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inheritance. According to the common disease–common variant hypothesis, some of those common variants
lead to susceptibility to complex polygenic diseases. Each variant of each gene that influences a complex dis-
ease will have a small effect on the disease phenotype and susceptibility (Marian, 2012; Pritchard and Cox,
2002). Case–control studies, often in the form of genome-wide association studies or meta-analysis, have
been conducted to discover causative variants and to evaluate the impact of gene polymorphism on a specific
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disease.
A case–control study often compares the prevalence of a specific disease among person

leles and persons with variant alleles, which generates an odds ratio (OR). The most comm
variation, single-nucleotide polymorphism, consists of amajor allele (M) and aminor allele (
notype can be a major allele homozygote (MM), a heterozygote (Mm) or a minor allele ho
Odds are given for each genotype, and a pair of odds generates an OR (Table 1). Summa
two-by-two contingency is the simplest method of estimating an OR. Therefore, the three ki
are often transformed into two variables. For example, a dominant model compares MM ve
and a recessivemodel comparesMM+Mmversus mm. An over-dominantmodel assumes
has the strongest impact and compares MM + mm versus Mm. On the other hand, co-dom
cluding additive and multiplicative models hypothesize that MM, Mm, and mm are associat
est, the intermediate, and the highest risk, respectively, or they are associated with
intermediate, and the lowest risk, respectively (Thakkinstian et al., 2005; Attia et al., 20
models above discuss a subject-level phenomenon, the allelic model evaluates the impact of
on the disease. This allelic model produces an OR similar to that estimated from the mul
(Thakkinstian et al., 2005; Attia et al., 2003).

Traditionally, researchers used to calculate ORs using many models and then select the
among these calculated ORs (Thakkinstian et al., 2005; Attia et al., 2003). This may increa
of type I error due tomultiple comparisons (Bagos, 2013). Therefore, we should choose the b
calculating the OR for each model. Although model selection for genome-wide study was ex
(Bagos, 2013), anothermethod for model selection for case–control study has been anticipat
wewill discuss how to choose the best model amongmany subject-level models when evalu
of the MM/Mm/mm genotype on the disease prevalence.

Methods and examples

In this article, for the additive model, we supposed the impact of Mm allele was estimate

tive mean of impacts of MM and mm alleles. Similarly, for the multiplicative model, we supposed the impact
of theMm allele was estimated from themultiplicative mean of impacts of theMM andmmalleles. Although

plicative model”
which is defined
we knew that some researchers use the wording “log-additive model” instead of “multi
which is defined above and the wording “additive model” instead of “multiplicative model”
above, we did not use these wordings for the current article.

Table 1
Genotypes, odds and odds ratio (OR).
MM Mm mm

Number of cases a b c
Number of controls d e f
Odd a/d b/e c/f

M: Major allele.
m: minor allele.
MM: homozygote of major allele.
Mm: heterozygote.
mm: homozygote of minor allele.
a, b, c, d, e, f: number of subjects.
We defined OR1 and OR2 as follows:OR1 = oddMm / oddMM = bd / aeOR2 = oddmm / oddMm = ce / bf.
Therefore, oddMm = b / e = oddMM × OR1ori oddmm = c / f = oddMM × OR1ori × OR2ori.



Fig. 1. Graphical explanation of the gene models.
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Commonly used models

Themost commonly used five subject-level genemodels are recessive, multiplicative, additive, dominant,
and over-dominantmodels (Thakkinstian et al., 2005; Attia et al., 2003). Each of thefivemodelswas originally
defined using the relationship amongoddMM, oddMm, and oddmm. Using the formulas in legends of Table 1,we
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can obtain the relationship between OR1 and OR2 for each model.
The recessive model is defined by oddMm = oddMM. Therefore, OR1 = 1.
The multiplicative model is defined by oddMm = √ (oddMM × oddmm). Therefore, OR1 =
The additive model is defined by oddMm = (oddMM + oddmm) / 2. Therefore, OR2 = 2 −
The dominant model is defined by oddmm = oddMm. Therefore, OR2 = 1.
The over-dominant model is defined by oddmm = oddMM. Therefore, OR2 = 1 / OR1.
In the log–scale OR1–OR2 plane, the recessive, multiplicative, dominant and over-domin

drawn linearly, while the additive model was drawn as a curved line (Fig. 1-A). This meant
gression analysiswas applicable for the first fourmodels by applying the explanatory variable
in Table 2 to persons with MM, Mm, and mm genotypes. However, it is difficult to apply lo
analysis to an additive model.

Data should be summarized by 2 by 3 contingency for multiplicative and additive model
sion assumes odds for a disease increases exponentially as a number of minor allele (0, 1 or
hypothesis exactly fits the multiplicative model but not for additive model.

Four-model strategy

We proposed to principally use the four genetic models, i.e. the recessive, multiplicativ
over-dominantmodels.We selected these fourmodels because they are the only ones that a
ble to logistic regression analysis, and because they are symmetrically allocated in the log
plane (Fig. 1-A).

Next, we defined new variables. OR1ori and OR2ori are OR1 and OR2 that are estimated
number of subjects observed. OR1mod and OR2mod are ORs obtained using one of the gen

The first step in the four-model strategy is to calculate OR1ori and OR2ori. We can ob
OR2ori from a two-by-two contingency. Alternatively, we can also estimate OR1ori and OR
regression analysis.

The second step is to choose one optimal model among the four models. For this purpo
border lines that symmetrically divide the log–scale OR1–OR2 plane into four areas (Fig. 1-B
dicated with the following formulas: OR2 = OR12.41, OR2 = OR10.41, OR2 = OR1−0.41, an
Here, 0.41 and 2.41 were derived from tan ((1 / 8) × pai) and tan ((3 / 8) × pai). We selec
by plotting (OR1ori, OR2ori) on the log–scale OR1–OR2 plane.

The third step is to calculate ORstep3, which represents a one point increase of the expla
ORstep3 can be obtained from single-variable logistic regression analysis. To apply logistic re
explanatory variables depending on the gene model indicated in Table 2 were given for eac
tive variables were also given: 0 for a control and 1 for a case. For the recessive, dominant, an
models, we can use a two-by-two contingency to estimate ORstep3, instead of this logistic reg
though the multiplicative model always requires logistic regression.

Table 2
Explanatory variables for each genotype.

MM Mm
OR compared to MM
1 OR1 OR1 × OR2

Explanatory variables
Recessive 0 0 1
Multiplicative 0 1 2
Dominant 0 1 1
Overdominant 0 1 0



Table 3
Four-model strategy (Examples 1 and 2).

Original data First step Second step Third step Forth step

ORstep3 (95%CI) (OR1mod, OR2mod)

MM Mm mm (OR1ori, OR2ori) Re Mu Do Ov Re Mu Do Ov

Example 1 Case 8 8 4 (1.38, 4.00) Re 4.75
(1.07-21.0)

2.02
(0.96 − 4.25)

1.83
(0.68 − 4.97)

1.00
(0.37 − 2.72)

(1, 4.75) (2.02, 2.02) (1.83, 1) (1.00, 1.00)
Control 44 32 4

Example 2 Case 20 80 60 (2.00, 0.60) Ov 0.72
(0.44 − 1.18)

0.95
(0.67 − 1.35)

1.56
(0.79 − 3.05)

1.75
(1.06 − 2.88)

(1, 0.72) (0.95, 0.95) (1.56, 1) (1.75, 0.57)
Control 20 40 50

MM: homozygote of major allele.
Mm: heterozygote.
mm: homozygote of minor allele.
Re: recessive model.
Mu: multiplicative model.
Do: dominant model.
Ov: over-dominant model.
For OR1ori OR2ori, ORstep3, OR1mod, and OR2mod, please see main text.
For third and fourth steps, models that were not selected in the second step were also presented for the purpose of comparison.
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In the fourth step, OR1mod and OR2mod are calculated from OR step3. Given the relationship
between OR1 and OR2 in the previous section for each model, OR1mod and OR2mod were provided as fol-
lows: OR1mod = 1, OR2mod = ORstep3 for the recessive model; OR1mod = OR2mod = ORstep3 for the
multiplicative model; OR1mod = ORstep3, OR2mod = 1 for the dominant model; OR1mod = ORstep3,
OR2mod = 1 / ORstep3 for the over-dominant model.
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Table 3 and Fig. 1-C present Examples 1 and 2.

Additive and harmonic models

Usually, a diseased subject is regarded as a case, and a healthy subject is regarded as a c
this definition is only based on convention. Therefore, we should be able to provide an opt
if the number of cases and the number of controls are switched. Recessive, multiplicativ
over-dominant models are still applicable, even if the numbers of cases and controls are s
and Fig. 1-D present Examples 3–6. However, the additive model is not applicable, once
cases and controls are switched. Table 4 and Fig. 1-D present Example 7.

We proposed to use a harmonic model that is defined by oddMm = 1 / ((1 / oddMM) +
Here, the harmonic mean, along with the multiplicative and the additive means, is a typ
mean. Using this relationship among oddMM, oddMm, and oddmm and the formula in the le
we can findout the relationship OR2=1 / (2-OR1). The additivemodel and the harmonicmo
exchangedwhen the numbers of cases and the controls are switched. Table 4 and Fig. 1-D pr

Using only an additivemodel but not using a harmonicmodel is an unfair procedure. Ther
sidering an additive model, we also have to suppose a harmonic model simultaneously. Any
to use these two models because they do not fit a logistic regression formula.

Four-model strategy for meta-analysis

Meta-analysis is often conducted to estimate the true impact of each allele variant on s
specific disease. For this, the four-model strategy is also applicable.

Table 4
Model selection when numbers of cases and controls are switched.

MM Mm mm OR1 OR2
Example 3 Case 40 40 60 1 1.5 Recessive
Control 20 20 20

Example 3′ Case 20 20 20 1 0.67 Recessive
Control 40 40 60

Example 4 Case 10 60 90 3 3 Multiplicative
Control 10 20 10

Example 4′ Case 10 20 10 0.33 0.33 Multiplicative
Control 10 60 90

Example 5 Case 8 40 40 2.5 1 Dominant
Control 10 20 20

Example 5′ Case 10 20 20 0.4 1 Dominant
Control 8 40 40

Example 6 Case 10 40 20 2 0.5 Over-dominant
Control 10 20 20

Example 6′ Case 10 20 20 0.5 2 Over-dominant
Control 10 40 20

Example 7 Case 10 40 60 2.0 1.5 Additive
Control 10 20 20

Example 7′ Case 10 20 20 0.5 0.67 Harmonic
Control 10 40 60

MM: homozygote of major allele.
Mm: heterozygote.
mm: homozygote of minor allele.



Table 5
Four-model strategy for meta-analysis (Example 8).

Original data First step Second step Third step Fourth step

MM Mm mm (OR1ori, OR2ori) ORstep3 (95%CI) (OR1mod, OR2mod)

Re Mu Do Ov Re Mu Do Ov

Trial 1 Case 5 70 60 (2.33, 1.03) 1.12 1.24
(0.81-1.87)

2.36 1.08
Control 10 60 50

Trial 2 Case 20 50 30 (1.25, 1.20) 1.29 1.22
(0.73 − 2.06)

1.33 1.00
Control 10 20 10

Trial 3 Case 20 20 20 (1.50, 2.00) 2.50 1.71
(1.45 − 4.11)

2.00 1.00
Control 45 30 15

Pooled (1.56, 1.21) Mu 1.45
(0.90 − 2.34)
Z = 1.51

1.39
(1.08-1.81)
Z = 2.51

1.82
(1.13 − 2.95)
Z = 2.45

1.04
(0.73 − 1.48)
Z − 0.21

(1, 1.45) (1.39, 1.39) (1.82,1) (1.04, 0.96)

MM: homozygote of major allele.
Mm: heterozygote.
mm: homozygote of minor allele.
Re: recessive model.
Mu: multiplicative model.
Do: dominant model.
Ov: over-dominant model.
For OR1ori OR2ori, ORstep3, OR1mod, and OR2mod, please see main text.
For third and fourth steps, models that were not selected in the second step were also presented for the purpose of comparison.
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First, OR1ori and OR2ori are estimated from the number of subject in each original study. Then pooled
OR1ori and pooled OR2ori are calculated.

Second, the best model plotting (pooled OR1ori, pooled OR2ori) on the log–scale OR1–OR2 plane is
chosen.

Third, the ORstep3 for the selected model is estimated from the number of subjects in each original study.
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Then the pooled ORstep3 is calculated from ORstep3.
Fourth, OR1mod and OR2mod are calculated from the pooled ORstep3.
Table 5 and Fig. 1-E present Example 8.

Conclusion

The impact of allele variation on non-Mendelian diseases is investigated inmany case–co
meta-analyses. However, an acceptable strategy to select the best model has not been deve
oped a novel method to select the best method from among recessive, multiplicative, dom
dominant models preceding the calculation of the OR for each model.
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