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Numerous neurological disorders are associated with atrophy of mesiotemporal lobe

structures, including the hippocampus (HP), amygdala (AM), and entorhinal cortex (EC).

Accurate segmentation of these structures is, therefore, necessary for understanding

the disease process and patient management. Recent multiple-template segmentation

algorithms have shown excellent performance in HP segmentation. Purely surface-based

methods precisely describe structural boundary but their performance likely depends

on a large template library, as segmentation suffers when the boundaries of template

and individual MRI are not well aligned while volume-based methods are less

dependent. So far only few algorithms attempted segmentation of entire mesiotemporal

structures including the parahippocampus. We compared performance of surface- and

volume-based approaches in segmenting the threemesiotemporal structures and assess

the effects of different environments (i.e., size of templates, under pathology). We also

proposed an algorithm that combined surface- with volume-derived similarity measures

for optimal template selection. To further improve the method, we introduced two new

modules: (1) a non-linear registration that is driven by volume-based intensities and

features sampled on deformable template surfaces; (2) a shape averaging based on

regional weighting using multi-scale global-to-local icosahedron sampling. Compared to

manual segmentations, our approach, namely HybridMulti showed high accuracy in 40

healthy controls (mean Dice index for HP/AM/EC = 89.7/89.3/82.9%) and 135 patients

with temporal lobe epilepsy (88.7/89.0/82.6%). This accuracy was comparable across

two different datasets of 1.5T and 3T MRI. It resulted in the best performance among

tested multi-template methods that were either based on volume or surface data alone in

terms of accuracy and sensitivity to detect atrophy related to epilepsy. Moreover, unlike

purely surface-based multi-template segmentation, HybridMulti could maintain accurate

performance even with a 50% template library size.

Keywords: label fusion, multiatlas segmentation, surface feature modeling, medial temporal lobe (MTL), epilepsy,

temporal Lobe
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INTRODUCTION

Mesiotemporal lobe (MTL) structures, such as the hippocampus
(HP), amygdala (AM), and entorhinal cortex (EC), undergo
marked morphological changes in numerous neurological and
neuropsychiatric conditions (Wang et al., 2010; Cavedo et al.,
2011; Bernhardt et al., 2013; Shi et al., 2013; Joo et al., 2014;
Maccotta et al., 2015; Arnone et al., 2016). MRI volumetry has
been the most commonly employed technique to assess MTL
pathology in vivo (Goncharova et al., 2001; Bernasconi et al.,
2003). In temporal lobe epilepsy (TLE), the most common
surgically-amenable epilepsy in adults, manual MRI volumetry
allows defining the side of mesiotemporal atrophy in up to 70–
90% of patients (Schramm and Clusmann, 2008), and thereby
help identifying the surgical target.

Manual MTL volumetry is a labor-intensive task with
high demands on neuroanatomical expertise. Although
existing automatic segmentation algorithms produce excellent
segmentation results for HP and AM in healthy controls
(Collins and Pruessner, 2010), their performance in TLE is
challenged by the combined effects of atrophy and positional
abnormalities (Kim et al., 2012a). Only a relatively small number
of studies have attempted segmentation of the entire MTL
regions including parahippocampal gyrus (PHG) (Heckemann
et al., 2006; Keihaninejad et al., 2012). A study (Hu et al., 2014)
specifically segmented the EC, a PHG subregion considered a
core epileptogenic zone in TLE (Bernasconi et al., 2003) with
suboptimal accuracy (Dice index=73%), likely due to challenges
imposed by its complex and variable shape.

Volume-based multi-template and label fusion approaches
have been designed to account for shape complexity and
anatomical variability by selecting a subset of templates from
a large library that best describes the target structure (Collins
and Pruessner, 2010; Khan et al., 2011). More recently,
our previously proposed surface-based SurfMulti method
automatically segmented HP using vertex-wise texture and
shape sampling (Kim et al., 2012b), demonstrating improved
performances compared to purely volumetric techniques (Collins
and Pruessner, 2010). However, performance of purely surface-
based approaches likely depends on the availability of a large
library, as it may be negatively impacted when the boundaries of
the template and individual MRI are not well aligned. The label
fusion in volume-based approaches has become sophisticated
using local weighted averaging (Artaechevarria et al., 2009;
Coupé et al., 2011; Eskildsen et al., 2012; Wang et al., 2013; Awate
and Whitaker, 2014). These approaches have demonstrated the
improvement of segmentation.

MICCAI Grand Challenge on Multiatlas Labeling (Landman
and Warfield, 2012) systemically evaluated various multi-
template approaches for the segmentation of numerous brain
structures but the parahippocampal gyrus. A total of 25
algorithms that were trained by 15 atlases were tested on
20 images. The performance for the hippocampus and the
amygdala ranged 82–87 and 75–83% in mean Dice similarity
index, respectively. Among the methods that were evaluated, the
ones that displayed higher accuracy were the joint label fusion
technique that used a joint probability of selected atlases to

correct for the bias due to the inclusion of similar atlases in the
template library or the training-set (Wang et al., 2013) and the
Non-Local STAPLE algorithm that combined Staple method with
the non-local means estimator (Asman and Landman, 2013).

The current work aimed at segmenting simultaneously HP,
AM, and EC using a large template library (n = 175) which
included shape and volume variants in relation to TLE (n =

135).We tested well-established volume-based and surface-based
approaches as well as looked for a possibility of the combined
approach. The proposed algorithm, HybridMulti, combined
surface-based with volume-based similarity measures for optimal
template selection. The SurfMulti was based on the linear
alignment between the template and individual MRI. Volume-
based approaches (Asman and Landman, 2013;Wang et al., 2013)
rely also on the accuracy of the linear and non-linear registration.
To improve alignment, we introduced a non-linear registration
step that incorporates a novel hybrid cost function based on
surface and volume. Our algorithm furthermore included a
new multi-level feature weighting for shape averaging. We
compared MTL segmentation of HybridMulti to our previous
SurfMulti (Kim et al., 2012b) and two volume-based approaches
with/without local weighted averaging (Collins and Pruessner,
2010; Wang et al., 2013); evaluations also took into account the
influence of template library size on segmentation performance.

METHODS

HybridMulti includes a “template library construction” where
the algorithm learns image features using a training-set and an
“automatic segmentation” step where the algorithm segments
MTL structures for an individual test MRI (Figure 1). Training
set consists of MR images and manual labels of controls
and patients (Figure 1A). Labels are converted into surface
meshes using spherical harmonics and point distribution
model (SPHARM-PDM) that ensure shape-inherent point-wise
correspondences across subjects (Styner et al., 2004, 2006b).
Each surface is mapped onto its corresponding MRI. In the
beginning of the segmentation step, the pair of each template
image and its MTL surface are mapped on the test image.
As the test image does not have its own surface, the surface
features extracted on the test image are from the surface of
each template. By comparing the features extracted from each
template and those from the test image, Surface- with volume-
derived similarity measures for optimal template selection are
then computed to select an optimal subset na (Figure 1B-1).
Next, a non-linear registration that is driven by volume-based
intensities and features sampled on evolving template surfaces is
performed to improve alignment between each template in the
subset na and the individual MRI (Figure 1B-2). The motivation
of using this hybrid registration was to improve the boundary
fitting by weighting the features extracted using deformable
surfaces as well as to use a consistent similarity measurement
in all the steps. After choosing a smaller subset nb, templates
are then averaged using adaptive weighting combined with local
averaging, which creates the final segmentation (Figure 1B-3,4).
The test image’s features are updated during the series of the

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2018 | Volume 12 | Article 39

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Kim et al. Surface and Volume-Based Mesiotemporal Segmentation

FIGURE 1 | HybridMulti automatic hippocampal segmentation steps. Flowchart of the proposed algorithm (in A, steps 2 and 4 are illustrated only for the HP). The

segmentation procedure consists mainly of two: template library construction and automated segmentation of mesiotemporal structures. (A) Template library

construction. (B) Automatic segmentation of MTL structures.

steps including template selection, non-linear registration and
weighted averaging as the image and the surface deform. In this
manner, the similarity of the deformable surface and the target
MTL border is expected to increase and the surface gets a similar
shape to the true MTL boundary.

Template Library Construction (Figure 1A)
Prior to the subsequent procedures, all MR images in the
training-set and the test-set are spatially normalized by
registering them intoMNI ICBM 152 space.We create a template
library that aggregates surface-based regional texture models of
HP, AM, and EC as a joint representation of the three MTL
structures.

Manually delineated labels of each MTL structure [linearly
registered to MNI ICBM-152 space (Collins et al., 1994)]
are converted into surface meshes and parameterized using
the spherical harmonics and uniform icosahedron-subdivision
model (SPHARM-PDM) that guarantees shape-inherent vertex-
wise correspondence across subjects (Styner et al., 2006a). MTL
surfaces are treated as one concatenated surface, SMTL = [SHP,
SAM, SEC].

Each surface SMTL is mapped to its corresponding MRI. At a
given surface vertex v, we define three spherical neighborhoods
of 3, 5, and 7mm radius. These spheres are subdivided into
an inner region (IR) and outer region (OR) with respect to
the surface boundary, where we compute the following texture
features (Kim et al., 2012b): i) Normalized intensity (NI): the ratio
between mean intensity and intensity standard deviation for each
of IR/OR to capture regional tissue homogeneity. We defined
NIIR, i = µIR, i / SDIR, i and NIOR, i = µOR, j / SDOR, i.; ii) Relative

intensity (RI): the ratio of mean intensity between IR and OR to
assess the contrast between IR and OR voxels. RI was defined
as RI i = 2× (µOR, i - µIR i) / (µOR, i + µIR, i); iii) Intensity
gradient (IG): the 1st derivative of intensity along x-, y-, and z-
directions to capture edge information was summarized into the

magnitude as IG=
√

g2x + g2y + g2z =
√

∂I
∂x +

∂I
∂y +

∂I
∂z . [x y z] is a

voxel location and I is an image.
These texture features comprises a set of “true” feature vectors

(3 normalized intensity + 3 relatively intensity + 3 gradients
= 9 features), Fv ,j extracted at v-th vertex on the jth (1 . . . j
. . . N) surface template. Previously we demonstrated that each
feature almost equally contributed to the segmentation accuracy
and observed the optimal result using all the features. Notably, we
did not use the shape features proposed in our previous surface-
based framework (Kim et al., 2012b), which was used to constrain
the shape deformation in the Automatic segmentation step. The
deformation in the current study is instead governed directly by
a volume-based non-linear registration (see section Boundary-
Weighted Non-linear Registration of Template Subset to Test
MRI).

Automatic Segmentation (Figure 1B)
Initial Template Subset Selection
From the template library, we first select a subset of candidates
that are most similar to the test image. To that end, we
compute the hybrid similarityOtotal that combined surface-based
(Osurface) and volume-based (Ovolume) similarity term between
each template j and the test MRI i using:

Ototal,ij = Ovolume,ij + wsurfaceOsurface,ij (1)
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wsurface is a weighting constant. The surface-based similarity
Osurface is defined as:

Osurface,ij =−
∑

v

∥

∥

∥
Fv,j−F̂v,ij

∥

∥

∥

√

1
N

∑N
k=1

(

Fv,k−Fv
)2
, Fv=

1

N

∑N

k=1
Fv,k(2)

Osurface is calculated across all surface vertices v. It represents
a normalized similarity between true features extracted from
the jth (1 . . . j . . . N) template (Fv ,j) and estimated features

extracted from the test MRI i (F̂v,i). Ovolume can be any similarity
function including the cross-correlation or the normalized
mutual information (NMI) that quantifies statistical intensity
distribution dependency of two images A and B (Studholme
et al., 1999). The computation of cross-correlation is generally
faster while the NMI is more robust in similarity of multi-modal
images compared to each other. For computational efficiency, we
compute Ovolume within a mask defined by dilating the current
template label three times. The number of selected templates
(na) was empirically determined to maximize Ototal (see section
Parameter Selection).

Boundary-Weighted Non-linear Registration of

Template Subset to Test MRI
Each template MRI is non-linearly registered to the test MRI
to increase shape similarity. To estimate the deformation field
from a template T to the test MRI I, a “conventional” non-linear
registration iteratively matches intensity features by maximizing
a volume-based similarity function Ovol, reg . Accordingly, the
deformation field d is estimated as:

Ed = argmax
Ed

Ovo, reg(T+ Ed, I)+ Osmooth (3)

Osmooth is a smoothness term to constrain the estimated
deformation. We employed a type of freeform deformation
models defined in Collins et al. (1995). To improve the
registration accuracy, we increase the weight of voxels on
and nearby the target boundary by incorporating a similarity
measure derived from the template surface evolving during the
registration with the original volume similarity. Let SMTL, T be
the true template surface on the original MRI and SMTL, S an
estimated template mapped onto the test MRI. We define SMTL,

S by deforming SMTL, T using the deformation field estimated at
the current iteration. A surface-based feature similarity measure
between SMTL, T and SMTL, S is defined as:

Osurf , reg = −

∑

v
(Fv,T − Fv,T)(Fv, Ŝ − Fv, Ŝ)

√

∑

v
(Fv,T − Fv,T)

2
√

∑

v
(Fv, Ŝ − Fv, Ŝ)

2
,

Fv = (µv,OR − µv, IR)/(µv,OR + µv, IR) (4)

where v is a vertex on surfaces S; Fv is the relative intensity
defined in 2.1. Therefore, Osurf , reg is a correlation coefficient
between feature Fv,T extracted on SMTL, T and feature Fv, Ŝ

extracted on SMTL, Ŝ. To estimate the deformation field, we
redefine the Equation (3) as:

Ed = argmax
Ed

Ohybrid, reg(T+ Ed, I)+ Osmooth,

Ohybrid, reg = Ovol, reg + wsurf , regOsurf , reg (5)

Ovol, reg is the correlation coefficient over a volume of interest
(here, a geometric union of all MTL template labels in the library,
subsequently dilated 5 times for more extensive spatial coverage)
as in Collins and Pruessner (2010). A larger weight wsurf , reg

moves SMTL, S more rapidly to areas presenting with feature
characteristics similar to those on the surface of the template
image. Finally, Equation (5) is optimized using a derivative-
free 3D Nelder-Mead Simplex approach (Lagarias et al., 1998)
as also known as the simplex method, is a commonly applied
approach. This method is applied to non-linear optimization
problems for which derivatives may not be known and is robust
against the local minima problem. This function has been used as
the standard optimization method in the non-linear registration
algorithm (Collins et al., 1995) we adopted in the current paper.

Subset Restriction and Global Weighed Averaging
The non-linear registration in the previous section (Boundary-
weighted Non-linear Registration of Template Subset to Test
MRI) is applied to decrease shape variability and to increase
similarity between the template-subset and test image. From the
initially selected na template-subset (na < N), we choose an even
smaller subset of the nb most similar templates (nb < na < N)
based on Equation (1), increasing computational efficiency in
subsequent steps. We determine nb empirically, which will be
evaluated in the section Parameter Optimization.

Optimal global weights for these nb templates are calculated
using the similarity function Equation (2) as in Kim et al. (2012b).
Let wS and wF be nb× 1 weight vectors for optimal surfaces
and features. We then define S as the average surface of the nb
template-subset as:

Sglobal=
∑nb

j=1
wF,jFv,j; wF=

[

wF,1,wF,2, . . . ,
]

;
∑

wF,j=1(6)

Analogously, we define the weighted mean and SD of features at
a given vertex vi by:

Fv =

nb
∑

j=1

wF,j Fv,j; wF =
[

wF,1, wF,2, . . . ,wF,nb

]

;
∑

wF,j = 1;(7)

σF,v =

√

√

√

√

nb
∑

j=1

wF,j
(

Fv,j − Fv
)2

(8)

Similarity from Equation (2) can be formulated for the template-
subset nb:

Osubset = −
∑

v

∥

∥

∥
Fv − F̂v, s

∥

∥

∥

σF,v
(9)
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F̂v, s is the estimated feature-set computed on the averaged
surface S mapped on the test image. In the above formulas,
weights are determined by maximizing the similarity between the
nb template-subset and test image.

w = [ws wF] = argw maxOsubset (10)

We initialized all components of wS and wF to 1/n. The cost
function Osubset is optimized using the multivariate derivative-
free Nelder-Mead approach (Lagarias et al., 1998).

Multi-Level Local Weighted Averaging
To incorporate a local weighting to Equations (5–9), the resulting
surface S in Equation (10) is resampled through icosahedron-
subdivision (Styner et al., 2006b), first at the coarsest level l = l0.
We determine weights at each sampling vertex, and interpolate
these weights to vertices at the next finer level l1. Let wS l be
a nb � m weight matrix: m is the number of vertices at level l.
We compute w’S l, (a nb � V vector) by interpolating wS, l to
all vertices v [1, 2, ...,V] of the original surface [[Inline Image]]
(V > m). For interpolation, we use the Fast Spherical Linear
Interpolation (Shoemake, 1985). We define the locally weighted
average surface as:

−
S local,l =

nb
∑

j= 1

v
∑

v= 1

w
′

sl,jv,
−
S jv;

nb
∑

j= 1

v
∑

v= 1

w
′

sl,jv = V (11)

The similarity function at the level l was defined as:

Osubset,l =−
∑

i

∥

∥

∥
Fvi−F̂vi ,Slocal

∥

∥

∥

σF
; wS l = argmaxw Osubset (12)

To achieve the final segmentation of all three MTL structures, we
optimized wS l using the Nelder-Mead method while increasing
subdivision level l=[l | l0, l1,..., lmax]. The algorithm stops
when Equation (11) stops increasing or l reaches preset lmax to
prevent from an extensive computation. The proposed multi-
level approach using different subdivisions is mainly for coarse-
to-fine spatial fitting and the use of this strategy avoids the
introduction of a constraint term preventing from local minima
while the surface shape gets finer. In the current study, we set
the coarsest level (l0 = 2) where 42 equally distributed vertices
are sampled; the finest level lmax is determined empirically (See
section MRI Acquisition).

EXPERIMENTS AND RESULTS

Experiments
Subjects
Our training-set included 40 healthy controls (18 men; mean ±

SD age = 33 ± 12 years) and 135 drug-resistant TLE patients
(61 men; mean ± SD age = 37 ± 11 years). TLE diagnosis and
lateralization of the side of the seizure focus into left TLE (n =

65) and right TLE (n= 70) were determined by a comprehensive
evaluation including video-EEG recordings and MRI. The Ethics
Committee of the Montreal Neurological Institute and Hospital
approved the study and written informed consent was obtained
from all participants.

MRI Acquisition
MR images were acquired on a 1.5 Tesla Phillips Gyroscan
using a T1-weighted FFE sequence (TR = 18ms; TE = 10ms;
NEX = 1; flip angle = 30◦; matrix size = 256 � 256; FOV
= 256mm; slice thickness = 1mm), yielding 1 mm-isotropic
voxels. Images underwent intensity non-uniformity correction
(Sled et al., 1998). Intensities were normalized and images were
linearly registered to the MNI ICBM-152 template (Collins et al.,
1994). MTL structures were manually segmented by an expert
using the protocol described in Bernasconi et al. (2003). Based
on z-score normalization with respect to volumes in controls, 81
(60%) patients showed hippocampal atrophy (i.e., a z-score below
−2) ipsilateral to the seizure focus.

We also acquired 3T T1-weighted images on Siemens Trio
Tim scanner using a 32-channel phased-array head coil. T1-
weighted images were acquired using 3DMPRAGE with 1mm
isotropic voxels (TR = 3,000ms, TE = 4.32ms, TI = 1,500ms,
flip angle = 7◦, matrix size = 336×384, FOV = 201 × 229mm).
This data was used to evaluate whether the algorithm consistently
selected the same or similar parameter values for different
dataset. The 3T dataset included 39 healthy controls and 84 drug-
resistant TLE patients who were further classified into left TLE (n
= 38) and right TLE (n= 46).

Evaluation Metrics
To quantify the accuracy of automated segmentations, we
computed the Dice similarity index:D = 2xv(M ∩ A)/(v(M) +
v(A)), where M/A are the voxels comprising manual/automated
labels; “M n A” are voxels in the intersection of M and A; v (·) is
the volume operator.

Parameter Optimization
Based on maximal Dice overlap index between automated and
manual labels, the following parameters were chosen empirically:
weight of surface-based similarity wsurface to select the optimal
subset as in Equation (1); weight of surface-based similaritywsurf ,

reg used in non-linear registration; size of initial template-subset
na; size of final template-subset nb; and finest subdivision lmax

in local weighting. We validated HybridMulti using a three-fold
cross-validation where we subdivided our data into 3 sets with
an almost equal sized sample (n = 58,58,59) and merged two
sets among them to create a training-set and used the remaining
set as a test-set while we balanced the proportion of controls
(∼25%) and patients (∼75%) per set. The optimal parameters
that resulted in most accurate segmentation were selected for
each training-set. We segmented the test-set based on their
corresponding training-set and the parameters. We repeated this
process three times while all the three sets were tested.

Performance at Each Segmentation Stage
Segmentation accuracy was evaluated at the following stages: i)
initial na template-subset selection; ii) non-linear registration; iii)
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FIGURE 2 | Parameter optimization. All parameters were selected resulting in the best accuracy. The accuracy was measured using mean Dice index based on the

three mesiotemporal structures and on three different test-sets (black, red, green) using a three-fold cross validation.

final nb template-subset selection; iv) global and local weighted
averaging. We compared accuracy at each stage to that of the
previous stage using paired t-tests.

Comparison With State-of-the-Art Multi-Template

Approaches
We compared Dice indices between HybridMulti, and SurfMulti
(Kim et al., 2012b), or a volume-based multitemplate approach
(VolMulti) based on non-weighted averaging (Collins and
Pruessner, 2010) or a volume-based approach (JointFusion)
based on local-weighted averaging (Wang et al., 2013) in controls
and each patient group using Student’s t-tests. The parameters
for each algorithm were selected empirically (VolMulti: size of
subset = 15; JointFusion: search area rs = 3 x 3 x 3, patch size rp
= 3 x 3 x 3, β = 2) which resulted in the best accuracy using a
leave-one-out approach.

Detection of Mesiotemporal Atrophy Related to the

Epileptic Focus
We assessed the ability of each automatic algorithm to detect
each structure’s atrophy in TLE groups relative to controls by
computing Cohen’s d ([mean volume controls—mean volume
TLE] / pooled SD) that measures the effect size of a between-
group difference, and calculated the significance of the observed
effect using t-tests.

Impact of Template Library Size on Segmentation

Accuracy
Keeping proportions of controls and patients constant, we
randomly selected 40 subjects as a test-set. We then created the
template library by selecting randomly from the rest of data, with
various sizes: n = 88 (1/2), n = 58 (1/3), n = 44 (1/4), and n =

35 (1/5) of its original size. We repeated this process 20 times
to avoid a possible bias. We evaluated automated segmentation
accuracy at these smaller template library sizes.

Significances of all statistical tests were adjusted for multiple
comparisons using Bonferroni-correction.

Results
Parameter Selection
The parameters resulting in the best segmentation accuracy were
selected at very similar values between the 3 test-sets when using a
three-fold cross validation. The proposed HybridMulti achieved
maximal accuracy with the following parameters: wsurface = 3.1,

wsurf,reg = 1.1, na = 17, and nb = 8 (average between the 3
test-sets; Figure 2). Use of the cross-correlation or NMI as the
similarity function did not make a difference in segmentation
accuracy. We thus used the cross-correlation as it was faster
to compute. We also found that the local weighting using the
finest subdivision lmax larger than 5 (producing 252 sampling
vertices) maintained the segmentation accuracy without a further
improvement. Thus, we chose lmax = 5 as a larger lmax increased
the computational time. JointFusion yielded best results with
the following parameters: beta = 0.5; rp = 3; rs = 3. SurfMulti
used n = 10 for the optimal subset whereas VolMulti used
n = 14. All the algorithms were tested on a same computing
environment (Linux workstation, 1 CPU, 2.30 Ghz, 8 GB RAM).
Average computation times per individual hemisphere were
20 or 25min for HybridMulti (Ovolume = cross-correlation
or NMI, respectively; step-wise: initial subset selection: 1min;
non-linear registration: 10 [cross-correlation] or 15 [NMI]
min; smaller subset selection: 0.5min; global weighting: 3min;
Local weighting: 5.5min); 15min VolMulti; 15min JointFusion;
13min SurfMulti.

When performing the same evaluation on 3T dataset, we
found the parameters yielding the maximal accuracy were
selected at very similar values: wsurface = 3.2, wsurf ,reg = 1.2, na
= 17, nb = 8, and lmax = 6.

Segmentation Accuracy in Different Steps
Accuracy of HybridMulti was improved gradually from the initial
selection step and the highest accuracy was achieved at the final
local weighted averaging (Figure 3).

Highest improvement was found at the boundary-weighted
non-linear registration step for all structures (mean Dice
= +4.8%, p < 0.0001). Moreover, the proposed non-linear
registration that included a surface-term outperformed the
original volume-based registration (Collins et al., 1995) (+2.5%, p
< 0.001). Inclusion of local weighted averaging also significantly
improved segmentation of EC (0.7%) and (HP: 0.3%) compared
to the global weighting (p < 0.05).

Performance Comparison Between Algorithms
For all MTL structures, HybridMulti consistently outperformed
SurfMulti and VolMulti in patients and controls (p < 0.001,
Table 1), which was equally significant for 1.5T and 3T data
(Table 2). HybridMulti also showed a superior accuracy in
TLE patients compared to JointFusion as higher Dice indices
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FIGURE 3 | Performance of each processing stage in HybridMulti. The

Accuracy is evaluated using Dice index.

TABLE 1 | Segmentation accuracy using a three-fold cross validation (% mean ±

SD of Dice similarity index).

VolMulti SurfMulti JointFusion HybridMulti

CONTROLS

HP 84.4 ± 4.1* 86.8 ± 2.7* 89.5 ± 1.5 89.7 ± 2.1

AM 83.8 ± 4.3* 86.3 ± 3.6* 88.4 ± 2.8 89.3 ± 2.5

EC 75.8 ± 6.8* 79.3 ± 4.6* 78.4 ± 4.3* 82.9 ± 3.7

IPSILATERAL

HP 80.3 ± 5.4* 86.1 ± 3.4* 87.3 ± 3.8* 88.7 ± 2.5

AM 83.2 ± 4.2* 85.2 ± 3.9* 88.0 ± 2.9 89.0 ± 2.6

EC 75.2 ± 8.1* 77.7 ± 5.2* 78.0 ± 6.5* 82.6 ± 3.8

CONTRALATERAL

HP 84.0 ± 4.4* 86.9 ± 3.1* 88.8 ± 3.0 89.4 ± 2.3

AM 83.8 ± 4.2* 85.8 ± 3.7* 88.3 ± 2.8* 89.2 ± 2.7

EC 76.2 ± 7.4* 78.8 ± 5.4* 78.6 ± 4.8* 82.7 ± 4.1

Ipsilateral/Contralateral refers to the epileptogenic hemisphere. Decreased performance

relative to HybridMulti - *: significant after Bonfferoni correction (p < 0.05/36 = 0.0013).

were found in HP and EC ipsilaterally and in AM and EC
contralaterally (p < 0.05). HybridMulti also segmented EC in
healthy controls more accurately than JointFusion (p < 0.001).
This pattern of difference between HybridMulti and JointFusion
was similar in 3T data (Table 2).

For the 3T data, even using a smaller dataset, we found that
all the methods resulted in accuracy comparable to the larger
1.5T dataset, with generally decreased SDs. A separate test that
segmented 3T dataset using the 1.5T training-set showed the
result where we found overall a slight drop down in the accuracy
and a larger SD (Controls: HP = 89.5 ± 2.4; AM = 89.0 ±

2.9; EC = 82.8 ± 4.4; TLE-ipsilateral: HP = 88.5 ± 2.8; AM
= 89.1 ± 3.2; EC = 82.5 ± 4.9; TLE-contralateral: HP = 89.2
± 2.6; AM = 89.1 ± 2.8; EC = 82.5 ± 5.2) compared to when
using a smaller-set of the same field strength training data. This

TABLE 2 | Segmentation accuracy for a smaller set of 3T data (controls: n = 39;

TLE: n = 84) using a three-fold cross validation (% mean ± SD of Dice similarity

index).

VolMulti SurfMulti JointFusion HybridMulti

CONTROLS

HP 85.6 ± 3.6* 87.3 ± 2.5* 89.7 ± 1.4 89.8 ± 1.8

AM 84.3 ± 3.9* 86.4 ± 3.1* 88.5 ± 2.4 89.4 ± 2.3

EC 77.3 ± 6.4* 80.2 ± 4.6* 79.1 ± 4.1* 83.1 ± 3.3

IPSILATERAL

HP 82.3 ± 5.4* 86.1 ± 2.9* 87.0 ± 3.6* 88.4 ± 2.3

AM 83.2 ± 4.2* 84.9 ± 3.8* 87.6 ± 2.7* 88.9 ± 2.4

EC 76.4 ± 8.2* 78.1 ± 4.9* 78.8 ± 6.4* 82.6 ± 3.5

CONTRALATERAL

HP 84.2 ± 4.3* 87.7 ± 2.7* 88.8 ± 3.0 89.5 ± 1.9

AM 84.5 ± 4.2* 85.9 ± 3.4* 88.3 ± 2.8* 89.3 ± 2.3

EC 77.2 ± 7.1* 78.7 ± 5.1* 79.7 ± 4.7* 82.4 ± 4.2

Ipsilateral/Contralateral refers to the epileptogenic hemisphere. Decreased performance

relative to HybridMulti - *: significant after Bonfferoni correction (p < 0.05/36 = 0.0013).

suggests that using a lower field training-set to segment a higher
field strength data results in slightly decreased accuracy due to a
different tissue-contrast.

Examples for 1.5T are shown in Figure 4 and those for 3T in
Supplementary Figure 1.

Ability of Automated Methods to Detect Atrophy

Related to the Epileptic Focus
Group-wise comparisons identified hippocampal atrophy
ipsilateral to the seizure focus in TLE patients irrespective of the
method, i.e., manual or automated (p < 0.05, Table 3). The effect
sizes of atrophy detected using algorithms were all large (Cohen’s
d > 0.8). HybridMulti and JointFusion, nevertheless, detected
an effect size of atrophy closest to manual volumetry (Cohen’s d:
manual= 1.67; HybridMulti= 1.57; JointFusion= 1.56).

Manual and HybridMulti segmentation also detected a large
effect size of ipsilateral EC atrophy, which was significant
compared to controls (t > 3.2, p < 0.05).

Impact of Template Library Size on Segmentation

Accuracy
Reducing the template library size from N (n = 175) to
N/5 (n = 35) showed that the accuracy of EC segmentation
declined fastest compared to HP and AM, consistently in all
algorithms tested. Size of the library had a lower influence
on segmentation accuracy of HybridMulti, and volume-
based approaches (JointFusion, VolMulti) than SurfMulti.
Indeed linear model analysis of an interaction term between
“segmentation method” and “size of the library” revealed a faster
decline in Dice index for SurfMulti than for the other three
methods (p < 0.001). HybridMulti and JointFusion, on the
other hand, resulted in a similar accuracy when reducing the
template library size from N to N/4 across all MTL structures
(mean Dice decrease < 1%, p < 0.1, Figure 5). In HP and EC,
reducing the library size fromN/4 to N/5 influenced the accuracy
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FIGURE 4 | Segmentation of mesiotemporal lobe structures in a patient with atrophy. Shown are overlaps between two best algorithms (HybridMulti,

JointFusion—green) and manual label (red). (A) MRI (B) Segmentations overlaid on MRI and in 3D rendering.

TABLE 3 | Group differences between patients and controls.

Manual HybridMulti JointFusion SurfMulti Volmulti

HP

Ipsilateral −2.29 ± 1.85 (1.67) −2.09 ± 1.97 (1.58) −2.13 ± 2.37 (1.56) −1.69 ± 1.56 (1.39) −1.32 ± 1.62 (1.32)

Contralateral −0.51 ± 1.70 (0.33) −0.37 ± 1.53 (0.24) −0.28 ± 1.78

(0.19)

−0.08 ± 1.34 (0.05) −0.05 ± 1.45 (0.03)

AM

Ipsilateral −0.10 ± 1.45 (0.10) −0.11 ± 1.41 (0.11) 0.39 ± 1.43

(−0.18)

0.05 ± 1.26

(−0.01)

0.35 ± 1.84

(−0.13)

Contralateral 0.20 ± 1.32

(−0.15)

0.27 ± 1.25

(−0.16)

0.45 ± 1.38

(−0.22)

0.15 ± 1.11

(−0.08)

−0.05 ± 1.71

(−0.02)

EC

Ipsilateral −1.49 ± 1.19 (1.11) −0.98 ± 0.92 (0.82) −0.52 ± 0.94 (0.45) −0.65 ± 1.22 (0.46) −0.35 ± 2.06 (0.18)

Contralateral −0.69 ± 1.41 (0.52) −0.37 ± 0.91 (0.29) −0.18 ± 1.02

(0.16)

−0.15 ± 1.62

(0.09)

−0.05 ± 1.91 (0.03)

Mesiotemporal volume in mean z-scores ± SD and effect sizes for atrophy shown in brackets (Cohen’s d index; 0.2 indicates a small, 0.5 medium, and >0.8 large effect); group-wise

significances in volumes (bold) are adjusted for multiple comparisons using Bonferroni correction.

more significantly for HybridMulti than JointFusion (p < 0.01).
However, the accuracy of HybridMulti was higher than that of
JointFusion in all structures (mean Dice difference—HP: 0.3%;
AM: 0.1%; E: 1%).

DISCUSSION AND CONCLUSION

We propose HybridMulti, an algorithm that combines surface-
and volume-based similarity to automatically segment key
regions in the mesiotemporal lobe (i.e., HP, AM, and EC).
In controls and TLE patients alike, segmentation accuracy
was excellent, with Dice indices above 88% for HP and
AM and above 82% for EC. In particular, the proposed

method outperformed previous multi-template approaches in
pathological MTL structures, as its overlap to manual delineation
and its sensitivity to detect atrophy were superior. Reducing
template library showed that our method is reliable in even case
of a small size of training-set.

Our algorithm was compared to three recently proposed
multi-template approaches: volume-based approaches—
JointFusion (Wang et al., 2013), VolMulti (Collins and
Pruessner, 2010), and a purely surface-based framework—
SurfMulti (Kim et al., 2012b). Improved segmentation accuracy
of HybridMulti relative to these algorithms likely results from
modeling both volume- and surface-derived features to select
the optimal template subset and to improve the alignment
between these templates and the test MRI prior to surface-shape
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FIGURE 5 | Impact of template library size on automated segmentations. Reducing the template library size from N (n = 175) to N/5 (n = 35) showed that the

accuracy of EC segmentation declined fastest compared to HP and AM, consistently in all algorithms tested. Size of the library had a lower influence on segmentation

accuracy of HybridMulti, and volume-based approaches (JointFusion, VolMulti) than SurfMulti.

averaging. Noticeably, our approach did not only sequentially
apply a volumetric non-linear registration prior to the surface-
based segmentation; instead, surface features were integrated
with volume data-term into a unified cost function governing
the non-linear registration, an approach yielding additional
increases in accuracy.

In addition to absolute gain in segmentation accuracy,
the proposed HybridMulti algorithm demonstrated robust
segmentation for our two separate data-sets when the size of the
template library was reduced, an important challenge for purely
surface-based approaches as shown in our analysis. Indeed,
volume-based approaches were inclined to maintain its original
accuracy at the largest template library when reducing the size of
the library. At the smallest size that was tested in our study (n
= 35), the accuracy of JointFusion and HybridMulti was almost
equal in all MTL structures. This informs us to an interesting
aspect of feature modeling where local features modeled nearby
the structure’s boundary may be individually very specific and
become powerful with construction of a large training-set. On
the other hand, features collected within a “relatively large”
volume of interest may include redundant information in a large
database but may provide supplementary characteristics of the
target structure in case of using a limited size of template library.

In our hybrid approach, tuning of the weight between surface-
and volume-features according to the size of a given template
library can possibly improve the segmentation accuracy.

Our EC segmentation in the current work (>82%)
outperformed a previous study that reported a Dice index
of 73% (Hu et al., 2014), and another study that segmented the
whole parahippocampal gyrus with a similar degree of accuracy
(Heckemann et al., 2006). The performance of HybridMulti
was also superior to JointFusion and SurfMulti in the current
evaluation. Nevertheless, our EC segmentation accuracy was
still lower than that of HP and AM, which approached 90%. It
is likely that intensity-based segmentation is challenged by the
highly variable morphology of the collateral sulcus that defines
the border of EC. Also, the posterior end of EC is defined with an
external anatomical landmark. Use of a smaller size of template
library also showed a faster decline of accuracy in EC than
other MTL structures. In the literature (Bernasconi et al., 2001;
Pruessner et al., 2002), multiple landmarks were borrowed to
address for lack of intensity contrast when defining the border
of EC. For example, the medial and lateral boundaries, which
meet the same GM structures such as the subiculum of the
hippocampus and the collateral sulcus, cannot be defined by
the tissue contrast but by landmarks such as a location with a
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high angular shape. A human expert may intuitively identify
such landmarks whereas the features used in our algorithm
do not necessarily take into account them. The suboptimal
modeling of these landmarks in our approach is likely the
source of inaccuracy in segmentation. This faster decline in
accuracy was consistently observed in all algorithms tested.
Future works might, therefore, benefit from the incorporation
of sulco-gyral shape patterns such as sulcal depth, curvature or
spatial relationship with surrounding structures other than HP
and AM.

A new multi-scale weighting strategy improved EC and
HP segmentation. In particular, the improvement of EC
segmentation was higher. This was in line with a previous
finding that such a technique mainly improve the segmentation
of structures presenting highly variable morphology
(Artaechevarria et al., 2009).

The proposed algorithm and JointFusion detected largest
effect sizes of atrophy in HP ipsilateral to the epileptic focus
and resulted in the most sensitivity to detect hippocampal
atrophy among algorithms. Only HybridMulti identified
EC atrophy among algorithm even if the accuracy yet is
to reach human expert’s exquisiteness. Our results suggest
that the proposed approach may have the potential for
clinical utility in the presurgical evaluation of temporal lobe
epilepsy.

Varying the parameters for HybridMulti (i.e., the
weights for surface-term in the similarity measure and
the registration, and the number of templates in the
subset) yielded different segmentation accuracy. We
determined these parameters in empirical fashion for optimal
segmentation performance. We observed that almost same
parameter setting were determined for achievement of the
best results on both 1.5T and 3T. In a further analysis,
we found that these parameters did not differ between
segmentation of the three MTL structures. This suggests
that the parameters optimized in our study, albeit done
empirically, may be generally applicable to segmentation of
other datasets or other brain structures. A more thorough
analysis is demanded to establish the generalization of the
parameters.

For 3T dataset, all the methods resulted in accuracy
comparable to the larger 1.5T dataset, with generally
decreased SDs. This likely explains that reliable
segmentation can be achieved on 3T images where the
higher tissue contrast and clearer structural boundaries
seen.

As the initial selection was not optimal and we did not
like to miss templates which can be potentially useful, we
defined a relatively lager subset whereas we set a smaller sample
in the subsequent selection with a deformable registration.
Our empirical selection of parameters indeed found better
segmentation performance was obtained using a larger subset
in the initial selection (best performance at n = 17) and
a smaller set in the latter selection (n = 8). The vertex-
wise correspondence between individual surface templates
defined through SPHARM-PDM ensures the same topology
across templates. When we averaged the template shapes, we

performed a vertex-wise averaging method that averages the
location of a given vertex of the correspondence between
templates. The integrity of the topology was not corrupted
after this averaging as the same observation is found in a
similar process of shape averaging such as in construction of
cortical surface template (Styner et al., 2004; Lyttelton et al.,
2007).

To determine the number of templates with the best
performance, it would be ideal if we observed a plateau
occurring after the continuous hiking in Dice index value from
the minimum number of templates to test with (Figure 5).
However, no plateau with an on-going climbing pattern was
found in EC, which make difficult to determine when the best
performance takes place. The best performance might have
been identified if we tested with more templates. This is our
limitation as collecting a sufficiently large dataset is often a long-
term procedure in the inpatient epilepsy monitoring unit. Thus,
it was unrealistic for us to include more data in the study.
Alternatively, the very slow increase in Dice index observed
at the test with 90+ templates likely explains the increase of
the templates would not gain a very significant improvement
of the current method. There have been studies dealing
with the size of the template library using statistical models
(Awate et al., 2012; Awate and Whitaker, 2014).

We did not explore the possible selection of too many similar
templates in the subset. A previous study (Wang et al., 2013)
investigated this using a joint label fusion technique that address
for the covariance of the image appearance between any pair of
two templates in the training-set. Generalization of the proposed
method across different subcortical structures (e.g., ventricles,
striatum, or thalamic nucleus) would be also interesting to enable
their morphometry analysis, in particular with regard to size,
shape, and variability. We are also working on to extend our
current framework to segmentation of the subregions of MTL
structures such as hippocampal subfields. The deep learning
algorithm using convolutional neural networks (CNN) has been
more widely applied in recent works for the medical image
segmentation (Kamnitsas et al., 2017; Bao and Chung, 2018; Dolz
et al., 2018). Augmentation of our relatively large set of our
MRI data and manual annotations could meet the requirement
for the training of the CNNs, which can be a proper future
extension of our work. We are currently taking steps to make
our tools available, including obtaining proper institutional ethics
approval, with the plan to ultimately upload the software and
training set to a public domain, such as the Neuroimaging
Informatics Tools and Resources Clearinghouse (http://www.
nitrc.org/).
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