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ARTICLE INFO ABSTRACT

Most of the in vitro studies using liver cell lines have been performed under atmospheric oxygen partial
pressure (21% O.). However, the oxygen concentrations in the liver and cancer cells are far from this value. In
the present study, we have evaluated the influence of oxygen on 1) the tumor cell lines features (growth, steady-
state ROS levels, GSH content, activities of antioxidant enzymes, p66 Shc and SOD expressions, metallopro-
teinases secretion, migration, invasion, and adhesion) of human hepatocellular carcinoma cell lines, and b) the
response of the cells to an oxidant stimulus (aqueous leaf extract of the V. baccifera plant species). For this
purpose, three hepatocarcinoma cell lines with different p53 status, HepG2 (wild-type), Huh7 (mutated), and
Hep3B (deleted), were cultured (6—30 days) under atmospheric (21%) and more physiological (8%) pO,.
Results showed that after long-term culturing at 8% versus 21% O, the cellular proliferation rate and the
steady-state levels of mitochondrial O,” were unaffected. However, the intracellular basal ROS levels were
higher independently of the characteristics of the cell line. Moreover, the lower pO, was associated with lower
glutathione content, the induction of p66 Shc and Mn-SOD proteins, and increased SOD activity only in HepG2.
This cell line also showed a higher migration rate, secretion of active metalloproteinases, and a faster invasion.
HepG2 cells were more resistant to the oxidative stress induced by V. baccifera. Results suggest that the long-
term culturing of human hepatoma cells at a low, more physiological pO, induces antioxidant adaptations that
could be mediated by p53, and may alter the cellular response to a subsequent oxidant challenge. Data support
the necessity of validating outcomes from studies performed with hepatoma cell cultures under ambient Os.
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1. Introduction

In physiological conditions, oxygen supply and diffusion into
tissues are necessary for survival. The oxygen partial pressure results
from the balance between oxygen delivery into an organ and its
consumption. Although the pO, at ambient atmosphere is equivalent
to 21%, tissue oxygenation progressively decreases as it reaches
internal organs and tissues [1]. The level of O, and its distribution
among the various tissues depends on the rate of capillary blood flow
and the tissue metabolic activity. Consequently, in humans under
physiological conditions, the pO, in well-irrigated organs such as lungs,
liver and kidneys, ranges from 4% to 14% [2,3]. The oxygen concen-
tration in tumor cells is heterogeneous and depends on the distance of
the cell from the blood vasculature. Cells that reside far away from
blood vessels can even become hypoxic, receiving inadequate amounts
of oxygen [4]. Most of the in vitro experiments using cell cultures are
typically performed in atmospheric O, levels (21%), thus, in a non-
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physiological environment. An inadequate (absent or in excess) oxygen
tension in cell cultures can result in the production of reactive oxygen
species (ROS) and the induction of oxidative stress [5-7], with
consequences on the cellular behaviour leading to cell growth or death
[8]. The change in the redox status of the cell may alter the expression
of antioxidant enzymes, cell proliferation, migration and invasion [8,9].
Oxygen finely regulates cell activity from the gene level to the proteome
expression [10]. It has been reported that the long-term culturing of
transformed human and murine myeloid cell lines under atmospheric
oxygen levels (21% O,) or more physiological pO, (5% O,) induced
significant differential phenotype changes in free surface thiol expres-
sion, total GSH content, and sensitivity to hydrogen peroxide [11].
The p53 tumor suppressor protein plays key roles in regulating cell-
cycle and apoptosis. The protein regulates the expression of various
mitochondrial-targeted genes that affect pro-apoptotic proteins, lead-
ing to cell death [12]. p53 also possesses potent redox-regulating
activity through modulating various ROS-generating and antioxidant
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enzymes, particularly p66 Shc and MnSOD [13,14]. p66 Shc has
recently emerged as a redox sensor that transmits oxidative stress
signals to DNA damage in hepatocytes [15]. Activated p66 Shc is
localized in mitochondria, where the molecule generates hydrogen
peroxide to initiate the apoptotic cascade [16,17].

In a previous work, we described that an aqueous leaf extract of the
Amazonian V. baccifera plant species induced intracellular accumula-
tion of ROS and toxicity to several human hepatocellular carcinoma cell
lines cultured under atmospheric O,. Results suggested that oxidative
stress was involved in cell death [18]. In the present study, we have
evaluated the influence of the oxygen partial pressure on 1) the tumor
features (growth, steady-state ROS levels, GSH content, activities of
antioxidant enzymes, p66 Shc and SOD expressions, migration, inva-
sion, metalloproteinases secretion, and adhesion) of human hepatocel-
lular carcinoma cell lines, and b) the response of the cells to an oxidant
stimulus (V. baccifera leaf extract). For this purpose, three hepatocar-
cinoma cell lines with different p53 status, HepG2, Huh7, and Hep3B,
were long-term (6—30 days) cultured under atmospheric (21%) and
more physiological (8%) pO,. HepG2 cells carry wild-type p53, in
Hep3B the p53 gene is deleted [19], and p53 expressed in Huh7
conserves around 4% wild type transactivating activity [20]. Data
suggest that the long-term culturing of human hepatoma cells under
low pO- induces antioxidant adaptations that may modify the cellular
response to a subsequent oxidant challenge, and support the necessity
of using low, more physiological oxygen tensions in culturing tumor
cell lines to draw conclusions applied to cancer biology from in vitro
studies.

2. Materials and methods
2.1. Reagents

Bis-(3-carboxy-4-nitrophenyl)-disulphide (DTNB), 3,4-dichloroni-
trobenzene (CDNB), glutathione, glutathione reductase, horseradish
peroxidase (HRP), hydrogen peroxide, NADPH, nitro-blue tetrazolium
(NBT), sulfosalicylic acid, trypsin, xanthine and xanthine oxidase
(XOD) were all obtained from Sigma-Aldrich (St Louis, MO, USA).
Anti-Cu,Zn-SOD antibody was purchased from Calbiochem (La Jolla,
CA, USA), anti-Mn-SOD and anti-Shc antibodies from Millipore
(Darmstadt, Germany), and Amersham ECL Western Blotting
Detection Reagent from GE Healthcare (Chicago, Illinois, USA).

2.2. Culture and maintenance of cell lines

The human hepatoma cell lines HepG2, Huh7 and Hep3B were
purchased from ATTC (American Type Culture Collection, Manassas,
USA). These cells were maintained in Eagle's Minimum Essential
Medium (EMEM) (ATCC) supplemented with 10% heat inactivated
fetal bovine serum (FBS) (ATCC), 2 mM L-glutamine, 0.1 mg/ml
streptomycin and 100 U/ml penicillin (all from Sigma-Aldrich, St
Louis, MO, USA). Shortly after establishment of consistent cell lines
in 75 cm? flasks under 21% pO, at 37 °C in humidified atmosphere
with 5% CO,, each cell line was divided into two flasks and cultured
under similar conditions except for the O, concentration (21% and 8%
pO-). Cells were cultured in a Thermo Fisher Scientific HERAcell
incubator (Waltham, MA, USA) equipped with two gas monitoring
systems, CO, and O,/N, (nitrogen to reduce the oxygen levels). All
media were preequilibrated to the O, conditions in the incubator before
their use. All cell passages were performed quickly in the laminar flow
cabinet when the cell monolayer reached around 75% of confluence.
Cells were detached with a solution of 0.1% trypsin-0.04% EDTA and
then harvested to perform subsequent experimentations. Cells adapted
to the pO, regimen for a minimum of six days and a maximum of 30
days before the corresponding experiment.

The Ethical Committee for Researching with Biological Agents
(CEIAB) from the University of the Basque Country, UPV/EHU,
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approved the protocol (M30_2015_2013_RUIZ SANZ).

2.3. Plant aqueous extract

The aqueous leaf extract of V. baccifera was prepared from
infusions, as has been described in Lizcano et al. [21].

2.4. Cell proliferation assay

Cells cultured under both pO, conditions described in point 2.2
were seeded onto 96-well plates and cultured under both different
oxygen conditions and at different cell densities (2,000, 2,500 and
3,000 cells per well). Their growth was registered every 24 h for 5 days,
following the crystal violet stain method according to Gillies et al. [22].
This consisted in removing medium, washing the cells once with
phosphate buffered saline (PBS) and fixing them for 15 min with a
3.7% formaldehyde solution. Then, the cells were washed twice with
PBS and stained with a 0.25% crystal violet solution (Merck,
Darmstadt, Germany) for 20 min in the dark. After this, plates were
washed with running water and when they were dry, 150 ul of a 33%
acetic acid solution was added in each well to dissolve crystal violet.

The absorbance was measured at 590 nm in a Synergy HT micro-
plate reader (BioTek, Winooski, VT, USA). Considering that absor-
bance is proportional to the cell density, the obtained data were
represented as exponential growth curves. Duplication times were
derived from semi-logarithm representations of the absorbance versus
the culture time, and were calculated using the following formula:
A=Ayx2YPT; DT refers to the duplication time;  to the culture time and
Ay and A refer to absorbances at zero and at any time, respectively.

2.5. Intracellular ROS and mitochondrial O>™ detection

Intracellular ROS levels were measured using the cell-permeant
2',7’-dichlorodihydrofluorescein ~ diacetate  (H,DCF-DA)  probe
(Molecular Probes, Eugene, OR, USA), which is deacetylated and
oxidized inside the cell producing the 2’,7’-dichlorofluorescein (DCF)
fluorescent compound. Cells cultured under both pO. conditions
described in point 2.2 were seeded at a density of 2.5x10° cell per
well onto 6-well plates and maintained under the two oxygen concen-
trations for additional 48 h, and before treatment (addition of V.
baccifera extract). After that, cells were washed, resuspended in the
corresponding medium (8% and 21% O,) and incubated with H,DCF-
DA (20 uM) for 30 min at 37 °C in the dark. Then the probe solution
was removed and, after washing with PBS, the cells were trypsinized
and harvested to analyze the DCF fluorescence of the live cells by flow
cytometry in a Beckman Coulter Gallios Flow Cytometer (Aex.=485/20
and A¢,=528/20) in the General Research Services SGIker of the UPV/
EHU (http://www.ikerkuntza.ehu.es/p273-sgikerhm/en/). At least 10,
000 cells (events) were detected for each group. Data obtained from
flow cytometry were analyzed using Summit 4.3 software (Dako,
Hovedstaden, Denmark). Intracellular ROS levels were expressed as
the mean fluorescence signal (arbitrary units) of the analyzed live cell
population (10,000 events).

The mitochondrial superoxide anion levels were measured using
the cell-permeant MitoSOX™ Red reagent (Molecular Probes, Eugene,
OR, USA), which is selectively targeted to mitochondria and oxidized
by superoxide. Cells were incubated in the corresponding medium (8%
and 21% O,) with MitoSOX (4 uM) for 30 min at 37 °C in the dark. The
fluorescence intensity from live cells was analyzed by flow cytometry in
a Beckman Coulter Gallios Flow Cytometer (Aex.=485/20 and A.,=620/
20) in the General Research Services SGIker of the UPV/EHU. Results
were expressed as the mean fluorescence signal (arbitrary units) of the
analyzed live cell population (10,000 events).
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2.6. Determination of GSH

Cells cultured under both pO» conditions described in point 2.2
were seeded at a density of 1x10° cells onto Petri dishes and further
maintained under both pO- conditions for 72 h. Cells were washed with
ice-cold PBS and resuspended in ice-cold lysis buffer (0.1% Triton X-
100% and 0.6% sulfosalicylic acid) and lysed by a freezing and thawing
process. After that, cells were centrifuged at 4,000xg for 5 min at 4 °C
and the supernatant was collected. The total protein was quantified in
the supernatant.

The measurement of glutathione (GSH) was evaluated with the
glutathione reductase-DTNB recycling method, as reported previously
[23]. Reaction was run in 96-well microplates; 5 ul of each sample were
distributed per well for quantification of total GSH. Glutathione
reductase (1.82 Units/well), DTNB (458 uM) and NADPH (0.3 mM
for GSH) were then added to a final volume of 220 pl/well. Absorbance
was monitored at 412 nm. The GSH concentration was estimated from
a standard curve. Results were expressed as nmol of GSH per mg of
protein.

2.7. Immunodetection of proteins

Cu,Zn-superoxide dismutase (Cu,Zn-SOD), Mn-superoxide dismu-
tase (Mn-SOD) and p66, p52 and p46 Shc isoforms were detected by
immunoblotting. Cellular protein extracts were boiled at 95 °C for
5 min in Laemmli sample buffer (300 mM Tris-HCl, pH 6.8, 50%
glycerol, 10% SDS, 250 mM DTT, 0.01% bromophenol blue) [24] and
were separated by SDS-PAGE electrophoresis in 15% (Cu,Zn-SOD and
Mn-SOD) or 10% (Shc) polyacrylamide gels. Gels were transferred onto
PVDF membranes by electro-blotting with constant amperage (1 mA/
cm?). After blocking for 1h at room temperature, membranes were
incubated overnight at 4 °C with the corresponding primary antibody
(anti-Cu,Zn-SOD 1:7000, anti-Mn-SOD 1:2000, and anti-Shc 1:2000).
After washing, membranes were probed with its secondary antibody
conjugated to horseradish peroxidase for 1 h at room temperature. The
immunoreactive proteins were detected with an enhanced chemilumi-
nescence (ECL) substrate kit (Amersham ECL Western Blotting
Detection Reagent, GE Healthcare) and exposure to X-ray films.
Bands were quantified by densitometry. Glucose-6-phosphate deydro-
genase was used as loading control.

To characterize mass expression of SOD isoforms, a standard curve
(6.6—33 ng Cu,Zn-SOD and 1.6—7.9 ng Mn-SOD) was prepared using
commercial human recombinant SOD protein (ProSpec-Tany
TechnoGene Ltd., Israel). Values were interpolated in the linear range
of the standard curve. The amount of protein was expressed as ng/mg
of protein.

2.8. Enzymatic assays

All cell types grown by long-term exposure to 21% O, and 8% O,
tension were lysed by freeze-thaw in liquid N». Protein concentration
was quantified [25] in the cell extract.

2.8.1. Superoxide dismutase activity (EC 1.15.1.1)

SOD activity was determined indirectly by the method of nitro-blue
tetrazolium (NBT) [26]. This method uses the xanthine-xanthine
oxidase system to generate superoxide anions. The superoxide anion
reduces NBT, which is converted into NBT-diformazan. This reduced
form is blue, and the absorbance is recorded at 570 nm in a spectro-
photometer. In presence of SOD, O,™ undergoes a dismutation into O,
and H»0,, decreasing the NBT-diformazan formation. Hence, this
competing assay yields to the indirect measurement of SOD activity.

The method was adapted to 96 well plates. Increasing amounts of
cellular protein were assayed for each independent experiment and the
absorbance was determined versus the incubation time. The reaction
was started by the addition of NBT (60 uM) in a final volume of 250 pl.
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Fig. 1. Example of the inhibition curve built with commercial SOD to express the results
as SOD units/mg of protein.

Table 1
Effect of pO, on growth of hepatocellular carcinoma cells.

Doubling time (h)

Cell type 21% pO, 8% pO,

HepG2 31.8+0.9* 29.1+1.1%
Huh7 32.10.7* 33.920.5"
Hep3B 26.4+1.1° 23.6 £ 0.9

Doubling times were derived from semi-logarithm representations of the crystal violet
absorbance versus the incubation time. Results are expressed as the mean + SE of 3-15
experiments. Data in the same column with different superscript are significantly
different. *°P < 0.05.

The increase of absorbance was determined every 60 s for 12 min at a
temperature of 37°C. The slope of the curve for each protein
concentration was calculated, and the percentage of inhibition relative
to a control without protein was calculated. To calculate the ICsq
(amount of protein required to inhibit the formation of NBT-diforma-
zan by 50%) the % inhibition was plotted versus the log of protein
concentration, and the graphs were adjusted to semi-logarithmic
curves, using GraphPad Prism 4 for Windows (San Diego, CA, USA).

An inhibition curve was prepared using commercially available
SOD (Sigma-Aldrich, St. Louis, MO, USA) to transform the ICs, value
into SOD units (Fig. 1). Results are expressed as SOD U/mg of protein.
One unit of SOD activity was defined as the amount of the enzyme in a
sample solution causing 50% inhibition (ICs) of the rate of reduction
of tetrazolium salt [27].

2.8.2. Catalase (EC 1.11.1.6)

Catalase (CAT) activity was measured according to Aebi (1984) [28]
by observing spectrophotometrically the H,0O, disappearance at
240 nm. The reaction took place in a final volume of 1 ml containing
90 mM potassium phosphate buffer (pH 6.8) and started with the
addition of H>O» (30 mM final concentration). Decrease in absorbance
was continuously measured every 2s over 1 min. CAT activity was
expressed as pmol/min/mg of protein, using the experimental coeffi-
cient £=0.04 mM .

2.8.3. Glutathione peroxidase (EC 1.11.1.9)

Selenium-dependent glutathione peroxidase (GPx) activity was as-
sayed by the indirect method of Flohé and Giintzler (1984) [29]. GPx
activity was measured in a coupled enzyme system where NADPH is
consumed by glutathione reductase (GR) to convert the formed glu-
tathione disulphide (GSSG) to its reduced form (GSH). The decrease in
absorbance of NADPH was monitored at 340 nm every 60 s for 15 min in
a 96-well plate reader at 30 °C. The final volume was 225 pl containing
50 mM potassium phosphate buffer (pH 7.0), 1 mM EDTA-Na,, 0.5 mM
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Fig. 2. Effect of pO2 on (A) intracellular ROS and (B) mitochondrial O~ levels in hepatoma cell lines. Cells were incubated under 21% and 8% pO.. The mean of DCF and MitoSOX
fluorescences (arbitrary units) of the analyzed live cell population (10,000 events) is represented. Results are the mean+SE of 3—16 experiments. *P < 0.05, **P < 0.01, different between
both pO, conditions in the same cell line. Bars with different superscript at the same pO, are significantly different, “*P < 0.05.
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Fig. 3. Effect of pOx on the intracellular levels of GSH in hepatoma cell lines. Cells were
incubated under 21% and 8% pO,. Results are the mean+SE of 3—6 experiments. *P <
0.05 different between both pO, conditions in the same cell line.

sodium azide, 0.45 mM GSH, 0.2 mM NADPH and 0.45 U of GR. The
reaction started by the addition of H,O5 (0.77 mM final concentration).
The results are expressed as nmol/min/mg of protein, using the NADPH
experimental coefficient £=3.065 mM ™.

2.8.4. Glutathione S-transferase (EC 2.5.1.18)

Glutathione S-transferase (GST) activity was assayed according to
Habig and Jakoby (1981) [30], based on the conjugation of GSH with
3,4-dichloronitrobenzene (CDNB). The rate of GS-DNB appearance
was monitored at 340 nm for 9 min in a 96-well microplate reader at
30 °C. The reaction mixture contained 78 mM potassium phosphate
buffer (pH 6.5), 1 mM EDTA-Na,, and 2 mM GSH in a total volume of
250 ul. The reaction started by the addition of CDNB (2 mM final
concentration). The results are expressed as nmol/min/mg of protein,
using the experimental coefficient £=9.6 mM L.

2.9. Determination of total proteins

Total protein was quantified spectrophotometrically at 595 nm by
Coomassie Brilliant Blue dying [25], using bovine serum albumin as
standard.

2.10. Transwell migration and invasion assay

The migration ability of cells was carried out using 24-well
transwell migration chambers (Greiner Bio-One, Switzerland) with
8 um pore size polyethylene membranes. For cell invasion assay,
transwell inserts were precoated with 68 ul of 5 pug/ml fibronectin
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(Sigma-Aldrich, St Louis, MO, USA) at 37 °C for 1 h for gelling. The
upper chambers were inoculated with 6x10* cells/well in 0.2 ml
serum-free EMEM solution. Lower chambers were filled with 0.6 ml
of the corresponding medium containing the chemoattractant (10%
FBS) and cells were allowed to migrate for 24 h under 21% pO- or 8%
pO,, at 37°C in humidified atmosphere with 5% CO,. After the
incubation, cells located upon the upper membranes were wiped with
cotton swabs. The cells that migrated to the lower surface of the
polyethylene membranes were fixed in 70% ethanol overnight.
Subsequently, cells were stained overnight with 25 pg/ml propidium
iodide (Sigma-Aldrich, St Louis, MO, USA) and 200 pg/ml RNase A
(Roche Biochemicals, Indianapolis, IN, USA). The inserts were photo-
graphed under an Olympus Fluoview FV500 confocal microscope in the
General Research Services SGIker of the UPV/EHU (http://www.
ikerkuntza.ehu.es/p273-sgikerhm/en/). The number of migrated and
invasive cells was calculated using the ImageJ software (NIH,
Bethesda, Maryland, USA).

2.11. Matrix metalloproteinase (MMP) activity determination by
zymography

MMP activity was determined by zymography. This technique is
used for chromatographic detection of proteinases in polyacrylamide
gels. Gels are enriched with a protein substrate for the enzymatic
activity to be detected. When the gels are stained with Coomassie
Brilliant Blue, no stained bands are shown due to the substrate protein
degradation by the proteinases [31].

Gelatin zymography was used to detect gelatinases activity. For the
gelatin zymography, the samples (concentration conditioned medium)
were mixed with non-reducing Laemmli buffer [24]. The resolving gel
was 10% polyacrylamide with 0.1% gelatin in 390 mM Tris/HCl pH 8.8,
0.1% SDS buffer, and the stacking gel was 4% polyacrylamide in 65 mM
Tris/HCl, 0.1% SDS buffer, pH 6.8. Gels were loaded with similar
quantities of media and cellular protein. Each gel was loaded with pairs
of cell line samples at 21% O, and 8% O,. Commercial protein ladder for
molecular weight identification were included in all zymographies. After
running at 150 v for 75 min in electrophoresis buffer (25 mM Tris/HClI,
192 mM glycine and SDS 0.1%), gels were washed twice with a 2%
Triton X-100 solution for 20 min, and immersed overnight at 37 °C in
MMP substrate buffer (50 mM Tris/HCI, 10 mM CaCl,, 3 mM NaNj, pH
7.5). After washing with H,O, gels were stained for 20 min (40%
methanol, 10% acetic acid, and 0.1% Coomassie brilliant blue R-250).
Gels were immersed in destaining solution (20% methanol, 10% acetic
acid) until the bands were visible. Gels were digitalized with a
densitometry image system (Molecular imager FX) and bands quantified
with the Quantity One software (BioRad Laboratories, Inc).
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Fig. 4. Effect of pO2 on p66, p52, and p46 Shc isoforms. HepG2 and Huh7 were incubated under 21% and 8% pO,. (A) Proteins from cell extracts were analyzed by western blot. The
bands shown are representative of 6 experiments. (B) Distribution of She proteins (as % of total DOI) under 21% and 8% pO.. Data are the mean of 6 experiments. (C) Representation of
the densitometry changes from the western blot results represented in (A). Results are the mean+SE of 6 experiments. *P < 0.05, **P < 0.01, different between both pO, conditions in the
same cell line. Bars with different superscript at the same pO, are significantly different, *"P < 0.05.

2.12. Adhesion assay

Cells cultured under the conditions described in point 2.2 were
seeded onto 96-well plates at 20,000 cells per well and further
incubated for 1 h under 21% pO, and 8% pO,. The cell adhesion was
determined by the crystal violet stain method [22]. The number of
adherent cells was calculated interpolating the obtained absorbance at
590 nm in a standard curve formed by different cell densities.

2.13. Cytotoxicity assay

Cells cultured under the conditions described in point 2.2 were
seeded onto 96-well tissue culture plates at 5x10? cells per well, and
maintained under 21% pO, and 8% pO,. Twenty four hours after
plating the cells were treated without (control) or with the V. baccifera
leaf extract (oxidant stimulus) for 24 h, 48 h, and 72 h. The cell
viability was evaluated with the crystal violet assay [22]. Cells number
was expressed as the absorbance at 590 nm, considering that absor-
bance is proportional to the cell density.

2.14. Statistical analysis

The statistical package SPSS 19.0 (SPSS Inc., Chicago, IL, USA) was
used for data analysis. Data were expressed as mean + standard error
(SE) from at least three independent experiments. Statistical analysis
of the differences of the means for one cell line at two O, concentra-
tions, and for control and V. baccifera, was done by parametric
Student's t-test for paired data. Comparisons between different cell
lines at the same oxygen tension were performed by Student's t-test for
unpaired data (two cell lines) or by ANOVA and post hoc group
comparisons (three cell lines). Differences between means were
considered statistically significant if P < 0.05. The ICso (concentration
that inhibits cell growth by 50%) was derived from the semi-log dose-
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response curve. The data were adjusted by non-linear regression
(R%20.99) using GraphPad Prism 4 for Windows (San Diego, CA, USA).

3. Results
3.1. Influence of pO- on hepatocarcinoma features

3.1.1. Cell growth

The human HepG2, Huh7 and Hep3B hepatoma cell lines were
cultured under 21% O, and 8% O, as described in Materials and
Methods. Cell growth rate was determined in terms of the time
required for doubling the number of cells during the exponential phase.

Results indicate that Hep3B showed the highest proliferation rate
independently of the pO, (Table 1), whereas Huh7 had the lowest
growth rate at both pO,. Cells did not exhibit any statistically
significant change of the proliferation rate depending on the oxygen
tension.

3.1.2. Intracellular ROS and mitochondrial O

Intracellular ROS and mitochondrial O,™ levels were measured by
flow cytometry under both pO, conditions.

Huh7 showed the lowest steady-state ROS levels (P <0.01),
whereas the basal ROS accumulation in HepG2 was not significantly
different from that in Hep3B. Reduction of pO, from 21% to 8%
significantly increased intracellular ROS in all three cell lines (Fig. 2A).
Mitochondrial O™ was observed in all the hepatoma cell lines, the
highest levels being in Hep3B (P < 0.05, Fig. 2B). However, MitoSOX
signals were unaffected by the culture pO, conditions. All in all,
reduction of pO- induced an increase of intracellular ROS indepen-
dently of the characteristics of the cell lines, while mitochondrial
steady-state O™ levels were independent of the pO, in the studied
oxygen range.
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3.1.3. Glutathione

GSH has a key role in the intracellular redox homeostasis; thereby
the effect of pO, on the intracellular glutathione levels was investi-
gated.

A decrease in the pO, from 21% to 8% was associated with a
significant depletion by 45% (P <0.05) of the intracellular levels of
GSH in HepG2 cells (Fig. 3). It is worth mentioning that GSH levels
were detected at similar levels in all hepatoma cell lines.

3.1.4. Immunodetection of p66, p52 and p46 Shc isoforms

Due to the fact that the Shc adaptor protein mediates cell signaling,
and p66 Shc is specifically implicated in regulating the intracellular
level of ROS, we evaluated the effect of oxygen tension on Shc isoforms.

As can be seen in Fig. 4, Huh7 showed higher expression levels of
Shc isoforms than HepG2 cells (P < 0.05), independently of the oxygen
concentration. Moreover, the p66 Shc contribution to the total Shc
proteins was higher in Huh7 than in HepG2 at both pO, (Fig. 4B).
Oxygen modified the expression of Shc only in p53-wild-type HepG2
cells, the lower pO, (8%) up-regulating all three Shc isoforms (Fig. 4C).
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3.1.5. Antioxidant enzyme activities

The basal antioxidant activities of SOD, catalase, GPx, and GST in
HepG2 and Huh7 were measured by spectrophotometric assays.

As can be seen in Fig. 5, SOD activity could be clearly detected in
both cell lines (2-fold higher in Huh7 than in HepG2). Reduction of
pO- from 21% to 8% significantly increased SOD activity in HepG2 (P
< 0.05). Catalase activity varied depending on the cell line, the highest
activity being observed in HepG2 (near 2-fold higher than in Huh7).
However, the activity remained constant, independently of the O,
concentration (Fig. 5B). Regarding GPx, HepG2 showed the highest
activity (3.5-fold higher than that found in Huh7). The decrease in pO,
from 21% to 8% did not have any effect on GPx activities (Fig. 5C).
Concerning GST, it is interesting to note that the enzyme activity was
scarcely detected under the assay limits in HepG2 cells (200-300 pg of
protein used). By contrast, Huh7 exhibited elevated GST activity. The
0O, concentration did not have any effect on GST activity (Fig. 5D).

3.1.6. Quantification of Cu,Zn-SOD and Mn-SOD proteins

In view of the results on antioxidant enzymes and the significant
differences found for SOD activity, we decided to study the expression
of SOD isoforms by immunoblot. Human recombinant SOD protein
was used to derive a standard curve and obtain absolute amounts of
Cu,Zn-SOD and Mn-SOD proteins in the cell extracts.

The cytosolic isoform (Cu,Zn-SOD) was almost three-fold higher
expressed than mitochondrial SOD (Mn-SOD) in HepG2 cells, and
seven-fold higher in Huh7 (Fig. 6). The cytosolic isoforms were
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similarly expressed in both cell lines, and oxygen tension did not affect
their expression (Fig. 6A). The amount of the mitochondrial SOD
isoform in Huh7 was approximately 1/3 that in HepG2. The low pO»
was associated with increased expression of Mn-SOD in HepG2 cells
(Fig. 6B).

3.1.7. Cell migration and invasion

The role of ROS in triggering signaling pathways for cell migration
has been well established. Through a series of cellular events, including
cytoskeletal remodelling, cells are able to detach from the primary
tumor and metastasize to distant sites [9]. To study the influence of
oxygen on cell migration and invasion, transwell assay precoated
without and with fibronectin was performed, respectively.

Independently of the pO- conditions, the highest migration rate was
found in HepG2, and the lowest in Hep3B (P < 0.001). The reduction of
pO> from 21% to 8% affected the migration capacity of the studied cells
differently. Thus, the migration rate decreased in Huh7 and Hep3B,
while HepG2 showed a higher migration capacity under 8% pO-
(Fig. 7A).

Regarding the invasion transwell assay, the highest invasion rate
was also found in HepG2, and the lowest in Hep3B (P < 0.001). The
influence of the oxygen tension on invasion showed a pattern similar to
that found for the migration capacity; thus, 8% pO» was associated with
a higher, although not significant, invasion rate in HepG2, while in
Huh7 and Hep3B, the invasion rate was significantly lower (Fig. 7B).

3.1.8. MMP activity

During invasion, proteolytic enzymes capable of degrading the
extracellular matrix are secreted, so that the cells can migrate to new
sites. The matrix metalloproteinases (MMP) are among these proteins
with catalytic activity. Inactive pro-MMPs are secreted by tumor cells,
and are activated upon cleavage of the pro-peptide domain by serine
proteases. ROS can also activate MMP by oxidation.

Results on secretion and activation of MMPs can be seen in Fig. 8.
MMP-2 secretion was clearly detected in both HepG2 and Huh7 cell
lines. HepG2 secreted significantly higher MMP-2 than Huh7 (P <
0.001). The secretion of MMP-9 and the inactive proenzymes (pro-
MMP-2 and pro-MMP-9) was detected in Huh7, but hardly found in
HepG2 cells. In these cells, the proteins could not be quantified.

Quantitative analysis of the data showed that MMP-2 secretion in
HepG2 increased markedly at 8% oxygen tension. MMP-2 secretion by
Huh7 did not change significantly depending on the pO,, although
tended to decrease at the lower oxygen tension (Fig. 8).

3.1.9. Cell adhesion

The effect of pO, on cell adhesion capacity was evaluated by the
crystal violet stain method. Huh7 showed the highest adhesion capacity
under 8% pO-, while Hep3B showed the lowest (P < 0.05) (Fig. 9). Cell
adhesion was differently affected by pO» in every one of the studied
hepatoma cell lines. Thus, a low pO, favoured Huh7 adhesiveness,
contrary to the effect in Hep3B. The HepG2 adhesion capacity did not
depend on pO-.

3.2. Effect of pO. on V. baccifera-induced toxicity in HepG2

In the next step, the aim was to determine whether pO- affected the
cell response to an oxidant stimulus. In a previous work we described
that the aqueous leaf extract of the Amazonian V. baccifera plant was
cytotoxic to HepG2 cells cultured at 21% O, and this toxicity was
suggested to be mediated by ROS [18]. We have used this system as the
oxidant source. HepG2 cells were grown as indicated in Materials and
Methods under 21% and 8% O,. After that, intracellular cells were
exposed to the plant extract under both pO, conditions and intracel-
lular ROS, mitochondrial O,™ and cytotoxiciy were determined.
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significantly different between both O, concentrations.

3.2.1. Intracellular ROS and mitochondrial Os

V. baccifera induced ROS accumulation from the first analyzed
time, and this effect was independent on the pO, (Fig. 10A). In the
same way, the plant extract induced increases in mitochondrial O,
steady-state levels; these increases were not influenced by pO»
(Fig. 10B).

3.2.2. Cell toxicity

Cell toxicity was studied by crystal violet stain method. As is shown
in Fig. 11, under atmospheric pO, V. baccifera significantly reduced
cell viability in a dose- and time-dependent manner. The ICsy derived
values showed that cell lines maintained at 8% pO, were more resistant
to the extract than their counterparts that were maintained at 21% pO..

4. Discussion

Numerous physiological studies have been performed using in vitro
models of cancer cell lines usually cultured under atmospheric O,
concentrations. However, the physiological concentrations of O, in the
tissues are far from these values. Oxygen can induce changes in the
proteome and the genome of the neoplastic cells [32], and modify the
intracellular ROS production. Knowing the drastic consequences of
oxidative stress on the cell physiology, we considered it was essential to
study the cellular behaviour under a more physiological pO» (8%), and
compare the cell phenotype with that found for the same cells cultured
under 21% O,. To investigate the implication of p53 in these changes,
we used human hepatoma cell lines with different p53 expressions,
HepG2 (wilde type), Huh7 (mutated), and Hep3B (deleted). Our results
indicated that the cell growth of HepG2, Huh7, and Hep3B was not
influenced by the pO, in the range used. In contrast, the oxygen tension
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modified the intracellular steady-state ROS levels; thus, a low pO,
resulted in higher ROS in all the cell lines, suggesting that the ROS
increase induced by low oxygen is independent of p53. Interestingly,
the steady-state mitochondrial levels of O,” were not modified by the
oxygen concentration. To this respect, early and transient increases in
0O, in response to acute hypoxia have been described in several cell
types. The superoxide production burst in the first minutes is proposed
to be the cause of redox-based adaptations of the cells to hypoxia [33].
In the literature, and according to our results, it has been reported that
high atmospheric O, concentrations are associated with reduced ROS
levels and higher GSH concentrations in pulmonary cells [34]. In our
system, the long-term culturing of the p53 wild-type HepG2 cell line
under low O, (8%) for several days induced a marked depletion of the
intracellular GSH content and a significantly higher expression of Shc
isoforms. These effects were not found in the other two cell lines with
lower or null p53 expression. The p66 Shc isoform is induced
transcriptionally by p53 [35], and generates H,O, by directly transfer-
ring electrons from cytochrome c¢ to molecular oxygen [36]. As
mentioned, although both HepG2 (wild-type p53) and Huh7 (mutant
p53) expressed p66 Shc protein, at 8% pO, the expression of She
isoforms was increased only in HepG2, agreeing that p66 Shc is a p53
downstream effector. ROS increase often leads to GSH depletion and
alterations of the redox balance [37]. Similar to the results on
pulmonary cells described by Kumar et al. [34], Lawrence et al. also
found that long-term culturing at low oxygen partial pressure of human
and mouse myeloid cell lines reduced the intracellular GSH content,
compared with their counterparts that were maintained at atmospheric
oxygen [11].

It has been reported that ROS are the critical signal messengers for
migration through MAPK pathway [38], and adhesion [39]. In our
system, the migratory and adhesiveness capacities depended on the cell
line characteristics. In fact, HepG2 had the highest migration, invasion
and adhesion rates. Moreover, the pO, modified the cell migration and
secretion of active metalloproteinases. Thus, a low pO, increased the
migration rate and secretion of MMP-2 in wild-type p53 HepG2,
whereas p53 deficient cells exhibited a slower migration and a similar
MDMPs secretion. Interestingly, in our laboratory we have detected by
immunoblotting higher p53 stabilization when HepG2 were cultured
under 8% pO, (data not shown), these results suggesting the role of
p53 in hepatocarcinoma metastatic activity.

In response to initial slight oxidative stress, cells adapt by up-
regulating the expression of antioxidant enzymes, which can contribute
to reduce the initial ROS accumulation. Our results also showed that
low oxygen tension was associated with significant long-term changes
in the antioxidant enzyme system, which was reflected in an increased
SOD activity and the up-regulation of the mitochondrial Mn-SOD
expression. p53 can exert opposite responses depending on the
intensity and persistence of the oxidant stimulus and trigger activation
of antioxidant systems [13]. The induction of MnSOD may have a role
on pro-survival, progression, and invasion responses of HepG2 cells to
the low oxygen concentration. This adaptation could modify the
response of HepG2 cells to the V. baccifera-induced oxidant stress,
being more resistant than the cells grown under higher pO,.

5. Conclusions

The present study indicates that pO, affects the tumor character-
istics of human hepatocellular carcinoma cells, suggesting that the
long-term culture under low, more physiological O, induces antiox-
idant adaptations that may modify their response to a subsequent
oxidant challenge. These adaptations could be mediated by p53. Data
support the necessity of validating data obtained from in vitro studies
using human cell lines cultured under atmospheric oxygen in order to
draw conclusions on cancer biology and the mechanisms of action of
anticancer drugs.
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