshot of diet, it is often collected
in sizeable quantities for non-invasive studies. This can provide important ecological and
environmental records and elucidate short-term and seasonal dietary variability. Changes in
isotope ratios from diet to feces need to be calculated, as there may be isotopic fractionation
from the process of digestion and waste excretion.

Here I calculate trophic discrimination factors for captive meerkats by measuring
the isotopic composition of both the diet and the feces. I also describe how fecal stable
isotope values vary over short periods of time so that more information can be gleaned
about the measured variability in generalist diets during wild studies. Focusing on small
mammals with generalist diets will be key to uncovering ecological factors that cause shifts
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Table 2 Fecal trophic discrimination factors of nitrogen (115N) from this study and from the literature. Average δ15N of diet used to calculate
each TDF is included from the original listed publication. All isotope values are presented 1 standard deviation if it was available in the original pub-
lication. Asterisks (*) indicate when one species from the same experiment was divided into different diet treatments. The column ‘‘n’’ represents
the number of fecal samples used to calculate the TDF in each experiment. The 115N values in bold are statistically significantly different from zero
in their original experiments (in some cases this was not specifically tested).

Species δ15N diet 115N n Diet class References

Peromyscus maniculatus 3.6± 0.02 2.1 5 Herbivore Hwang, Millar & Longstaffe (2007)
Myodes gapperi 3.6± 0.02 2.2 5 Herbivore Hwang, Millar & Longstaffe (2007)
Microtus longicaudus 3.6± 0.02 2.2 5 Herbivore Hwang, Millar & Longstaffe (2007)
Microtus pennsylvanicus 3.6± 0.02 2.5 5 Herbivore Hwang, Millar & Longstaffe (2007)
Tamias amoenus 3.6± 0.02 1.4 5 Herbivore Hwang, Millar & Longstaffe (2007)
Zapus princeps 3.6± 0.02 2.2 5 Herbivore Hwang, Millar & Longstaffe (2007)
Lama glama* 0.4 2.9± 0.3 4 Herbivore Sponheimer et al. (2003b)
Lama glama* 5.8 3.0± 0.4 4 Herbivore Sponheimer et al. (2003b)
Bos taurus* 0.7 2.0 4 Herbivore Steele & Daniel (1978)
Bos taurus* 0.6 1.7 4 Herbivore Steele & Daniel (1978)
Equus caballus* 0.4 2.6 Unknown Herbivore Sponheimer et al. (2003b)
Equus caballus* 5.8 3.3 Unknown Herbivore Sponheimer et al. (2003b)
Ovis aries 0.8 3.0 Unknown Herbivore Sutoh, Obara & Yoneyama (1993)
Capra hircus 1.5 3.6 3 Herbivore Sutoh, Koyama & Yoneyama (1987)
Uncia uncia 8.95± 0.73 2.49±1.30 10 Carnivore Montanari & Amato (2015)
Panthera tigris 8.95± 0.73 1.57± 2.04 7 Carnivore Montanari & Amato (2015)
Sus scrofa 4.6± 0.3 1.2 3 Omnivore Sutoh, Koyama & Yoneyama (1987)
Gorilla gorilla 3.2 0.6 121 Herbivore Blumenthal et al. (2012)
Clethrionomys gapperi* −0.42 1.76± 1.26 11 Herbivore Sare, Millar & Longstaffe (2005)
Clethrionomys gapperi* 1.45 1.17± 1.68 10 Herbivore Sare, Millar & Longstaffe (2005)
Clethrionomys gapperi* 4.00 1.27± 2.06 10 Herbivore Sare, Millar & Longstaffe (2005)
Myotis myotis* 5.31± 0.63 1.81± 1.28 15 Insectivore Salvarina et al. (2013)
Myotis myotis* 12.88± 1.16 2.34± 2.17 21 Insectivore Salvarina et al. (2013)
Rhinolophus ferrumequinum* 5.31± 0.63 0.53± 0.54 14 Insectivore Salvarina et al. (2013)
Rhinolophus ferrumequinum* 12.88± 1.16 0.97± 0.45 21 Insectivore Salvarina et al. (2013)
Suricata suricatta 4.6± 1.8 1.5± 1.1 24 Omnivore This study

in mammalian biodiversity, as small mammals are accurate recorders of environmental
change over a variety of time scales (Barnosky, Hadly & Bell, 2003; Terry, 2010).

MATERIALS AND METHODS
Diet and feces samples
The meerkats in this study are maintained at the Edinburgh Zoo (Royal Zoological Society
Scotland). Fecal samples were taken randomly from an enclosure containing seven adult
female meerkats over the course of April 2016. Subsamples of diet were collected once
a week for four weeks to account for variability in diet items. Per the information of
Edinburgh Zoo animal care workers, the meerkats are fed different combinations of the
food items each day, but over the course of a week the amount of each item they eat is
roughly equal. Each animal receives the same amount of each food item by weight. A total
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of 24 fecal samples were collected, along with 2–4 subsamples of each diet item: carrots
and apples, horsemeat, dog biscuits, whole frozen small mice, and whole frozen chicks.
The above items were used to calculate the trophic discrimination factor from diet to feces.
Homogenized bulk muscle with attached skin was sectioned from the whole chicks and
mice for analysis.

Stable isotope analysis
Stable isotope analysis was conducted at the Wolfson Laboratory in the School of
Geosciences at the University of Edinburgh. The analysis of carbon and nitrogen isotope
ratios was performed on a CE Instruments NA2500 Elemental Analyzer and the effluent
gas was analyzed for its carbon and nitrogen isotopic ratios using a Thermo Electron
Delta+ Advantage stable isotope ratio mass spectrometer. Sediment standard, PACS-2
(δ15N 5.215h (Air) and δ13C- 22.228h(VPDB)) from the National Research Council
Canada was used for isotopic analyses. Acetanilide standard (C 71.09% and N 10.36%) was
used for elemental compositions. Isotopic data were determined relative to CO2 and N2

reference gases whose mean values are derived from the average value of PACS-2 samples
within each daily run.

The standard deviation for five analyses of the PACS-2 standard run over the same time
period as the study samples was ±0.07h for δ13C (VPDB), and ±0.14h for δ15N (Air).
Elemental analysis, measuring the percentage of carbon and nitrogen in the samples, had
an error of 1% for carbon and 4% for nitrogen. The stable isotope ratios are reported in
standard notation and referenced to air for δ15N values and Vienna Pee Dee Belemnite
(VPDB) for δ13C values. Ratios are defined as δ= (Rsample/Rstandard−1) where R= 13C/12C
or 15N/14N.

Samples were prepared first by lyophilization followed by manual crushing to form
a homogenized powder for isotope analysis. Feces and diet samples were subsampled
and analyzed both with and without lipid extraction treatment. The samples were lipid
extracted by immersion in a 2:1 ratio of chloroform/methanol for 12 h using a Soxhlet
apparatus. Following lipid extraction, samples were dried in a 50 ◦C oven for at least 24 h
to evaporate any remaining solvent.

Statistics and data analysis
Statistical tests and analyses were performed in R (R Core Team, 2016), and plots were
created in ggplot2 (Wickham, 2009). Trophic discrimination factors were calculated using
the averages of all subsampled dietary material. TDFs were calculated for both δ13C
and δ15N using the aforementioned equation 1Xfeces = δXfeces–δXdiet where 1Xfeces is
calculated in per mil (h). δXdiet is the value of the average of all non-lipid-extracted
dietary samples and δXfeces is each individual fecal stable isotope value.

Parametric statistical tests were performed, as the data are normally distributed as shown
through a Shapiro–Wilk test (δ13C: W = 0.946, p= 0.057; δ15N: W = 0.976, p= 0.544).
Before hypothesis testing, an F-test was performed to see if a t -test for equal or unequal
variance (Welch two sample t -test) should be done based on the results. F-tests show the
variance was equal for comparisons between lipid-extracted and non-lipid-extracted feces
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for both δ13C and δ15N (δ13C: F8,23= 1.409, p= 0.491; δ15N: F8,23= 0.408, p= 0.191).
Variance for comparisons between diet and feces for both δ13C and δ15N are unequal
(δ13C: F15,23= 5.001, p= 0.0006; δ15N: F15,23= 2.633, p= 0.036). All means are reported
± standard deviation (SD), and all significance is reported for α= 0.05.

To obtain carbon and nitrogen fecal trophic discrimination factors from other studies
for comparison to results from this study, a literature search was conducted using Google
Scholar and through mining references in other feces trophic discrimination factor papers.
These were all of the papers with diet-feces trophic discrimination factors found as of
August 2016 searching keywords such as ‘‘feces stable isotopes’’ and ‘‘scat stable isotopes’’.
These values appear in Tables 1 and 2.

RESULTS
A summary of the stable isotope results is presented in Table 3, and a summary of t -tests is
reported in Table 4. All raw isotope data can be found in the supplementary information
(Data S1).

A subset of feces and diet samples were lipid extracted to see if this changed the results
of the analysis; however, using a t -test no significant difference was found between the
δ13C and δ15N of either material between lipid extracted and non-lipid-extracted samples
(Table 4). As in my previous study of fecal TDFs (Montanari & Amato, 2015), I have opted
to use only non-lipid-extracted materials for sampling, as a meta-analysis of carbon and
nitrogen discrimination factors from Caut, Angulo & Courchamp (2009) has shown that
lipid extraction has no significant effect on calculated TDFs.

The mean δ13C value for each food item is as follows: chick (n= 2, −26.1±1.2h),
mouse (n= 2, −23.4±1.7h), horsemeat (n= 4, −27.1±1.3h), carrots and apple mix
(n= 4, −27.7±1.5h), and dog biscuits (n= 4, −20.2±0.5h). The average for all diet
items (n= 16) is −24.9± 3.3h. Mean δ15N values are: chick (4.5± 0.03h), mouse
(5.2± 0.6h), horsemeat (7.0± 1.3h), carrots and apple mix (3.5± 1.0h), and dog
biscuits (2.9±0.5h). The average δ15N for all diet items is 4.6±1.8h. The mean diet C/N
ratio is 27.1±38.1. The mean δ13C value of the feces is −24.8±1.5h and the mean δ15N
value is 6.1±1.1h. The C/N ratio is 6.9± 1.6. The ranges and variability of δ13C and δ15N
for all materials are presented in Table 3 and the variation of fecal isotope values over the
month they were collected is presented in Fig. 1. When the fecal samples were placed into
bins by weeks they were collected and subjected to an ANOVA, there was no difference
between the average weekly scat values over the course of the month (δ13C: F4,19= 0.539,
p= 0.709; δ15N: F4,19= 0.886, p= 0.491).

The δ13C and δ15N values of feces and diet were compared to establish if there is a
significant difference between them. In the case of δ13C there is no significant difference
(Welch two-sample t -test, t =−0.14, df = 19.05, p= 0.89) while for δ15N the means
are significantly different (Welch two sample t -test, t =−2.97, df = 22.61, p= 0.01).
Discrimination factors were calculated by using the average value of all diet items subtracted
from each individual feces sample in order to assess variance. Average 113C for feces
(113Cfeces) is 0.1 ±1.5h and 115N for feces (115Nfeces) is 1.5±1.1h, with only the
115Nfeces being significantly different than zero.
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Table 3 Stable isotope results frommeerkat feces and diet samples (δ13C and δ15N). Means are shown±1 standard deviation. Stable isotopes are presented in delta no-
tation (δ) and discrimination factors are noted by 1. All isotope values are presented in per mil (h). Trophic discrimination factor in bold is statistically significant from
zero.

n δ13C (h) δ13C range δ15N (h) δ15N range C/N C% N% 113C 115N

Meerkat scat 24 −24.8± 1.5 −28.1,−20.7 6.1± 1.1 4.4,8.9 6.9± 1.6 20.9± 11.1 3.2± 1.8 0.1± 1.5 1.5± 1.1
Chick 2 −26.1± 1.2 −27.0,−25.3 4.5± 0.03 4.5 3.7± 0.3 47.8± 0.3 12.9± 1.0
Mouse 2 −23.4± 1.7 −24.6,−22.2 5.2± 0.6 4.7,5.6 6.1± 1.5 51.4± 4.7 8.7± 1.3
Horse meat 4 −27.1± 1.3 −28.2,−25.3 7.0± 1.3 6.1,9.0 3.5± 0.04 46.0± 1.9 13.3± 0.4
Fruit mix 4 −27.7± 1.5 −29.8,−26.8 3.5± 1.0 2.8,4.9 88.6± 21.8 38.5± 1.0 0.5± 0.1
Dog biscuits 4 −20.2± 0.5 −20.7,−19.5 2.9± 0.5 2.3,3.4 11.4± 1.8 42.9± 0.7 3.8± 0.6
Total diet 16 −24.9± 3.3 −29.8,−19.5 4.6± 1.8 2.3,9.0 27.1± 38.1 44.2± 4.6 7.1± 5.5
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Figure 1 Variability in δ13C (A) and δ15N (B) values of meerkat feces over the month of sampling.
Points on the line represented a measured fecal sample. All isotope values are presented in per mil (h).

Table 4 Results from t -tests (p-value, t , df ) comparing δ13C and δ15Nmeans of stable isotope values
from lipid and non-lipid-extracted meerkat feces and diet samples. The t -test used (Welch or equal)
was decided by a preliminary F-test to test for equal variances.

Variable 1 Variable 2 Test p-value t df

δ13C Scat LE δ13C Scat t -test equal 0.12 1.59 31
δ15N Scat LE δ15N Scat t -test equal 0.09 -1.74 31
δ13C Diet LE δ13C Diet t -test equal 0.46 0.75 14
δ15N Diet LE δ15N Diet t -test equal 0.79 0.27 14
δ13C Diet δ13C Scat Welch t -test 0.89 −0.14 19.05
δ15N Diet δ15N Scat Welch t -test 0.01 −2.97 22.61
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DISCUSSION
Trophic discrimination factors of meerkat feces
Feces can be an extremely useful substrate for stable isotope analysis for estimating food
input, and these data show in meerkats that in relation to carbon isotopes, feces are a
fair representation of diet, but nitrogen isotopes of feces undergo isotopic enrichment.
Investigations into stable isotope discrimination factors show that herbivore feces are
representative of diet in large bodied animals (Sponheimer et al., 2003a) but that in small-
bodied herbivores (Hwang, Millar & Longstaffe, 2007) and non-herbivores (Montanari &
Amato, 2015) feces undergo enrichment of nitrogen isotopes within the digestive tract. In
this study, the trophic discrimination factor of carbon isotopes from diet-to-feces is small
andnot statistically significant. Similar results for113Cfeces are seen in studies of insectivores
(bats, Salvarina et al., 2013) and carnivores (tigers and snow leopards,Montanari & Amato,
2015). To this point, experimental research on diet-to-feces discrimination factors shows
most calculated carbon TDFs are non-significant as referenced by the review of published
studies in Table 1. More data are needed on mammalian omnivores and carnivores to
further assess this pattern.

The means of δ15Ndiet and δ15Nfeces are different (Table 4); therefore the 115Nfeces

value (1.5±1.1h) is significantly different than zero. In this study and the other two
non-herbivore fecal TDF studies of Salvarina et al. (2013) andMontanari & Amato (2015),
115Nfeces is of similar magnitude and also the only TDF that is different than zero; although
115Nfeces is only significant in one out of two species examined in each of these studies.
Nevertheless, significance of 115Nfeces could indicate 15N enrichment occurs during
digestion, likely during transit through the gut as is seen in Hwang, Millar & Longstaffe
(2007). This study investigated δ15N values at different parts in the digestive tract of voles
and other small rodents and found digested material is enriched in 15N in the stomach,
intestine, cecum, and colon relative to the diet. It has also been shown the δ15N of mucosal
epithelium was higher than the diet input in some parts of the digestive tract of a sheep,
which suggests the enrichment in 15N in feces may be due to the presence of endogenous
proteins (Sutoh, Obara & Yoneyama, 1993). In general, significant 115N values point
to some relationship between digestive processes and 115N, but the cause is unknown
and more experiments comparing 15N enrichment during digestion in herbivores and
non-herbivores are needed.

A number of other factors may be also affecting nitrogen flux during digestion and
excretion. Different biochemical pathways related to the changes in proteins occurring
during digestion (deamination/amination) could be the cause of 15N enrichment (Hwang,
Millar & Longstaffe, 2007). Additionally, the presence of microorganisms in the digestive
tract could also enrich fecal matter compared to diet (Hwang, Millar & Longstaffe, 2007;
Macko et al., 1987). The 15N enrichment could be due to preferential absorption of 14N
by the animal during digestion or removal during urine excretion, but experimental data
from Sponheimer et al. (2003b) seem to indicate that at least in herbivores, 14N is not
preferentially excreted. InMontanari & Amato (2015), we cautioned that more data should
be collected to better understand TDFs of carnivores because the physiological mechanisms
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are still unknown; this study continues in the same vein and reinforces that there is a
preferential loss of 14N and/or enrichment in 15N occurring during movement through
the gastrointestinal tract in relation to solid waste. Further mammalian physiological
experiments may explain the mechanism.

Variables that affect trophic discrimination factors
It has been shown that TDFs vary due to a number of factors, one of them being the initial
isotopic ratio of the diet. Significant relationships between both δ13C and δ15N of diets and
TDFs have been shown in bears (Hilderbrand et al., 1996; Felicetti et al., 2003), rats (Caut,
Angulo & Courchamp, 2008), and birds (Pearson et al., 2003). A meta-analysis of TDFs and
dietary isotope ratios values byCaut, Angulo & Courchamp (2009) finds significant negative
relationships between these variables in both carbon and nitrogen. A similar study of this
relationship with fecal TDFs cannot be completed due to the fact most of the calculated
fecal TDFs are not significantly different from 0 (data from Tables 1 and 2). This could
be due to the fact that feces represents immediately ingested diet (within hours or days)
as opposed to assimilated diet and is not subjected to as many physiological processes of
fractionation. This is a promising result for the use of feces in isotope studies because the
variability of TDFs due to dietary input is a major issue for stable isotope food web studies.
Variability that needs to be accounted for with other tissues (Caut, Angulo & Courchamp,
2009) appears to be a non-issue in feces.

Mammalian body size might influence calculated TDF (Hwang, Millar & Longstaffe,
2007). A mechanism that could explain this is a general trend of higher mass-specific
metabolism in animals with smaller body mass (Kleiber’s law), which could in turn impact
the fractionation of isotopes that occurs after food ingestion (Pecquerie et al., 2010).Hwang,
Millar & Longstaffe (2007) did ameta-analysis of fecal TDFs in the literature combined with
their rodent TDFs and found significant differences in 113C between different body sizes,
but only in herbivores. A lack of published fecal TDFs for non-herbivorous mammals of
different sizes means statistical test cannot be performed for herbivores vs. non-herbivores.

Isotopic variability over time
Feces can be used for point estimates of diet, but long term collection is especially useful for
finding seasonal patterns in dietary variability (e.g., Blumenthal et al., 2012). Mammalian
carnivores and omnivores tend to change their diets seasonally, so it is important to
realize the magnitude of fecal isotope variation day-to-day for wild studies (e.g., Kincaid
& Cameron, 1982; Melero et al., 2008). Other than this study, Blumenthal et al. (2012) and
Salvarina et al. (2013) track stable isotope ratios of animal feces atmonthly or daily intervals
respectively.

I have tracked meerkat fecal stable isotopes over the course of one month, and it is clear
there is variation on any given day a sample is taken (Fig. 1), as the combination of diet
items they eat changes daily. There is a range of 7.3h in the δ13C and 4.5h δ15Nfeces

of meerkat feces over a month. This suggests feces can be directly reflective of a highly
variable diet, and also shows δ13Cfeces may not be buffered in small mammals as much
against day-to-day variability as in larger mammals (Blumenthal et al., 2012). It is not
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known exactly how long it takes isotopes of feces to reach dietary equilibrium in meerkats,
but in Salvarina et al. (2013) it was shown that bat feces acquired a new dietary signal in
2–3 h so it stands to reason it is also within hours for a small mammal. Examining the daily
fluctuations in δ13C and δ15N in feces indicates timing of major dietary changes can be
pinpointed quite precisely using this method, at least within days. Due to the fact the TDFs
in this study were calculated using an average diet value, the TDF is also averaged and is
meant to act as a general guide for a TDF in the wild. This variability is important to realize
for wild studies, as it emphasizes the need for larger sample sizes of feces, such as multiple
samples per day or week, to lessen the impact of day-to-day variability if researchers are
seeking a long-term ecological or environmental trend (e.g., Blumenthal et al., 2012).

CONCLUSIONS
I found the δ13Cfeces of captive meerkats was not changed compared to the dietary input,
while δ15Nfeces is higher than diet. Compared with other published fecal TDFs, the meerkat
data fit with observed trophic discrimination factors, and also show that an enrichment
of 15N and/or a depletion of 14N is occurring during digestion or in the gut during
gastrointestinal transit. When these TDFs are compared to other fecal TDFs in published
literature, they are similar in that they are mostly non-significant, which removes one
layer of uncertainty when using feces in wild animal studies. Looking at the stable isotope
ratios for both carbon and nitrogen over the course of the month, it is clear short-term,
near-daily variability in diet can be captured using stable isotope analysis of meerkat feces.
Captive studies like this one with more controlled feces and diet collection parameters will
hopefully lead to better understanding in other understudied groups, like terrestrial small
and medium sized mammals with omnivorous diets, so that stable isotope analysis of feces
can become a more common tool in mammalian stable isotope ecology.
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