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Fear-motivated avoidance extinction memory is prone to hippocampal brain-derived neurotrophic factor (BDNF)-depen-

dent reconsolidation upon recall. Here, we show that extinction memory recall activates mammalian target of rapamycin

(mTOR) in dorsal CA1, and that post-recall inhibition of this kinase hinders avoidance extinction memory persistence and

recovers the learned aversive response. Importantly, coadministration of recombinant BDNF impedes the behavioral effect

of hippocampal mTOR inhibition. Our results demonstrate that mTOR signaling is necessary for fear-motivated avoidance

extinction memory reconsolidation and suggests that BDNF acts downstream mTOR in a protein synthesis-independent

manner to maintain the reactivated extinction memory trace.

[Supplemental material is available for this article.]

Repeated or prolonged nonreinforced recall may induce extinction
of consolidated memories, a form of learning involving the forma-
tion of a new association that inhibits the expression of the origi-
nal one (Bouton 2004). On the contrary, brief re-exposure to
retrieval cues may destabilize consolidated memories, which
must then be reconsolidated to persist (Przybyslawski and Sara
1997; Nader et al. 2000). Psychotherapy based on extinction en-
hancement or reconsolidation disruption might reduce the intru-
sive recollection of aversive events and help in the treatment of
post-traumatic stress disorder (PTSD), a prevalent mental health
condition characterized by the persistent avoidance of places, peo-
ple, and objects resembling traumatic experiences (Ressler et al.
2004; Schwabe et al. 2014; Dunbar and Taylor 2017; Bryant
2019). Therefore, considerable effort has been lately dedicated to
analyze the properties and potential interactions of fear memory
extinction and reconsolidation. In this regard, it has been reported
that these processes are mutually exclusive (Merlo et al. 2014), and
that extinction training during the reconsolidation time window
enhances extinction learning and prevents the recovery of fear
(Monfils et al. 2009). Moreover, we have previously shown that re-
call renders fear-motivated avoidance extinctionmemory suscepti-
ble to amnesia, indicating that this memory type is prone to
reconsolidation when active and suggesting that targeting extinc-
tion memory reconsolidation can be a feasible treatment strategy
for PTSD (Rossato et al. 2010; Rosas-Vidal et al. 2015). However,
the neurochemical basis of extinction memory reconsolidation
has seldom been analyzed.

Mammalian target of rapamycin (mTOR) is a 289-kDa
phospho-inositide 3-kinase (PI3K)-related serine-threonine pro-
tein kinase that functions as a key element of mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2) signaling modules
to regulate protein synthesis through the phosphorylation of eu-
karyotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1)
and p70 ribosomal S6 kinase (p70S6K) (Hay and Sonenberg
2004). A well-known mediator of cell growth and proliferation

(Hall 2008; Ryskalin et al. 2017), mTOR involvement in synaptic
plasticity was first suggested by studies showing that rapamycin
(RAPA), a macrolide that selectively inhibits mTORC1 signaling
by interacting with the chaperone FKBP12 and binding to mTOR
FKBP12–RAPA-binding domain, impairs long-term facilitation in
Aplysia as well as long-term potentiation (LTP) in the rat hippo-
campus (Casadio et al. 1999; Tang et al. 2002). Interestingly, avoid-
ancememory consolidation and recall needmTOR signaling in the
dorsal hippocampus (Bekinschtein et al. 2007; Pereyra et al. 2018),
as it also happens with the reconsolidation and extinction of sev-
eral other memory types (Myskiw et al. 2008; Gafford et al. 2011;
Zubedat and Akirav 2017; Jarome et al. 2018; Lee et al. 2018;
Yang et al. 2019). Here, we examined whether reconsolidation of
fear-motivated avoidance extinction memory requires mTOR ac-
tivity in the CA1 region of the dorsal hippocampus. To do that,
we used 3-mo-old, 300- to 350-g, maleWistar rats (n=320), housed
in groups of five with free access to water and food in a holding
room at 22°C–23°C on a normal light cycle (12 h light:12 h dark;
lights on at 6.00 a.m.). Animals were implanted with 22-gauge
guides aimed at the CA1 region of the dorsal hippocampus
(Supplemental Fig. S1, stereotaxic coordinates inmillimeters: ante-
roposterior, −4.2; laterolateral, ±3.0; dorsoventral, −3.0), as previ-
ously described (Radiske et al. 2015), and allowed to recover from
surgery for 10 d before being handled by the experimenter once
per day for 2 d. One day later, the animals were trained in a one-
trial step-down inhibitory avoidance (SDIA) task, an aversive learn-
ing paradigm in which stepping down from a platform is paired
with a mild footshock. Briefly, the SDIA training box (50×25×
25 cm) was made of Plexiglas and fitted with a grid floor through
which scrambled electric shocks could be delivered to the rat’s
feet. Over the left end of the grid floor there was a 5-cm-high,
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8-cm-wide, 25-cm-long wooden platform. For training, the ani-
mals were individually placed on the platform facing the left rear
corner of the training box and, when they stepped down and
placed their four paws on the grid, received a 2-sec, 0.4-mA scram-
bled footshock, whereupon they were immediately withdrawn
from the training box. This training protocol induces a long-
lasting, hippocampus-dependent, fear-motivated avoidance mem-
ory expressed as an increase in step-down latency at test (Bernabeu
et al. 1995; Paratcha et al. 2000; Katche et al. 2013). However, re-

peated testing in the absence of the footshock causes clear-cut ex-
tinction (Cammarota et al. 2005; Rossato et al. 2006; Bonini et al.
2011). Therefore, to extinguish the learned avoidance response,
we submitted SDIA trained rats to one daily unreinforced test ses-
sion for five consecutive days. To that end, we put the animals
back on the training box platform until they stepped down to
the grid. No footshock was given, and the animals were allowed
to freely explore the training apparatus for 30 sec after stepping
down. During this time, the animals stepped up onto the platform
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Figure 1. mTOR is required for fear-motivated avoidance extinction memory reconsolidation. (A) Animals were trained in SDIA (TR; 0.4 mA/2 sec) and
beginning 24 h later submitted to one daily extinction session for five consecutive days (EXT). Twenty-four hours after the last session, extinction memory
was reactivated (RA) and, 5 min thereafter, the animals received bilateral intradorsal CA1 infusions of vehicle (VEH; 5% DMSO in saline), rapamycin (RAPA;
0.02 µg/side) or TORIN (0.20 µg/side). Retention was assessed 1 and 7 d later (Test). (B) Animals were treated as in A except that they received intra-CA1
infusions of VEH, RAPA, or TORIN 6 h after RA. (C ) Animals were treated as in A, except that they received VEH, RAPA, or TORIN in dorsal CA1 24 h after the
last extinction session in the absence of RA (No RA). (D) Animals were treated as described in A, except that VEH, RAPA, or TORIN were given 5 min after RA
and retention was assessed 3 h later. (E) Animals were treated as in A, except that a subgroup of animals received VEH, RAPA, or TORIN 5 min after an
extinction pseudoreactivation session in an avoidance training box rendered nonaversive for SDIA-trained animals. The nonaversive box was similar in di-
mensions to the SDIA training box, but it wasmade of dark gray wood and had a Plexiglas platform. (PRA) Pseudoreactivation session. Data are expressed as
median ± IQR. (**) P<0.01, (***) P<0.001 versus VEH in Dunn’s multiple comparisons after Kruskal–Wallis test.
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and down again several times. This procedure induces an SDIA ex-
tinctionmemory immune to spontaneous recovery, reinstatement
and renewal that lasts for at least 14 d and requires NMDA receptor
activation as well as protein synthesis and gene expression in dor-
sal CA1 to consolidate (Cammarota et al. 2003; Rossato et al. 2010;
Radiske et al. 2015). One day after the last extinction session, ex-
tinction memory was reactivated by placing the animals on the
training box platform until they stepped down from it. Five min-
utes or 6 h later, the animals received bilateral intradorsal CA1 in-
fusions (1 µL/side) of vehicle (VEH; 5% DMSO in saline), RAPA
(0.02 µg/side) or the selective ATP-competitive inhibitor of
mTOR, TORIN2 (TORIN; 0.20 µg/side). RAPA and TORIN were dis-
solved in DMSO and diluted toworking concentration in sterile sa-
line (<5% DMSO). The doses used were determined based on pilot
experiments and previous studies showing the behavioral and bio-
chemical effects of each compound (Bekinschtein et al. 2007; Re-
vest et al. 2014; Renard et al. 2016; Lee et al. 2018). Retention
was evaluated at different times after extinction memory reactiva-
tion by placing the animals on the training box platform andmea-
suring their latency to step down. Because of the 300-sec ceiling
imposed on test latency, step-down data were expressed as medi-
an± IQR and analyzed using the Kruskal–Wallis test followed by
Dunn’s post hoc comparisons. We found that animals that re-
ceived VEH recalled SDIA extinction memory normally regardless
of the time elapsed between reactivation and test sessions. Con-
versely, RAPA and TORIN given 5 min, but not 6 h, after SDIA ex-
tinctionmemory reactivation impaired retention of extinction and
induced reappearance of the SDIA response 1 d and 7 d later (Fig.
1A, 1 d after RA: H=24.42, P<0.001; P<0.001 for VEH vs. RAPA,
P<0.001 for VEH vs. TORIN; 7 d after RA: H=26.85, P<0.001;
P <0.001 for VEH vs. RAPA, P<0.001 for VEH vs. TORIN in Dunn’s
multiple comparisons after Kruskal–Wallis test; Fig. 1B, 1 d after
RA:H=4.510, P=0.1049; 7 d after RA:H=4.606, P=0.0999 in Krus-
kal–Wallis test). Neither RAPA nor TORIN affected SDIA extinction
memory when administered 24 h after the last extinction session
in the absence of extinctionmemory reactivation (Fig. 1C, 1 d after
infusion: H=2.141, P=0.3428; 7 d after infusion: H=4.086, P=
0.1296 in Kruskal–Wallis test) or when given 5 min post-
reactivation but retention was evaluated 3 h thereafter (Fig. 1D,
H=1.654, P=0.4375 in Kruskal–Wallis test). Moreover, RAPA and
TORIN had no effect on extinction memory retention if injected
in dorsal CA1 5 min after an extinction
pseudoreactivation session carried out in
an avoidance training box rendered non-
aversive for SDIA-trained animals (Fig. 1E,
After RA: H=13.86, P=0.001; P<0.01 for
VEH vs. RAPA, P<0.01 for VEH vs.
TORIN; After PseudoRA: H=0.7503, P=
0.6872 in Dunn’s multiple comparisons
after Kruskal–Wallis test; Supplemental
Fig. S2). mTOR activity is regulated by
phosphorylation at different sites (Wata-
nabe et al. 2011). Phosphorylation at
Ser2448 is mediated by p70S6K, occurs
mainly to mTOR associated with
mTORC1 (Chiang and Abraham 2005;
Holz and Blenis 2005; Akcakanat et al.
2007), enables mTOR binding to
regulatory-associated protein of mTOR
(RAPTOR), and correlates with mTORC1
activation (Rosner et al. 2010). On the
contrary, Ser2481 is an autophosphoryla-
tion site insensitive to acute rapamycin
treatment that is phosphorylated only
when mTOR makes part of mTORC2
complexes (Peterson et al. 2000; Copp

et al. 2009). To analyze mTOR phosphorylation levels, we per-
formed immunoblotting on total homogenates from the CA1 re-
gion of the dorsal hippocampus. Samples were not pooled.
Equal amounts of proteins (15 µg) were fractionated by SDS-PAGE
and transferred to PVDFmembranes. Blots were blocked for 1 h, in-
cubated overnight at 4°C with anti-pSer2448 mTOR (1:10,000;
RRID:AB_330970), anti-pSer2481 mTOR (1:10,000; RRID:
AB_2262884), or anti-mTOR (1:10,000; RRID:AB_330978), and
then incubated for 2 h at room temperature with HRP-coupled
anti-IgG secondary antibody. Immunoreactivity was detected us-
ing the Amersham ECL PrimeWestern Blotting Detection Reagent
and the Amersham Imager 600 system. Densitometric analyses
were performed using the ImageQuant TL 8.1 analysis software
(GE Healthcare). We found that pSer2448 mTOR levels peaked
5 min after SDIA extinction memory reactivation and returned to
control values within 30 min (Fig. 2, F(5,20) = 2.805, P=0.0446;
P < 0.05 for 5 min vs. No RA in Dunnett’s multiple comparison
test after repeated measures ANOVA). No changes in pSer2481
mTOR or total mTOR levels were found up to 6 h post-reactivation
(Fig. 2, pSer2481 mTOR: F(5,20) = 1.241, P=0.3274; mTOR: F(5,20) =
1.208, P=0.3411 in repeated measures ANOVA; Supplemental
Fig. S3).mTORC1 activation stimulates brain-derivedneurotrophic
factor (BDNF) production in hippocampal neurons (Jeon et al.
2015), which in turn may induce mTOR-dependent activation of
dendritic mRNA translation (Takei et al. 2004). Previously, we re-
ported that hippocampal BDNF maintains fear-motivated avoid-
ance extinction memory after recall (Radiske et al. 2015). In
agreement with this finding, coinfusion of recombinant BDNF
(0.25 µg/side) after SDIA extinctionmemory reactivation impeded
the recovery of the avoidance response provoked by RAPA (Fig. 3,
1 d after RA: H=27.52, P<0.001; P<0.001 for VEH vs. RAPA,
P < 0.001 for BDNF vs. RAPA, P<0.05 for RAPA vs. RAPA+BDNF;
7 d after RA: H=26.76, P<0.001; P<0.001 for VEH vs. RAPA,
P < 0.001 for BDNF vs. RAPA, P<0.01 for RAPA vs. RAPA+BDNF
in Dunn’s multiple comparisons after Kruskal–Wallis test).

Our results show that dorsal CA1 mTOR inhibition during a
short post-recall time window persistently impairs retention of
SDIA extinction memory and causes avoidance reappearance.
This effect took time to develop, was time-dependent, concomi-
tant with SDIA extinctionmemory reactivation, and occurred after
the administration of mTOR inhibitors with different mechanisms

Figure 2. Reactivation of fear-motivated avoidance extinction memory increases mTOR phosphoryla-
tion at Ser2448, but not at Ser2481, in the CA1 region of the dorsal hippocampus. Animals were trained
in SDIA (0.4 mA/2 s) and beginning 24 h later submitted to one daily extinction session for 5 consecutive
days. Twenty-four hours after the last session, extinction memory was reactivated (RA) and the animals
killed by decapitation at different post-reactivation times (5–360 min). The CA1 region of the dorsal hip-
pocampus was dissected out, homogenized, and used to determine of pS2448 mTOR, pS2481 mTOR,
or mTOR levels by immunoblotting. (N) Naïve animals, (No RA) animals trained in SDIA that were sub-
mitted to five daily extinction sessions and killed 24 h after the last extinction session. Data are expressed
as mean± SEM. (*) P<0.05 versus No RA in Dunnett’s multiple comparison test after repeated measures
ANOVA.
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of action, suggesting that it was not spontaneous or caused by non-
specific pharmacological interactions but due to bona fide impair-
ment of an active mTOR-dependent reconsolidation process. This
conclusion is further supported by findings showing that SDIA ex-
tinction memory reactivation rapidly and transiently increased
mTOR phosphorylation at Ser2448, a post-translational modifica-
tion customarily used as a proxy for mTOR activation (Reynolds
et al. 2002; Guertin and Sabatini 2007; Rivas et al. 2009; Guo
et al. 2017; Dong et al. 2018; Rosa et al. 2019). Most findings indi-
cate that BDNFmodulates protein synthesis throughmTOR (Takei
et al. 2001, 2004). In fact, BDNF controls hippocampal synaptic
mRNA translation by regulating mTORC activation state (Briz
et al. 2013; Leal et al. 2014), which seems to be necessary for
SDIA memory consolidation (Slipczuk et al. 2009). However, in
agreement with previous findings that BDNF is sufficient to resta-
bilize a reactivated extinction memory trace, even when hippo-
campal protein synthesis and gene expression are inhibited
(Radiske et al. 2015), our results show that mTOR acts upstream
BDNF during the reconsolidation of extinction, and suggest not
only that BDNF is a key protein synthesis product for this process
but also that its actions are not mediated by mTOR-dependent
mRNA translation. Indeed, mTOR signaling controls BDNF
activity-dependent dendritic translation (Baj et al. 2016), and sev-
eral protein synthesis-dependent plastic mechanisms, including
late-LTP and memory consolidation, are rescued by BDNF when
protein synthesis is impaired (Pang and Lu 2004;Moguel-González
et al. 2008; Martínez-Moreno et al. 2011; Ozawa et al. 2014). Exog-
enous BDNF becomes quickly available for activity-dependent
secretion, rapidly replacing the endogenous biosynthetic pathway
after its administration (Santi et al. 2006). Thus, the rapid modula-
tion of hippocampal high-frequency transmission produced by
this neurotrophin is unaffected by protein synthesis inhibitors
(Gottschalk et al. 1999; Tartaglia et al. 2001) and BDNF administra-
tion may induce the lasting structural reorganization and potenti-
ation of hippocampal synapses in an mRNA synthesis and protein
translation-independent manner (Martínez-Moreno et al. 2020),
perhaps through a mechanism involving PKMζ activity regulation
(Mei et al. 2011). In fact, hippocampal PKMζ acts downstream
BDNF to control AMPAR synaptic insertion through a protein

synthesis-independent mechanism during declarative memory
reconsolidation (Rossato et al. 2019).

In conclusion, our results confirm that extinction does not
erase the SDIA response but generates an inhibitory memory that
coexists with it and controls its expression. The data also corrobo-
rate that avoidance extinction memory enters a labile state when
reactivated by recall and needs to be reconsolidated through a
mechanism involving hippocampalmTOR/BDNF signaling activa-
tion to maintain its dominance over the aversive trace. Finally,
though not less important, our findings emphasize the necessity
of understanding the dynamics of memory competition in order
to develop better therapeutic strategies for PTSD treatment.
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