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Abstract 
The clinical spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
the strain of coronavirus that caused the COVID-19 pandemic, is broad, extending from 
asymptomatic infection to severe immunopulmonary reactions that, if not categorized 
properly, may be life-threatening. Researchers rate COVID-19 patients on a scale from 1 
to 8 according to the severity level of COVID-19, 1 being healthy and 8 being extremely 
sick, based on a multitude of factors including number of clinic visits, days since the first 
sign of symptoms, and more. However, there are two issues with the current state of 
severity level designation. Firstly, there exists variation among researchers in 
determining these patient scores, which may lead to improper treatment. Secondly, 
researchers use a variety of metrics to determine patient severity level, including metrics 
involving plasma collection that require invasive procedures. This project aims to remedy 
both issues by introducing a machine learning framework that unifies severity level 
designations based on noninvasive saliva biomarkers. Our results show that we can 
successfully use machine learning on salivaomics data to predict the severity level of 
COVID-19 patients, indicating the presence of viral load using saliva biomarkers. 

Introduction 
Saliva is a non-invasively available biofluid that contains many types of readily detectable 
biomolecules, including antibodies, and other classes of biomarkers that have clinical 
diagnostic properties.  
     Furthermore, existing scientific studies have shown that salivary diagnostics for 
COVID-19 are effective for screening and managing COVID-19. For patients, self-
collection of non-invasive biofluids has proved to be more convenient and user-friendly. 
As researchers, we would like to be able to use the salivaomics data provided by the 
biomarkers in patient saliva to make meaningful inferences. A machine learning model 
that analyzes biomarker data in saliva to predict patient severity would address both. 

COVID-19 
The COVID-19 pandemic, since March 2020, has brought to the forefront the urgency and 
necessity of testing for SARS-CoV-2 infection (mRNA), viral load as a measure of infectivity 
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(antigen), and immunity (antibodies). At this time there are 200+ EUA-approved 
molecular tests for SARS-CoV-2 RNA, 14 EUA-approved SARS-CoV-2 antigen/infectivity 
tests, and 67 EUA-approved serology tests. All these tests are single-plexed, conveying a 
single dimension of COVID-19 in an individual. While the pressing need is to know if there 
is infection by the pathogen (gRNA) and the infectivity (antigen), the start of population 
vaccination quickly elevated the need to assess host immunity development (antibodies). 
The ability to assess infection/re-infection, infectivity, and immunity to SARS-CoV-2 in any 
individual is of increasing clinical relevance as breakthrough infections and interest in 
resuming normal life make knowing the COVID-19 status of any individual a matter of 
pressing importance. 

EFIRM 
Electric fieldȂinduced release and measurement (EFIRM) is an electrochemical biosensor 
platform that has been extensively peer-reviewed and has demonstrated clinical utility 
across a variety of disease systems, including oral cancer, early-stage lung cancer, and 
autoimmune disorders [1Ȃ3]. Salient features of the platform include its ability to 
sensitively and robustly detect a wide class of omics targets/biomarkers (RNA, 
proteomic, and genomic) in saliva. EFIRM is a direct-detection plate-based assay that 
utilizes electrochemistry to capture target molecules directly from a minimal volume of 
biofluid (50 µL), and has been shown to be a robust platform for the direct detection of 
biomarkers in basic science and translational research on genomic, proteomic, and small 
molecular targets [4Ȃ6]. EFIRM is optimized for the direct detection of salivary omics 
targets without sample processing, with a performance that exceeds current EUA assays 
using PCR and ELISA/Luminex as reference technologies. The COVID-19 pandemic 
catalyzed the need for saliva-based detection of SARS-CoV-2 and has driven our recent 
advancement of EFIRM technology for the concurrent detection in saliva of SARS-CoV-2 
mRNA (infection), antigen (infectivity), and antibodies (immunity) with a high level of 
performance. This performance level can immediately benefit researchers and patients in 
the midst of the COVID-19 pandemic. 

Machine Learning 
Machine learning (ML) is a branch of artificial intelligence (AI) where computer systems 
are able to automatically learn and improve from patterns and observations in data 
������������������������������������ȏͳʹȐǤ���������������������������������������ǯ��
ability to learn without assistance and adjust their actions accordingly. In general, there 
are three types of learning that ML algorithms are capable of: supervised, unsupervised, 
and reinforced. Supervised learning requires that the data the model is trained on be 
labeled, such that the model will learn to approximate the relationship between samples 
and their labels. Unsupervised learning is performed on unlabeled data, in which the 
model can independently identify patterns, clusters, or other organization without 
previous classification. Reinforcement learning is a behavior-based learning: an 
autonomous agent learns about its interactive environment through a programmed 
rewards system. We use supervised learning in this work because our data is well-
labeled, with each patient classified in regard to an existing severity level. 

Within ML, deep learning (DL) is a specific family of models that rely on artificial 
neural networks, an algorithmic system of artificial neurons that processes information 
and learns complex patterns in data and is broadly inspired by biological systems in the 
human brain. DL has largely been responsible for the recent advancements in artificial 
intelligence in computer vision, natural language processing, and reinforcement learning. 
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In medicine, DL continues to be crucial in a variety of research and clinical applications, 
including medical imaging diagnosis and genomic data analysis. For example, brain 
tumor segmentation on patient MRI data has been useful in automating the glioblastoma 
segmentation process and in minimizing variance in comparison with radiologist�ǯ 
segmentations performed by hand [13]. In the field of genomics, DL has been used to 
encode histone modification data in order to predict gene expression [14]. Our work adds 
to the applications of DL in medicine by exploring the viability of ML and DL to learn from 
salivaomics data in predicting COVID-19 patient severity levels. 

Material and Methods 
Data Processing 
The clinical cohort consisted of acutely infected COVID-19 patients, recovered COVID-19 
patients, and healthy control patients without vaccination, with sample sizes of 41, 74, 
and 50, respectively, for a total of 165 individuals. Each patient had the following 
biomarkers measured, along with his or her number of visits to his or her physician, 
number of days since first developing symptoms, and severity level: saliva anti-RBD 
(SARS-CoV-2 receptor-binding domain) IgG (ng/mL), serum anti-RBD IgG (ng/mL), saliva 
anti-RBD IgA (ng/mL), serum anti-RBD IgA (ng/mL), saliva anti-RBD IgM (ng/mL), serum 
anti-RBD IgM (ng/mL), EFIRM saliva SARS-CoV-2 (N) antigen TCID50/mL, and EFIRM 
saliva SARS-CoV-2 gRNA (N2, NL) LAMP RNA (qualitative). Samples were collected by 
whole saliva and nasal swab for molecular testing (FDA-approved DiaSorin Simplexa 
platform). Each patient was also given a severity level designation from NIH clinical 
trials. Although the designations formally range from 1 to 8, the provided data include 
values of only 1 to 6, inclusive. We used Pandas DataFrames to load and process the raw 
data, remove any incomplete samples, and split the features from the severity-level labels 
of the patients. Healthy and recovered patients were not given a severity levelȄthus, in 
���������������������������ǯ������rements for model training and evaluation, we set their 
labels to 1, the lowest possible designation, so that they could still be used for supervised 
training. Including all individuals in our experiments gave our models a larger amount of 
data to learn from, a characteristic from which every machine learning model benefits 
greatly. We show the class imbalance this created in Figure 1. 

With regard to feature selection, all features were kept for the developed models for 
the sake of continuity. Furthermore, by including all measured salivaomics features in the 
input, we avoided any possible omitted variable bias. We also took a more rigorous 
approach to support our inclusion of all features by building an extra-trees classifier for 
feature selection. Extremely Randomized Trees Classifier (Extra-Trees Classifier) is an 
ensemble learning technique that aggregates the results of multiple collected de-
correlated decision trees to output its classification result. During the construction of the 
forest, for each feature the normalized total reduction used in the feature split decision is 
computed. The result is known as the Gini importance of the feature and can be used to 
describe how important the feature is to the dependent variable. After running the Extra-
Trees Classifier on our features in Python using the Sci-Kit Learn package, we found that 
the Gini importance values of the features were 0.06, 0.10, 0.06, 0.07, 0.08, 0.07, 0.07, 
0.08, 0.26, and 0.15. It should be noted that all non-EFIRM values, whether serum or 
saliva-based, clustered around the .07 importance level, indicating that no particular 
measurement was superior to another in indicating severity level. With regard to the 
EFIRM measurements, the serum and saliva-based EFIRM measurements posted 
similarly high levels of Gini importance, and thus both were naturally included in the 
experiments as well. 
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Fig 1. Frequency Distribution of Severity Levels The distribution of severity levels is 
right-skewed after data augmentation to include the healthy individuals, leading to a class 
imbalance. 

Baseline Model 
Ordinary Least Squares (OLS) regression is used to model the relationship between 
explanatory variables and a response variable by fitting a linear equation to observed 
data, minimizing the sum of squared differences between the predicted and ground truth 
data. We began looking at the use of OLS in order to establish the possibility of using 
advanced ML techniques on salivaomics data as well as to compare ML with the neural 
network model. Due to the nature of OLS, the baseline model yields floating-point 
numbers as predictions, despite the fact that severity levels are strictly integers; hence, 
predictions are rounded in order to align them with the clinical task. We implemented 
our baseline OLS model with Sci-Kit Learn in Python. 

Neural Network Architecture 
Feed-forward neural networks, also known as multilayer perceptrons, are a type of 
advanced ML computing system able to analyze and learn patterns in data. First 
proposed in 1944 by Warren McCullough and Walter Pitts and popularized in the 1980s, 
this form of ML, now known as deep learning (DL), has since been extensively used for a 
wide variety of applications, including self-driving cars [7], natural language processing 
(Google Translate) [8], and reinforcement learning (AlphaGo) [9]. In this paper, we 
implement a fully connected feed-forward neural network for severity-level prediction 
on salivaomics data using the Keras framework. Our supervised model is composed of 
five total stages and over 2,000 trainable parameters. There are two ways to frame the 
task of predicting severity level designation: single-value prediction or multiclass 
classification. The first task outputs a single value in the set of real numbers which 
represents ���������ǯ���������������������������Ǥ��������������������������������������
predict floating points to minimize the difference between predicted and observed 
values, but is not realistic as observed values are only integers. The second task assigns 
�������������������������������������ǡ������ͳ����͸ǡ�����������������������ǯ����������������
each output being the correct value, and the value with the highest probability is chosen 
������������ǯ��������������Ǥ��������������������������ask is more realistic, as we mimic the 
researchers who choose a severity level given the output space of integers from 1 to 6, 
inclusive. Hence, we framed the task of predicting severity level as a multi-class 
classification problem. 

Dropout 
Overfitting in ML occurs when a model fits/learns the noise in the training data to the 
extent that it decreases the performance of the model on unseen data. This occurs 
because the noise or random fluctuations in the training data are learned as important 
patterns by the model. These memorized fluctuations from the training data do not apply 
to new data and thus negatively impact the modelǯs ability to generalize. Generalization 
of a model to unseen samples is what allows ML algorithms to make powerful predictions 
and classify data. 

Dropout is a regularization technique first used in 2014 that prevents neural 
networks from overfitting [10]. Dropout regularization randomly drops neurons from the 
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neural network during training in each iteration. During training, dropout samples form 
�����������������ǳ�������ǳ���������ǡ����������������������the actions of ensemble methods 
like bagging and boosting in classical ML ȏͳͳȐǤ�������������ǡ�����������ǳ���������ǳ���������
approximates the effects of averaging the predictions of the thinned networks, 
significantly reducing overfitting [10]. In dropout, the network cannot rely on one feature 
but rather has to learn which robust features are useful. We used dropout with a rate of 
ͲǤͳ����������������ǯ�������������������������������������������������������������������
number of neurons in the initial layer. 

Results 
OLS Regression 
Our baseline model performed as expected, achieving a mid-range accuracy of 0.55 on 
the validation set. This shows that saliva contains SARS-CoV-2 omics content that can be 
predictive of the severity of a viral disease such as COVID-19. In Figure 2, we plot the 
predicted severities against the ground-truth labels from the validation set. 

Fig 2. Scatter Plot of OLS Regression, True and Predicted Severity The points are close 
to the regressed diagonal line with a wider confidence band. For lower severity levels, the 
OLS regression model tends to overestimate, and for higher severity levels the model 
tends to underestimate, indicating that this particular model has high bias and is unable 
to fit the data properly. 

Our hypothesis that ML can be used on salivaomics data is supported by the linear 
����������ǯ����������������������������������������	igure 3A. A mean absolute error of 
0.70 was achieved, showing that the model was, on average, off by 0.70 when scoring 
severity. This model also achieved a root mean square error of 1.04. 

Fig 3. Residual Plots of OLS Regression and Neural Network Both residual 
distributions are normally distributed, indicating the efficacy of learning for these two 
models. Note, however, the greater center density for the neural network, indicating less 
error than in the OLS regression. 

Neural Network 
The neural network model outperformed the baseline model in all performance-based 
metrics. The model achieved an accuracy of .85 on the test set, beating the baseline model 
by .30. We can conclude from this that not only can saliva be predictive of the severity of 
a viral disease such as COVID-19, but that the patterns extracted from the salivaomics 
data are complex enough to require a neural network model to learn them. Indeed, this 
means that a more complex model outside of our neural network may prove to be even 
more effective at learning from salivaomics data. This is further supported by an analysis 
���������������������ǯ���������������ǡ���������������������������������������������������
much more centered at zero with a smaller variance than is the residual distribution of 
the baseline model. Table 1 displays the overall precision-recall metrics for each severity 
level. For a severity level of 1, we see an impressive F1 accuracy score of .96, which 
means that the model is well able to classify healthy patients. For severity levels 2Ȃ4, we 
see F1 scores of zero, indicating that the model was unable to classify  
Table 1. Precision Recall By Severity Level 
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 Precision Recall F1 Score Samples 

1 0.93 1.00 0.96 27 
2 0.00 0.00 0.00 1 
3 0.00 0.00 0.00 1 
4 0.00 0.00 0.00 1 
5 0.50 0.33 0.40 3 
6 0.00 0.00 0.00 0 

Outlier values are reviewed in Discussion. 

these results well. The reasoning behind this is that for each of these severity levels there 
was only one patient in the test split with that severity level; hence, if the model 
incorrectly labels it once, the F1 score for this particular severity level is zero. For 
severity level 5, the test split has 3 individuals and the model is able to correctly identify 
the severity level of one of these patients; thus, we see a precision of 0.50 and a recall of 
0.33. For severity level 6, because there were so few patients with this severity level, all 
patients with this severity level were randomly split into the training set. Because the 
model did not evaluate on this class, its F1 score is zero. 

Discussion 
We have successfully shown the deployment of a novel ML framework on salivaomics 
data to predict COVID-19 severity level. We should note, however, some key insights into 
our data that limited the function of our model. The number of samples available at the 
��������������������������������������������������ǯ������������������������������������������
between the biomarker levels and severity designations. With only 1 patient with a 
severity level of 2, 2 patients with a severity level of 3, 9 patients with a severity level of 
4, 14 patients with a severity level of 5, and 3 patients with a severity level of 6, finding a 
train/test split to balance the number of data points for the model to train on while 
having enough data points to evaluate ���������ǯ���������������������������Ǥ�	���
example, because there was only one patient with a severity level of 2, it was difficult to 
decide if the model should train on this patient or if we should evaluate the model on its 
ability to extrapolate from other severity level data. The final decision was to remain 
hands-off and randomize the train/test split with a well-standardized random seed of 42. 
Future work could build off of this hands-off approach by carefully and actively 
separating samples into training and test sets based on the distribution of the data 
available. 

In an attempt to alleviate the issue of a lack of data, we chose to use the data of 
healthy patients by setting their severity levels to one and using them as samples for our 
model. By giving more data to our model to work with, we believed that the model would 
better understand what biomarker levels characterized a healthy patient and thus would 
be able to learn the patterns behind what biomarker levels characterized different tiers 
of sick patients. Our approach accomplished this. When the healthy-patient data points 
were not included in the experiments, the mean absolute error of the test set on the 
neural network model was 1.33, as compared with 0.36 when the healthy patients were 
included. Furthermore, the model accuracy when these data points were not included 
was a mere 0.44, as opposed to 0.85 when the data points were included. 
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However, this approach is not without drawbacks. This data augmentation approach 
induces class imbalance that biases the results of the model. Despite the headline model 
accuracy of 0.85, this metric is skewed by the overwhelming well-classified class of 
severity level 1. If we were to weight the F1 accuracies of each class equally, as opposed 
to weighting them based on the frequency of each class, we would find that the macro-
average accuracy of the model is 0.23 with the healthy individuals included. This is in 
comparison with  weighting the class accuracies based on frequency, from which the 
accuracy is 0.83. Had we not included the additional healthy patients, the macro-average 
accuracy of the model would be 0.31, 7 percentage points higher than if we had included 
the healthy cohort, and the weighted average would be 0.39. These results show that 
although th��������������������������������ǯ������������������ed our model to perform 
well, it was not without penalty. Our model sacrifices the correct classification of the 
minority (the COVID-19 patients) by guessing more towards the majority (healthy) class 
when unsure. In other words, if the model is unsure of the output, it is more likely to 
assume the individual is healthy because the majority of people it has seen before have 
been healthy. Future work can build on this conclusion by oversampling patients with 
higher severity levels or, if that is not possible, creating a data synthesis pipeline that 
mimics the sampling of these patients. 

Conclusion 
In this study, we propose a machine learning framework that can accurately predict 
COVID-19 severity levels from salivaomics data. Our findings not only validate previous 
observations of the presence of viral load in saliva, but also provide new insights into the 
prospects of the novel use of machine learning on salivaomics data. Our neural network 
model not only achieves state-of-the-art accuracy of 0.85 on COVID-19 patients, but also 
is exceptionally computationally efficient and can be useful in a clinical setting, as a single 
inference takes only 40 milliseconds of CPU time. Further studies could be performed 
using more complex deep learning models on salivaomics data in predicting diseases 
other than COVID-19. 
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