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ABSTRACT Rapid and cost-effective genotyping of large mapping populations can be achieved by
sequencing a reduced representation of the genome of every individual in a given population, and using
that information to generate genetic markers. A customized genotyping-by-sequencing (GBS) pipeline was
developed to genotype a rice F2 population from a cross ofOryza sativa ssp. japonica cv. Nipponbare and the
African wild rice species O. longistaminata. While most GBS pipelines aim to analyze mainly homozygous
populations, we attempted to genotype a highly heterozygous F2 population. We show how species- and
population-specific improvements of established protocols can drastically increase sample throughput and
genotype quality. Using as few as 50,000 reads for some individuals (134,000 reads on average), we were able
to generate up to 8154 informative SNP markers in 1081 F2 individuals. Additionally, the effects of enzyme
choice, read coverage, and data postprocessing are evaluated. Using GBS-derived markers, we were able to
assemble a genetic map of 1536 cM. To demonstrate the usefulness of our GBS pipeline, we determined
quantitative trait loci (QTL) for the number of tillers. We were able to map four QTL to chromosomes 1, 3, 4,
and 8, and partially confirm their effects using introgression lines. We provide an example of how to success-
fully use GBS with heterozygous F2 populations. By using the comparatively low-cost MiSeq platform, we
show that the GBS method is flexible and cost-effective, even for smaller laboratories.
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Advances in sequencing technology have drastically improved our
ability to determine and simultaneously genotype genetic markers
(Davey et al. 2011). The enormous number of short (50–200 bp) reads
produced by sequencing platforms has drastically reduced the costs and
time associated with DNA sequencing. Those advances may be utilized
in whole-genome resequencing approaches to generate a collection of
reads from untargeted sites in the genome (Takagi et al. 2013; Duitama

et al. 2015). Other approaches aim at reducing the complexity of the
genome by sequencing only a targeted fraction of the genome. Such
genotyping-by-sequencing (GBS) approaches were successful in gener-
ating tens of thousands of markers, even in plant species with large and
repetitive genomes, like maize, wheat, or barley (Poland et al. 2012;
Romay et al. 2013), or in more heterozygous animal species like cattle
or pig (De Donato et al. 2013; Gualdrón Duarte et al. 2013).

It was shown that GBS can be used as a fast and cost-effective tool in
population genetics, QTL (quantitative trait locus) discovery, high-
resolution mapping, and genomic selection (Spindel et al. 2013;
Rabbi et al. 2014; Huang et al. 2014; Burrell et al. 2015; Begum et al.
2015; Elmer et al. 2015; Lin et al. 2015). Since GBS data typically
generate relatively dense marker data, a popular analysis choice is a
genome-wide association study (GWAS) (He et al. 2014; Sonah et al.
2015; Begum et al. 2015). This kind of study employs a panel of culti-
vars or varieties. In addition, there are some examples of QTL analyses
using biparental populations combined with GBS (Spindel et al. 2013;
Honsdorf et al. 2014). In those studies, recombinant inbred lines that
had already undergone several rounds of selfing were used to detect
QTL. There are also examples of the use of GBS to genotype less fixed
populations, like F2s (Rowan et al. 2015; Pootakham et al. 2015). In
many cases, desirable traits are found only inwild relatives or are spread
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across diverse elite cultivars. The application of GBS to genotype F2s or
breeding materials will greatly facilitate gene discovery and marker-
assisted selection in breeding projects.

WhileGBS certainly has huge benefits for scientists and the breeding
community, there are some inherent drawbacks to which no universal
solution has yet been found (Poland and Rife 2012; He et al. 2014). The
data produced by GBS, and similar strategies, has many missing data-
points compared to datasets from classical, “manually” produced ge-
netic marker data or chip-based systems. Furthermore, there is a
considerable error-rate associated with GBS-derived genotypes. Both
of these issues can be dealt with at the cost of intensive postprocessing,
data correction, and imputation, which is time consuming and requires
specific bioinformatics attention. Also, for each GBS project, the re-
searcher has to balance the cost of the sequencing platform with the
goal of generating high enough read coverage, and, in turn, marker
resolution for the intended analysis. Most GBS strategies aim to se-
quence only a defined fraction of the whole genome to reduce the
number of reads necessary for adequate per-marker read coverage.
A common approach is the use of one or two restriction enzymes
(RE) to produce fragments with defined endpoints, instead of ran-
dom shearing of input DNA. A recent protocol (Elshire et al. 2011)
uses a combination of a RE with a 6 bp recognition sequence to
target specific sites in the genome, and a RE with a more common
4 bp recognition sequence to generate fragments of suitable length.
It was also shown that the choice of RE can influence sequencing
results (Heffelfinger et al. 2014; Schröder et al. 2016). Another com-
mon strategy to reduce sequencing costs is the use of multiplexed
libraries. By ligating a sample-specific, unique adapter sequence
(also called a barcode) to the DNA fragments before pooling and
library preparation, DNA from multiple individuals may be pro-
cessed in a single library. Currently, between 96-fold and 384-fold
multiplexed libraries seem to be most common, with between
500,000 and a fewmillion reads dedicated to each individual sample.

In most cases, GBS aims to detect and simultaneously genotype a
large number of single nucleotide polymorphism (SNP)markers. In this
study, we used GBS on a rice F2 population derived from a cross of an
elite cultivar from East Asia (Oryza sativa ssp. Japonica cv. Nipponbare,
NB) and a West African wild rice (O. longistaminata, OL). Several
complex traits are found in OL but are absent in NB. For example,
OL is capable of perennial growth, while NB is an annual plant. Fur-
thermore, OL is capable of clonal propagation through the use of rhi-
zomes. To identify the genetic basis of those traits, we wanted to perform
linkage analysis in an F2 population. Since there are only few markers
available for this cross in public datasets, and traditional marker devel-
opment and genotyping can be laborious, we established a GBS pipeline.

Performing GBS on an F2 population incurs some specific difficul-
ties, since 50% of all SNP sites are expected to be in a heterozygous state.
This demands higher read coverage to accurately call genotypes, since
correctly callingaheterozygousallele requires thepresenceof reads from
both allele states (Hyma et al. 2015; Johnson et al. 2015). Some existing
GBS pipelines and imputation algorithms deal with that problem by
omitting heterozygous calls. In our case that solution was not accept-
able, since this would potentially eliminate 50% of all genotype infor-
mation. Another problem associated with using a wild variant in a cross
is that there is considerable heterozygosity in the wild parent’s genome.
This can lead to the inability to correctly infer parental haplotypes. In
addition, it might be possible that the wild parent (OL) has genome
rearrangements, or gene copy number variations, as compared to the
cultivated parent (NB). Those rearrangements might cause erroneous
genotypes in specific regions and linkage of markers, which, in reality,
are located on different chromosomes.

By a combination of the comparatively low-cost Illumina MiSeq
platform (Loman et al. 2012) and high multiplexing, we created a
flexible, medium throughput (a few hundred to 1000 individuals)
genotyping pipeline. This approach is more flexible than hybridization-
based assays (e.g., Illumina’s Infinium Chips), can be adapted easily to
new populations, and increased in scale to larger sequencing plat-
forms. The pipeline was designed to specifically address rice F2 pop-
ulations, but it should be useful for any F2 population. We
investigated the effects of two different REs and different levels of
multiplexing on the number of detected SNP markers. Also, we pro-
vide an example of how relatively low-coverage data (ca. 150,000 reads
per sample) can be sufficient to generate high density geneticmaps. Our
pipeline uses simple error correction and imputationmethods that take
advantage of the long, uniparental haplotype blocks found in F2 pop-
ulations. To show that our GBS pipeline is producing useful genotypes,
we mapped QTL for tiller number, and partially confirmed these QTL
using introgression lines derived from the same parents as the F2
population.

MATERIALS AND METHODS

Plant cultivation and population development
The population used in this study was produced and cultivated in the
International Rice Research Institute (IRRI), Los Baños, Philippines. An
African wild rice, O. longistaminata Acc. IRGC110404 (OL) as male
was crossed with the cultivarO. sativa japonica cv. Nipponbare (NB) as
female to produce F1 plants, and subsequently F2 populations by self-
pollination. Since NB and OL are rather distant relatives within the
Oryza genus, there is some degree of incompatibility between both
parents. Specifically, the cross between NB and OL led to a failure of
endosperm development, resulting in embryonic death. Therefore em-
bryo-rescue had to be performed to avoid embryonic death of F1 seeds.
In total 301 and 813 F2 plants were grown in a paddy field enclosed by
mesh (the screen house) to prevent insect damage at IRRI in the spring
(Feb–May) and fall (Sep–Dec) seasons of 2014, respectively. The total
number of tillers (primary and branched shoots of grass plants) was
determined after digging up those F2 plants from the paddy field. Leaf
blades of the F2s, and three replicate individual plants of each, NB and
OL, were sampled for DNA extraction.

Previously, we developed a set of introgression lines (ILs) that harbor
between one and three substituted genomic segments derived from OL
in the NB genomic background (Ramos et al. 2016). The ILs consist of
BC4F7 and BC5F6 plants derived from a cross between OL as female,
and NB as male, and successive backcrosses by NB followed by self-
fertilization. Four ILs were selected based on the QTL regions found in
this study. The ILs and the recurrent parent NB were germinated in a
greenhouse, and cultivated for 30 d. The seedlings were then trans-
planted to paddy fields at the research station of Nagoya University,
Togo, Aichi Prefecture, Japan. Ten plants per line were planted in each
row. The number of tillers was counted at the flowering stage in the ILs
and NB, excluding damaged plants and plants next to the border of the
plot to avoid position effects.

Library preparation and sequencing
Genomic DNA from plant material was extracted using the
cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle
1987). DNA integrity was analyzed by electrophoresis using a 1% aga-
rose gel. DNA concentration of each sample was measured using a
QuantusTMFluorometer with aQuantiFluorTMdsDNA system (Prom-
ega, Madison, WI), and adjusted to 10 ng/ml. Libraries were prepared
using a combination of two restriction enzymes according to (Poland
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et al. 2012) with the following modifications: genomic DNA samples
(100 ng each) were digested in 20 ml of CutSmart Buffer by eight units
of PstI or KpnI, each with eight units of MspI [all New England Biolabs
(Ipswich, MA); for PstI and KpnI the High-Fidelity version was used].
The digestion was performed at 37� for 1 hr, followed by an inactivation
step at 65� for 20 min. Ligation was conducted in CutSmart Buffer
without any modifications to the original protocol. A set of 192 unique
barcodes were selected from the list of 384 barcodes designed for
PstI listed in Poland et al. (2012). These barcodes were utilized
for both adapters with PstI overhang and KpnI overhang. Then
32-multiplexed libraries for samples digested by PstI and MspI, or
96-multiplexed libraries for KpnI and MspI, were prepared by pool-
ing samples and subsequent PCR-amplification. DNA qualities and
fragment sizes in the prepared libraries were evaluated using a Mi-
crochip Electrophoresis System for DNA/RNA analysis (MCE-202
MultiNA, SHIMADZU, Kyoto, Japan). In total, 10 32-multiplexed
libraries and nine 96-multiplexed libraries were prepared. The librar-
ies were sequenced using aMiSeq instrument with theMiSeq reagents
kit v3 for 150 cycles (Illumina Inc., San Diego, CA).

Detection of SNPs from raw sequencing data
To detect informative SNPs from raw sequencing data, the TASSEL
4 (Trait Analysis byAssociation, Evolution and Linkage 4)GBS pipeline
(Glaubitz et al. 2014) was used (Supplemental Material, File S1). This
included creation of a collection of unique, 64 bp long sequences (tags)
from the raw sequencing data, alignment of tags to the IRGSP V1.0 O.
sativa Nipponbare reference genome (Kawahara et al. 2013) using
BWA (Burrows-Wheeler Aligner) (Li and Durbin 2009) with the –aln
and –samse options, SNP calling, and filtering of SNPs based on minor
allele frequency. To identify samples with poor read coverage, the
TASSEL 4 log files for each library were inspected for individuals
with very low read coverage (,1000 reads in our case). These indi-
viduals were removed from the analyses, or resequenced in another
library if enough plant material was available. We noted that there is a
positive correlation between the number of reads and the integrity of
the extracted DNA. Initially, SNPs were called without specifying a
filter using the DiscoverySNPCallerPlugin from TASSEL 4. Then, all
SNPs with a minor allele frequency of ,0.25 were removed, as those
likely represented sequencing errors or rare alleles.

In the next step, the SNPs were filtered based on parental alleles to
leave only SNPswhich havefixed, but alternate alleles at any given locus.
To achieve this, we selectedonly those SNPswhichwere: (1) not variable
within each set of triplicate parental samples, (2) not heterozygous in
either parent, and (3) different between both parents. Filtering was
performed using the hapmap-formatted files and awk. The resulting
collection of SNPs was then thinned out using vcf-tools (Danecek et al.
2011) to a minimum distance of 64 bp between two SNP sites. This
eliminated redundant SNPs originating from the same tag, which, in
most cases, had identical parental genotypes within each tag. This
collection of SNPs was then used to explore the effects of different levels
of missing data and imputation.

Preliminary analyses indicated that a large source of error would be
undercalled heterozygous alleles (true heterozygous alleles wrongly
called as homozygous alleles due to the absence of reads from one of
the two states of a heterozygous allele).Tocounter this,weusedvcf-tools
to only allow genotypes that were supported by at least seven reads per
site and sample. This limits the probability of undercalling a heterozy-
gous site to a theoretical maximum of 1.6% (Swarts et al. 2014). Fol-
lowing this step, we directly compared the number of reads thought to
originate from each parent at each heterozygous site. We calculated the
relative allelic depth as the ratio of NB reads/OL reads, and found

that .90% of all heterozygous genotypes had a ,2-fold difference
between the number of reads from each parent. This result indicated
that there is no particular bias for reads from one of the parents (e.g.,
different PCR efficiencies) that might have led to miscalled heterozy-
gous genotypes. In the next step, a filter for different levels of missing
data was implemented. Specifically, we generated (preimputation, pre-
error-correction) datasets, in which up to 5, 50 or 75% of all genotypes
for any given site were missing (File S2).

To rule out errors in data processing, we also directly analyzed
alignments of reads to theNipponbare reference genome independently
from our GBS pipeline. For this, reads were demultiplexed using fastq-
multx (https://github.com/brwnj/fastq-multx), and aligned using bwa
as described above. We then inspected read alignments from selected,
error-prone markers using the R package Gviz (Hahne and Ivanek
2016).Whenwe analyzed the 10 F2 individuals that showed the highest
number of single heterozygous genotypes flanked on both sides by
Nipponbare alleles (AHA-type error, for more details see “Results”),
we found that raw read alignments supported the called parental ge-
notype in all analyzed cases.

Imputation and error correction
As shown here, and in Spindel et al. (2013), GBS data inherently con-
tains errors, and has to be imputed to be useful for linkage analysis.
For our work, we took advantage of the fact that missing data, and
wrongly called alleles, are distributed randomly across sites and samples.

Figure 1 Flowchart of the GBS data processing. A schematic overview
of the different steps of the GBS pipeline.
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Furthermore, the F2 population in this study is characterized by long-
range, uniform parental haplotypes that are long compared to the
putative errors. We thus developed a simple imputation and error
correction algorithm that is based on regular expressions and executed
in R (R Development Core Team 2008).

In the first step, the data are transformed from the nucleotide-based
hapmap format to an ABH-based format, where A represents NB, B
represents OL, andH represents heterozygous alleles. After conversion,
wefirst imputedmissing data. Stretches ofmissing genotypes were filled
with the appropriate allele if bothflanking, notmissing alleleswereof the
same state (e.g., the sequence ANNNA, with A being a parental allele
and N being missing data, would be imputed to AAAAA). Imputation
of missing genotypes was not restricted by the length of each imputed
stretch. Post hoc analyses showed that the maximum length of a stretch

of consecutive imputed genotypes was seven, but.99% of all imputa-
tions were restricted to stretches of one or two genotypes (Table S1).
The median imputed distance between two known genotypes varied
between 571 kb (fall 2014 dataset, up to 75% missing data) and
1661 kb (fall 2014 dataset, up to 5% missing data). This imputation
resulted in an almost complete elimination of missing alleles. Next, we
tried to address the undercalling of heterozygous sites. Empirically, we
set a minimum haplotype length of four sites. In any given F2 individ-
ual, if a series of homozygous or missing sites of length#4 was flanked
on both sites by a heterozygous allele, this stretch was replaced with
heterozygous sites. The other main error type seemed to be single
erroneous alleles interspersed in longer homozygous haplotypes. We
assumed those errors are cause by structural differences in the genome
of OL compared to the NB reference genome. To counter this, we used

n Table 1 Basic parameters of both GBS experiments described in this work

Spring 2014 Fall 2014

Enzymes PstI-MspI KpnI-MspI
Number of F2 individuals 268 813
Multiplexing 32 96
Reads per sample (mean 6 SD)a 618,843.7 6 178,135.8 134,447.3 6 50,788.87
No. of sites (,5% missing data) 2144 301
No. of sites (,50% missing data) 5812 837
No. of sites (,75% missing data) 7058 1096
a
Numbers are based on good, barcoded, aligned reads.

Figure 2 Basic SNP characteristics using different filter
settings for missing data. Shown are histograms repre-
senting the number of SNP sites that exhibit a certain
sample coverage (A), minor allele frequency (B, C, E,
and G), or proportion of heterozygous sites (D, F, and
H). Data are from 813 F2 plants from the fall 2014 pop-
ulation, and were generated using the TASSEL 4 site
report function. For (A) and (B), unfiltered data directly
after SNP calling was used. For (C)–(H), SNP sites were
filtered by the indicated proportion of missing data per
sample, but no further data imputation or error correc-
tion was performed.
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a similar strategy as the one used to correct undercalled heterozygous
alleles, but used a minimum haplotype length of one. This procedure
reduced the number of missing genotypes as a percentage of all geno-
types from 2.07 to 0.18%,while it increased the number of heterozygous
alleles from 46.27 to 54.57% (data from the fall 2014 population, with
up to 75% missing data per site, full dataset in Table S2). In the final
step, data from both analyzed populations was combined based on the
assumed physical position of SNPmarkers. Since two different enzymes
were used for the spring 2014 and the fall 2014 population, no SNP
marker was found in both datasets, as different enzymes generate dif-
ferent sets of reads. Thus, we imputed missing data again, using the
rules devised above to fill in sites. This imputation step was character-
ized by a median length of consecutive imputed genotypes of six, and a
median length of imputed distance between genotypes of 0.86 Mbp
when the missing PstI-derived genotypes (more common) were im-
puted in the KpnI-derived genotypes (less common) in the datasets
with up to 5% of missing data (Table S1).

Our imputation method relies on identical alleles in two flanking
markers to make predictions about the genotypes in between. This
approach does not take into account rare double crossover events
between those markers. We estimated the possibility for a double
crossover event to occur within 1 Mb to be �0.15%. This is based
on a genetic map with a total length of 1536 cM and a physical length
of 400 Mb, which can be expressed as 3.84 cM/Mb. The probability
for a double crossover event within 1 Mb was thus calculated as
0.03842 = 0.0014756. Given that median imputed distances in the
two imputation steps were mostly below 1 Mb, we concluded that our
imputation will miss a double crossover event in approximately,1 out
of 1500 imputation events.

All TASSEL scripts, and the scripts used for post-TASSEL data
processing, can be found in File S1. The imputation and error correction
logic described here (in addition to functions for graphical analyses of

genotypes) is also available in the “ABHgenotypeR” package for R,
which is available at https://github.com/StefanReuscher/ABHgenotypeR,
or via CRAN (Comprehensive R archive network).

Confirmation of genotypes by Sanger sequencing
Ten error-prone SNPs identified by the GBS pipeline were selected for
Sanger sequencing (Table S3). PCR primer sets to amplify a 150–
300 bp region around the selected SNPs were designed based on the
IRGSP V1.0 Oryza sativa Nipponbare reference genome sequence
(Table S4). Genomic DNA extracted from NB, OL and 10 F2 samples
with a high error rate were subjected to PCR for the region of the
selected SNP. The PCR products were purified by gel purification using
the Wizard SV Gel and PCR Clean-Up System (Promega, Madison,
WI). After confirming the presence of a single PCR product using 1.5%
agarose gels, Sanger sequencing was performed with either of the PCR
primers as a sequencing primer using BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems) and a 3130xl Genetic Analyzer
(Applied Biosystems, Foster City, CA). The sequence data, including
the raw chromatograms, was analyzed using the sequence assembly
software ATGC (Genetyx Corporation, Tokyo, Japan) to identify nu-
cleotides at the SNP positions detected in GBS.

Data analysis
General data analysis was performed using the TASSEL graphical user
interface, and R. QTL analyses and simulations were performed using
the R package “qtl” (v1.37.11) (Broman et al. 2003). For QTL simula-
tions, phenotypic values and genotypes of simulated F2 populations
were generated using the function “sim.cross” implemented in the “qtl”
package and described in detail in Broman and Sen (2009). “sim.cross”
requires a genetic map of markers, the number of individuals, and a
model of QTL to generate a simulated population. For simulating the
genetic map of markers, we used the “sim.map” function, which

Figure 3 Marker densities along the chromosomes.
Shown is the marker density along the 12 rice chromo-
somes. The number of markers was determined for bins
of 1 Mb. Different colored lines represent datasets with
the indicated proportion of missing data. Data are from
the fall 2014 population (n = 813 individuals).
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requires chromosome lengths and marker numbers. The lengths of the
chromosomes were set to 140, 115, 130, 110, 100, 105, 110, 100, 75, 80,
100, and 105 cM for chromosomes 1–12, respectively, based on a genetic
map of microsatellite markers developed in our previous QTL study for
F2 populations derived from a cross between NB and OL. Simulations
with 50, 100, 200, or 400 equally spaced markers were performed. For
simulating phenotypic values that were affected by a number of simu-
lated QTL, we assumed the existence of eight QTL (on 8 out of 12 chro-
mosomes), each of which had an additive effect of 0.5. The residual
phenotypic variation was assumed to be normally distributed with a
variance of one. Under these assumptions, each of the simulated QTL
had 4.17% contribution to the phenotypic variance. With the simulated
geneticmap and theQTLmodel, data sets of F2 populations for 200, 400,
600, 800, and 1000 individuals were generated using “sim.cross.” We
performed simple interval mapping in the simulated F2 populations
using the function “scanone,” with the multiple imputation method
(Sen and Churchill 2001). In themultiple imputationmethod, genotypes
between markers were imputed with 1 cM intervals based on genotypes
of flankingmarkers, andmultiple imputed genotype data were generated
for each individual. Then, a linear regression model was fitted for each
marker using the imputed genotype data, and the phenotype data with
the assumption of normal distribution of phenotypic values. The thresh-
old for significant LOD scores was calculated from 1000 permutation
tests. According to past studies, confidence intervals of detected QTL
were usually.10 cM (Kearsey and Farquhar 1998; Darvasi 1998), so we
used that size as a threshold. If a significant QTL (P # 0.05) was de-
tected around the simulated, true QTL position (610 cM), we counted
it as correctly detected. For each condition, 100 simulations were per-
formed, and the probability to correctly detect all QTL was calculated.

Genetic maps using real data were constructed using the “est.map”
function with default parameters. QTL analyses for the number of tillers
in 1081 F2 plants was performed using a linear regressionmodel with the

multiple imputation method by “scanone.” The threshold for significant
LOD scores was calculated from 1000 permutation tests. The 95% con-
fidence intervals of significant QTL were estimated using the function
“bayesint,” which takes 10LOD score values for an obtained LOD profile
and rescales it to have an area of one, followed by calculating the con-
nected interval having 95% coverage of the area. The function “fitqtl”was
used for calculating percentages of variance of the significant QTL by
calculating the coefficient of determination for each single-QTL model
obtained using “scanone.” Additive and dominant effects of the signif-
icant QTL were calculated from mean phenotypic values for each geno-
type at the QTL positions obtained by using the function “effectplot.”

Genome-wide analysis of restriction sites was performed using the
“restric” tool from the emboss software suite (Rice et al. 2000). Random
sampling of reads from fastq files was performed using fastq-tools
(http://homes.cs.washington.edu/�dcjones/fastq-tools/).

Data availability
File S1 contains all code necessary to replicate the GBS-pipeline. The
data imputation and error-correction logic is also available in the R
package “ABHgenotypeR.”File S2 contains all genotypes from this study,
including marker order and position. All demultiplexed reads used for
SNP calling were submitted to the DNA Data Bank of JAPAN (http://
www.ddbj.nig.ac.jp/), and are available under bioproject PRJDB5346.

RESULTS

Application of GBS to a rice F2 population
A population of 268 F2 plants from a cross of NB and OL, including
triplicate parental samples, from the spring 2014 season was sequenced
first. From this population, libraries of 32 samples each were prepared,
and processed with the GBS pipeline (Figure 1). This approach resulted
in 618,844 average reads per individual, which yielded (with up to

Figure 4 Parental allele frequencies along the chromo-
somes. Shown are the frequencies of parental alleles
observed along the 12 rice chromosomes. Data are
from the joined datasets from spring and fall 2014. Only
markers present in 95% of all samples in the respective
dataset are shown.
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5% missing data) 2144 SNPs (Table 1). Analyses using simulated data
to determine QTL detection probabilities showed that this number of
markers is more than sufficient to detect even weak QTL (see Figure
S1). In fact, a few hundred markers gave sufficient detection power,
while, at the same time, the number of F2 individuals appears to be the
limiting factor. We therefore optimized our GBS pipeline to process
more F2 individuals, at the expense of generating a lower number of
SNP markers, by multiplexing more samples per library.

For a larger population of 813 F2 plants, and triplicate parental
samples from the fall 2014 season, the following changes were imple-
mented: (1) instead of using PstI as the rare-cutting enzyme, we used
KpnI. There are 107,953 PstI cut sites reported in the NB reference
genome, while there are only 45,065 KpnI cut sites according to in silico
digests. Thus, if all parameters were kept constant, in libraries prepared
withKpnI, the resulting reads will be distributed among fewer sites, but
reach a higher per-site coverage. (2) Taking advantage of the higher
per-site coverage using KpnI, we increased the number of samples per
library. Prior to library preparation, we examined the effects of de-
creased read coverage per F2 individual by randomly sampling a frac-
tion of reads from each input fastq file. In these simulated multiplexing
analyses, it became clear that the undercalling of heterozygous sites
(50% in an F2 population) would become a large source of errors if
multiplexing is increased (see Figure S2). Based on those results, 96-fold
multiplexing was deemed feasible, and was implemented with the fall
2014 population. This resulted in an average of 134,447 reads per F2,
which yielded (with up to 5% missing data) 301 SNPs (Table 1).

As expected, higher multiplexing, and a change to KpnI, led to a
lower number of detected SNP sites.When processed through our GBS
pipeline, however, both datasets led to similar genotype patterns, the
main difference being the number of sites that were reliably detected.

As the final step of the GBS pipeline, both datasets were merged. To
describe and evaluate the results of the GBS pipeline, we subsequently
used data from the fall 2014 dataset. For results regarding the genetics
of the NB · OL F2 population and linkage analysis, we used the
combined datasets to maximize detection power and resolution.

Analysis of general SNP properties
The unfilteredGBS dataset contained a high proportion of missing data
(Figure 2A) and only �4500 out of 37,938 sites were detected in all
samples. Also, a substantial number of SNPs was observed, with very
low minor allele frequencies (MAF) (Figure 2B). We used a threshold
of MAF .0.25, and different proportions of missing data
(,5, ,50, ,75%), and analyzed the MAF and the proportion of het-
erozygous sites.When using a very stringent filter of,5%missing data,
both theMAF and the proportion of heterozygous sites reached a lower
limit at �0.35 (Figure 2, C and D). At a higher proportion of missing
data, some sites could be observed that had a MAF and proportion of
heterozygosity as low as the set threshold of 0.25 (Figure 2, E–H). The
bigger spread in allele frequencies and heterozygosity observed for
datasets with a higher percentage of missing data might be explained
by the inclusion of sites with low read coverage in those datasets. SNP
sites that are supported by a small number of reads are more prone to
errors. For example, reads representing either NB or OL alleles could
have different amplification efficiencies during library preparation. For
SNPs with high read coverage this might have no effects, but, for SNPs
with low read coverage, this might skew our ability to detect a specific
allele. This observation highlights the importance of both adequate read
coverage and post SNP-calling error correction.

To evaluate the fidelity of GBS genotypes, we independently geno-
typed 93 F2 plants using simple-sequence repeat (SSR) markers, and

Figure 5 Graphical representations of GBS-derived genotypes at different stages of post-processing. Shown are graphical representations of
genotypes after inferring parental alleles (A), after inferring parental alleles and imputation of missing data (B), and after inferring of parental
alleles, imputation, and error correction (C). Genotypes of 50 representative F2 individuals are shown, with each F2 as a single horizontal track.
The chromosome length is proportional to the number of markers, and only chromosomes 1 to 3 are shown. In total, 312 markers (fall
2014 population, up to 50% missing data) are displayed, with genotypes color-coded as blue (NB), orange (OL), green (heterozygous), and black
(not determined).
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compared both sets of genotypes. It was found that the majority of
parental genotypes (.90%) was identical when the results of both
genotyping systems were compared (see Figure S3). The 10% disagree-
ing markers are explained by single SSR markers, in which up to 1/3 of
all genotypes disagree, probably by the SSRmarker and the closest GBS
marker being on different sides of a recombination event.

Next, we evaluated the distribution of SNP sites along the chromo-
some (Figure 3). SNP sites were notably sparser in the centromeric
regions, probably as a result of a high amount of repetitive sequence
elements, which prevent reads to be mapped to a unique position. Also,

the distribution of sites along the chromosome arms was not even. In
general, the SNP density at any given chromosome position increased
with the amount of missing data allowed. However, there were some
chromosomal regions with low SNP density in which the number of
SNPs was hardly affected by the amount of missing data. This was not
caused by uneven distribution of KpnI recognition sites (data not
shown). For example, a SNP density below the average was observed
on the long arms of chromosome 4 and chromosome 9. The occur-
rence of such SNP deserts was observed before (Wang et al. 2009;
Krishnan et al. 2014), but it is unclear if and how those regions are

Figure 6 Genetic maps from datasets with different proportions of missing data and post-processing. Shown are linkage maps of GBS marker
datasets. Panels show datasets with SNP-calling thresholds allowing up to 75% (A–C), 50% (D–F), and 5% (G–I) missing data, at different steps of
the GBS pipeline. Uncorrected (A, D, and G) indicates data without further postprocessing. Imputed (B, E, and H) indicates data with missing data
imputed, but no error correction performed. Corrected (C, F, and I) indicates data with both imputation and error-correction performed. Data are
from 813 F2 plants from the fall 2014 dataset. Distances between markers are shown in cM.
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associated with domestication. Lower than average SNP density might
also be caused by methylation sensitivity of the MspI enzyme used
during library preparation. MspI cannot cut its CCGG recognition se-
quence if the external C is methylated. This might lead to an under-
representation of SNPs from heavily methylated regions, such as the
centromere, or other repeat-rich regions.

In an ideal F2 population, one would expect that the parental alleles
segregate according to a 1:2:1 ratio (parent A: heterozygous: parent B).
However, a plot of allele states along the chromosomes revealed regions
with distorted genotype ratios (Figure 4). As a general trend, the OL
alleles seemed to be transmitted at slightly lower levels. As an extreme
example, the long arm of chromosome 4 has a drastically reduced
frequency of the OL allele, with OL genotype frequencies decreasing
to ,10%, as opposed to the expected 25%. In most chromosomal
regions where one parental allele was found under-represented, the
frequency of heterozygous genotypes in turn was increased to .50%.
Very likely, those effects are due to chromosomal regions associated
with reproductive incompatibility.

Constructing a genetic map
To inspect GBS genotypes and haplotypes, we constructed graphical
representations of genotypes (Figure 5, full dataset in File S2). This
made it obvious that GBS data without imputation and error correction
contains wrongly called genotypes (Figure 5A). Since F2 populations
have relatively long haplotypes, the observed very short (1–2 markers)
uniform genotype stretches found as islands in longer stretches are
most likely errors. After imputation of missing data (Figure 5B), we
used a simple error correction algorithm based on haplotype length to
efficiently correct those errors (Figure 5C).

When we used the fall 2014 dataset to construct a genetic map, it
became again clear that rawGBSdata cannot be used directly (Figure 6).
When uncorrected data with up to 75 or 50% (Figure 6, A, B, D, and E)
of missing data per site was used to generate a genetic map, chromo-
somes appeared expanded with chromosomes of up to 3500 cM. The
map distention we observed was conspicuously similar to the disten-
tion shown in Spindel et al. (2013), and we applied a similar strategy to
consolidate our genetic map. Both a rigorous restriction on missing

Figure 7 Analyzing types of putatively wrong allele calls. The distribution of all six possible error-types is shown as a boxplot (A). In (B), each point
represents one SNP plotted according to the two most prevalent error-types (HBH and AHA). The scatterplot revealed two distinct clusters of error
frequencies indicated by the two shaded regions. In (C), graphical genotypes are shown as described in Figure 5. Data from 10 F2 with the most
AHA errors are shown. Uncorrected data from the fall 2014 dataset (maximum missing 5%) are shown in all panels.
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data (up to 5% missing, Figure 6, G–I) or imputation and error cor-
rection (Figure 6, C and F) seemed to alleviate the problem. Restricting
missing data led to a strong reduction of available SNP sites (compare
837 for 50% missing to 301 for 5% missing), but also shortened the
genetic map. Using filtering, imputation, and error correction, we grad-
ually improved the geneticmap, evenwhen up to 75% of genotypes were
initially missing for each individual site. The final genetic map (Figure
6I) had a total size of 1536 cM, which is in agreement with other data.
We still observed some distention, for example on chromosome 5 and
chromosome 12. Although haplotypes and alleles appear to be correct
in those regions, we can observe strong linkage of markers in those
regions with markers from different chromosomes (data not shown).

Investigating error-prone SNP markers
Although we were able to correct most assumed errors in the parental
genotypes, and construct a reasonable genetic map, we further analyzed
the types of errors that occurred. We first defined all haplotypes of
length = 1 as errors; e.g., a single A (representing NB) flanked by B
genotypes (representing OL), as this is very unlikely to reflect the true
allele state in an F2 population at the given marker density. Using the
imputed, but not error-corrected, data we counted the occurrences of
each possible error-type (HAH, HBH, AHA, BHB, ABA, and BAB) in
the dataset from fall 2014 (5% max missing) for each of the 301 SNPs,
and for each of the 813 F2 individuals, respectively (Table S3).

We first analyzed the distribution of the occurrence of each possible
error-type per SNP (Figure 7A). This distribution made clear that most
SNPs have very few (75%-tile#5) errors (as defined above). However,
for HAH, HBH, AHA, and BHB-type errors, a small number of SNPs
accounted for most of the errors. The two most frequent types of
errors were “undercalled” OL alleles (HBH, 36.63% of all errors), and
“overcalled” heterozygous alleles within a NB context (AHA, 35.33% of
all errors).When we performed a scatterplot analysis using the number
of HBH and AHA errors (Figure 7B), the SNPs formed two distinct
clusters. SNPs in the low-error cluster were correctly called most of the
time. SNPs in the high-error cluster tended to accumulate both HBH
and AHA errors at the same time. This observation was confirmed
when we visualized uncorrected genotypes from 10 F2s in which the
most AHA-type errors were detected (Figure 7C). In those F2s, some
markers consistently showedHBH- andAHA-type errors. This hints at
a hidden, common cause for those two error-types.

In the next step, we analyzed whether obvious genomic rearrange-
mentsmightbe the cause forerror-proneSNPs.To this end,we isolateda
65 bp sequence from the NB reference genome centered on the loca-
tion around the SNP. This sequence was then used as a query for a
BLASTN search in the recently published OL genome (Zhang et al.
2015), retaining the best three hits. Out of 301 sequences covering the
SNP positions, 206 had their best BLASTN hit on the same chromo-
some in bothNB andOL, indicating that there is a syntenic relationship
(Table S3). For 27 sequences, no BLASTN hit was found, which is
probably due to the lower coverage of the OL genome compared to
the NB genome. For 68 sequences, however, the best BLASTNhit in the
OL genome was on a different chromosome when NB and OL were
compared. In addition, for 28 out of the 206 syntenicmarkers, BLASTN
reported at least one additional hit. When we combined the data from
BLASTN searches with the occurrences of overcalled AHA alleles per
marker, we found that the top three most error-prone markers
appeared to be nonsyntenic in NB and OL. However, from the top
10 most error-prone markers, only four appeared to be nonsyntenic,
while six appeared to be syntenic. This indicated that nonsyntenic
markers might explain some of the observed errors, but they cannot
explain all observed errors.

In addition to using SSR markers (Figure S3), we also used Sanger
sequencing to determine the nucleotides at SNP positions. We se-
quenced the genomic region around 10 particular error-prone SNP
sites in 10 F2 plants and both parents. This enabled us to directly
compare GBS- and Sanger sequencing derived genotypes (File S3).
For the 10 analyzed F2 plants, 7 out of ten SNPs showed identical
parental alleles betweenGBS and Sanger sequencing derived genotypes,
despite many of those genotypes forming haplotypes of length = 1,
and thus being flagged as errors as described above. This result rules out
that mere technical errors (wrong base calls, misaligned reads) are a
major source of seemingly erroneous alleles. Instead, it is possible that
structural differences between the parental genomes are a major source
of error in this population. To still allow the calculation of a genetic
map for later QTL analysis, we assumed haplotypes of length = 1 to be
errors and corrected them as described before.

QTL analysis
Being able to produce a correct geneticmap using the combined dataset
reassured us that our GBS data are sufficient for linkage analysis. For

Figure 8 Detection of QTL for tiller number using GBS
markers. Shown are the results of a linkage analysis to
detect QTL that have an effect on tiller number using
data from joined spring and fall datasets with up to 75%
missing data per marker. LOD scores are shown as black
lines for all 12 chromosomes (A), or for chromosome
1 only (B). A LOD threshold for significance (P # 0.05)
is shown as a dashed orange line. The blue area in (B)
highlights the 95% confidence interval of qOLTN1
(QTL1 for tiller number O. longistaminata). Distances
are shown in cM.
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QTLanalysis in1081F2plants,we chose touse thenumberof tiller as the
phenotype. We detected four significant QTL on chromosomes 1, 3, 4,
and 8, which were named qOLTN1, qOLTN2, qOLTN3, and qOLTN4,
respectively (Figure 8A). Among these four QTL, qOLTN1 on chro-
mosome 1 showed the highest LOD score with 20.15 (Figure 8B), while
the other QTL showed LOD scores ,6.9. To analyze these QTL in
more detail, we calculated 95% confidence intervals, percentages of
variance, and effects for each QTL (Table 2). The confidence interval
of qOLTN1 spanned a 3.6 Mb region from 27.1–30.7 Mb on chromo-
some 1. This QTL explained 8.23% of the variance in the number of
tillers of the F2 population, and showed a negative additive effect
of29.17 and a positive dominant effect of 5.22. These results suggested
that an OL allele at qOLTN1 acts recessive to decrease the number of
tillers as compared to NB. Unlike the case of qOLTN1, the other QTL
gave only little contributions on the differences in the number of tillers,
and relatively smaller effects (Table 2). Interestingly, qOLTN4
exhibited a positive superdominant effect, in which the additive effect
was22.44, while the dominant effect was 4.51. This result means that
heterozygotes at qOLTN4 produce more tillers than either NB ho-
mozygotes or OL homozygotes.

To evaluate the results of ourQTL simulation (see Figure S1) against
this real data, we performed linkage analyses for random subsets of
varying numbers of F2 plants. As predicted in our simulations, we
found that up to 1000 F2 plants are necessary to reliably detect all
significant QTL (see Figure S4). When we used all 1081 F2 plants for
linkage analysis, but varied the amount of missing data allowed in the
prefiltered datasets, we found very similar LOD score profiles (see
Figure S5). We thus used the dataset with up to 75% missing data
per site before postprocessing to maximize marker resolution.

To verify the QTL, we conducted a field experiment to measure the
number of tillers in ILs havingOLgenomic segments at each of theQTL
locations. Four ILs having OL chromosomal segments around QTL
locations were selected from the pool of ILs, and named IL-qOLTN1,
IL-qOLTN2, IL-qOLTN3, and IL-qOLTN4, for having OL chromo-
somal segments around qOLTN1, qOLTN2, qOLTN3, and qOLTN4,
respectively. IL-qOLTN1andIL-qOLTN2showeda significantdecrease
in the number of tillers compared with NB (Table 3). The reductions
of tillers in these two ILs are in agreement with the negative addi-
tive effects of qOLTN1 and qOLTN2 (Table 2). Furthermore,
IL-qOLTN3 and IL-qOLTN4 produced more and fewer tillers than
NB, respectively, although the differences were not significant. How-
ever, the results observed in IL-qOLTN3 and IL-qOLTN4 also corre-
sponded to the positive and negative additive effects of qOLTN3 and
qOLTN4, respectively. In summary, we could successfully detect four
QTL using our GBS data for the number of tillers, and partially verify
the effects of those QTL in ILs.

DISCUSSION
Our aim for this study was to utilize GBS for rapid genotyping of rice F2
populations. As expected, GBS proved to be a robust and efficient
method to genotype large populations (Elshire et al. 2011; Spindel
et al. 2013; Lu et al. 2013; Liu et al. 2014). For successful application
of GBS, it is necessary to generate adequate read coverage across the
genome, and also for each individual that is sequenced. In our approach
to genotype a rice F2 population, we further took into account the
number of individuals and markers that are necessary to detect QTL.
Since one of the main motivations to perform GBS is to save time and
money compared to classical markers, one would like to use as few
sequencing runs on any platform as necessary to achieve the desired
sequencing depth. Our choice to change the enzyme from PstI to KpnI
led to predictable changes in the resulting SNP collection. Other reports
have also shown that enzyme choice is an important parameter to
optimize GBS for any given species, highlighting the importance of
using in silico digests of the genome of the target organism beforehand
(Heffelfinger et al. 2014; Schröder et al. 2016). Marker density depends
also partially on sequencing depth, which in turn depends on the
number of individual per sequencing run. To be most efficient, it is
thus advisable to take into account the desired marker density when
laying out a genotyping project involving GBS. In our experience,
performing a small-scale pilot experiment using the desired population
and sequencing platform, combined with linkage analysis on simulated
data, allowed us to use GBS more efficiently. The results of linkage
analyses using both simulated (see Figure S1) and experimental (see
Figure S4 and Figure S5) data suggested that ourGBS approach resulted
in a saturation of markers. The fact that our linkage analysis yields

n Table 2 Percentages of variance and effects of the significant QTL

QTL Namea Chr LOD Score Left Boundb Peak Positionc Right Boundd % of Variance Additive Effecte Dominant Effectf

qOLTN1 1 20.15 27,085 29,323 30,648 8.23 29.17 5.22
qOLTN2 3 6.67 16,459 23,610 27,706 2.80 24.66 20.65
qOLTN3 4 6.68 12,436 12,591 18,420 2.80 5.07 21.10
qOLTN4 8 4.91 16,523 19,907 22,362 2.07 22.44 4.51
a
O. longistaminata tiller number.

b
Chromosomal positions in kilobase of left bounds of the 95% confidence intervals. All chromosomal positions are based on the physical position of the closest
marker in the NB reference genome.

c
Chromosomal positions in kilobases, where the maximum LOD scores were detected for each QTL.

d
Chromosomal positions in kilobases, of right bounds of the 95% confidence intervals.

e
Positive values indicate increases of the number of tillers in OL homozygotes, while negative values indicate decreases in OL homozygotes compared to NB.

f
Positive values indicate increased tiller number in heterozygotes compared with the averages of NB and OL homozygotes, while negative values indicates decreases
in heterozygotes compared with the averages of NB and OL homozygotes.

n Table 3 Tiller number in the introgression lines

Genotypea Chrb Markersc Positiond No. of Tillerse

NB — — — 13.67 6 1.70
IL-qOLTN1 1 RM1287-RM297 10.8–33.8 8.14 6 1.64f

IL-qOLTN2 3 OL3L26-RM3436 5.4–28.2 11.13 6 1.27f

IL-qOLTN3 4 End-RM3866 0–23.8 15.00 6 3.12
IL-qOLTN4 8 RM1235-RM5485 12.1–24.2 11.67 6 2.87
a
NB indicates Nipponbare, IL-qOLTN1–4 indicates introgression lines that carry
the respective QTL for tiller number.

b
Chromosome which have an O. longistaminata chromosomal segment.

c
Flanking simple sequence repeat markers of an introgressed O. longistaminata
chromosomal segment. “End” indicates the end of short arm.

d
Physical positions of the flanking SSR markers in megabases.

e
The number of tillers measured in 7–9 plants for each line are shown in
mean 6 SD.

f
Indicates a significant difference compared with NB at P # 0.05 according to
Student’s t-test.
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comparable results, even when up to 75% of missing data for each
marker were acceptable in the raw data, shows that even simple impu-
tation algorithms can reinforce the usefulness of GBS data tremen-
dously. We speculate that, for certain applications, even fewer
markers, and, in turn, fewer reads per individual would be sufficient,
thus allowing even higher multiplexing and sample throughput. Of
course, this might also depend on the genome size of the analyzed
species, and the amount of repetitive elements in that genome.

Optimizing GBS strategies
Although we were successful in using GBS, we noticed several short-
comingswherenobestpractice seemsyet tobeestablished.There seems to
be very little consensus about how GBS protocols should be adapted to
different species, and todifferentpopulations. Forvariant calling,filtering,
and exploration of our dataset we used the TASSEL4 (Glaubitz et al.
2014), which was develop to work efficiently with large maize popula-
tions. It became apparent that additional specific bioinformatics analyses
were necessary to get the most information from our dataset. This shows
that a given GBS protocol needs to be optimized for a specific species or
population. Another issue is the high error rate of rawGBS data.While it
is possible to eliminate most errors using post SNP-calling error correc-
tion, some errors will inevitably remain. Our results indicated that simple
technical errors (e.g., wrong base calls or misaligned reads) are not a
major source of errors. It would thus be worth investigating the source of
errors, as this might lead to new insights into the population in question.
In our case, where a wild species is crossed to a cultivated one, it can be
assumed that there will be large-scale differences between the two pa-
rental genomes contributing to the F2 individuals (Wang et al. 2014).
Those differences most likely include gene copy number variations, or
even rearrangements of regions between chromosomes. We found in-
direct evidence for such large rearrangements when we analyzed the
genome-wide linkage of markers. Several regions in which seemingly
correct haplotypes were in strong linkage disequilibrium with both
neighboring regions and regions on other chromosomes were found
(data not shown). In addition, error-types do not occur at random. In
our dataset, .70% of all errors were caused by two error-types (HBH
and AHA) (Figure 7A), indicating a common, systematic cause for both
error-types. Future GBS pipelines could address those issues, either by
taking into account improved reference genome information, through
linkage disequilibrium filtering, or by rearranging marker order. How-
ever, at themoment, GBS software that explicitly addresses the problems
associated with a wide cross does not exist.

When we established our GBS pipeline, we noticed several irregu-
larities in the genome-wide SNP statistics. For example, we noticed that
several regions of the genome were sparsely covered with SNPs (Figure
3). Also, we noted that, in several regions, parental allele frequency
deviated from the expected 1:2:1 ratio (Figure 4). It is important to
note that this population is affected by reproductive incompatibilities,
and we had to routinely use embryo-rescue to propagate plant mate-
rials. It is very likely that the deviating allele frequency is a consequence
of reproductive incompatibility, which has its genetic basis in these
regions. To further analyze this, it would be necessary to genotype
the offspring of multiple F1 crosses. We suggest that GBS might be a
useful tool to study reproductive isolation and preferential transmis-
sion, since it can quickly define regions with allele distortion.

Conclusion
In summary, we show an application ofGBS to perform linkage analysis
in a rice F2 population.We also provide an example of how to plan and
carry out adequate, cost effective, reduced-representation sequencing.
With our dataset, we successfully detected QTL for tiller number on

chromosomes 1, 3, 4, and 8, which we could partially confirm using ILs.
For futureGBSgenotyping efforts,we suggest evaluatingenzymechoice,
multiplexing of libraries and post-processing to meet the requirements
of the desired post-GBS analyses.
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