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Abstract: Human–robot collaboration is becoming ever more widespread in industry because of its
adaptability. Conventional safety elements are used when converting a workplace into a collaborative
one, although new technologies are becoming more widespread. This work proposes a safe robotic
workplace that can adapt its operation and speed depending on the surrounding stimuli. The benefit
lies in its use of promising technologies that combine safety and collaboration. Using a depth camera
operating on the passive stereo principle, safety zones are created around the robotic workplace, while
objects moving around the workplace are identified, including their distance from the robotic system.
Passive stereo employs two colour streams that enable distance computation based on pixel shift.
The colour stream is also used in the human identification process. Human identification is achieved
using the Histogram of Oriented Gradients, pre-learned precisely for this purpose. The workplace
also features autonomous trolleys for material supply. Unequivocal trolley identification is achieved
using a real-time location system through tags placed on each trolley. The robotic workplace’s speed
and the halting of its work depend on the positions of objects within safety zones. The entry of a
trolley with an exception to a safety zone does not affect the workplace speed. This work simulates
individual scenarios that may occur at a robotic workplace with an emphasis on compliance with
safety measures. The novelty lies in the integration of a real-time location system into a vision-based
safety system, which are not new technologies by themselves, but their interconnection to achieve
exception handling in order to reduce downtimes in the collaborative robotic system is innovative.

Keywords: human–robot collaboration; safety; RTLS; depth camera

1. Introduction

According to [1], in the majority of cases, the deployment of industrial robots is
intended to replace the role of humans in carrying out cyclical, dirty, and dangerous
activities. The aforementioned tasks are ideally performed in closed robotic cells. Such
cells prevent the accidental entry of humans or other objects into the workplace. The
philosophy of the design and principles of robotic cells is proposed in [2]. Problems occur
when it is impossible to create a closed cell, or when interaction between a robot and a
human is essential. According to [3], the current trends in making collaboration safe consist
of pressure mats, light barriers, laser scanners, and the use of collaborative robots. A
comparison between classic robots and collaborative robots is provided in [4], showing that
the disadvantages of collaborative robots include their lower working speed and higher
price. Hence, it is increasingly worthwhile to use external security elements to ensure the
safety of the workplace.

An interesting approach to Human–Robot collaboration (HRC) is a contact-type
security system called AIRSKIN by Blue Danube Robotics that is described in [5]; the
system is a wearable safety cover for robotic manipulators consisting of pressure-sensitive
pads. These pads detect collisions with the use of air as the sensing medium. The drawback

Sensors 2021, 21, 2419. https://doi.org/10.3390/s21072419 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0020-8808
https://orcid.org/0000-0003-1533-5914
https://doi.org/10.3390/s21072419
https://doi.org/10.3390/s21072419
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21072419
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/7/2419?type=check_update&version=1


Sensors 2021, 21, 2419 2 of 27

of this technology is the maximal speed limit of operation and the need to sense objects or
persons after contact with the pressure-sensitive pads.

As mentioned in [6], a requirement for implementing HRC is to create a supervised
secure and co-operative production envelope between the robot system and a person in the
workspace through a virtual protective room referred to as SafetyEYE by the company PILZ.
The SafetyEYE system can detect object intrusions into adjustable zones, and based on the
type of zone intruded into it responds accordingly, such as by modifying the operational
speed of the robotic system. This safety solution has also its drawbacks. It does not provide
the possibility to grant security exceptions for expected intrusions within its predefined
zones. Another drawback is its lack of human recognition algorithms.

Another current state-of-art safety system mentioned in [7] is from Veo Robotics and
called FreeMove. This system monitors work cells in 3D and implements dynamic speed
and separation monitoring. This safety system, based on [8], is still awaiting certification. It
promises a real-time understanding of the workspace with the possibility to exclude large
objects, such as workpieces, so that they do not trigger the safety system. Its disadvantage
lies in the versions of robotic controllers it supports, therefore it is suitable only for newer
robotic systems.

Such external security elements create zones in the vicinity of the robotic workplace.
If something enters such zones, work is slowed or completely halted, as described in more
detail in [9]. Security elements based on infrared/light detection only detect their sur-
roundings in one plane. This knowledge has resulted in the idea of monitoring workplaces
not only in a single plane but in 3D.

Methods for obtaining 3D data, where every object’s distance from the point of
observation is known, have been understood for decades. The most common method is to
use two cameras; the basic principles of geometry are dealt with in more detail in [10,11].
Another approach for obtaining 3D data is to use a monocular camera and estimate the
distance; this approach is described in more detail in [12–15]. Other methods include
the use of depth cameras. The depth camera principle of operation may be based on the
duration of travel of a beam of light (this is explained in more detail in [16,17]), or using
structured light that deforms [18]. Current problems that can occur when using camera
systems in robotics primarily concern the speed of the processing and evaluation of the
3D data and measurement noise. Despite the current hardware deficiencies, camera image
depth processing has been used in interactions between humans and machines for several
years. In [19], a stereo camera is used for the teleoperation of a robotic manipulator. Camera
systems in co-operation with robots also have applications in medicine, where, according
to [20], a camera has been used to calibrate a robot arm during minimally invasive surgery.

The available safety features for collaborating and zoning in the workplace are in-
tended to identify any movement in and intrusion into the work zone. Papers [21,22]
address the identification of human beings based on the image processing of human faces
or using only images of the ears. Another work [23] addresses the identification of moving
objects together with an estimation of their distance from the camera by utilizing one
camera. Such techniques make it possible to assign different authorizations depending
on the object identified. However, if the objects are externally identical, it is necessary to
use additional elements for unambiguous identification. One option is to use Real-Time
Location Systems (RTLS) technology, which assigns each object a unique identification
number. The primary function of RTLS technology is to track the position and trajectory of
objects, as mentioned in [24]. This technology can also be used to optimize trajectories, as
stated in [25,26].

This article aims to verify the applications of depth cameras and RTLS to make robotic
workplaces safe with zoning. The benefit of this method over the above-mentioned state-of-
art technologies lies in incorporating RTLS technology, which will allow selected moving
objects to pass through the workplace safety zones without limiting the speed of production.
During the work process, moving objects are evaluated, primarily concerning whether or
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not the object is human. In such a case, for safety reasons no exemption can be granted for
entry/transit through work zones without the production speed being restricted.

The novelty consists in the synergy of the interconnection of two co-existing tech-
nologies intended in principle for different deployments to increase the safety of robotic
workplaces, as mentioned in the article. This design was practically implemented for an
experimental robotic workplace, and our results and evaluation are presented below.

This paper is divided into four parts. The first one presents a short theoretical back-
ground. The second one contains the main idea of the work and the methodology used.
The third part discusses the results. Lastly, the fourth concludes this paper.

2. Preliminaries

Quality, accuracy, reliability, and error rates are characteristics that must be evaluated
in safety components. The principle of the operation itself often prevents a device from
becoming a safety element. Technologies that at one time did not meet safety requirements
may, thanks to technological progress, be included in safety systems several years later. In
this section, the necessary theoretical knowledge required to understand the subsequent
practical implementation is discussed. First, the theory of the safety of robotic workplaces
is introduced, followed by knowledge about RTLS and vision technologies.

2.1. Safety

Industrial robots are generally large, heavy machines whose movement can be unpre-
dictable. For this reason, it is essential to perform a risk assessment and ensure safety in
every robotic workplace. The basic standards addressing the safety of robotic workplaces
are EN ISO 10218-1 [27] and EN ISO 10218-2 [28]. These standards define the risks that
may be encountered when working with robots and also suitable methods to eliminate
them. When deploying a robotic manipulator, it must be ensured that it does not pose a
threat to its surroundings in the event of any type of failure (electric, hydraulic, vacuum,
etc.). The robot’s working space may be reduced by restricting axes so that it does not
cause damage in the event of a fault. The first axis restriction option is achieved by using
mechanical stops on the robot itself. The second option is to use external stimuli, where
the response time must be taken into account. In situations where physical contact with
a robot can occur, it is necessary to set safe distances in the workplace. Safe distances for
upper and lower limb reach into the workplace are addressed in EN ISO 13857 [29]. Other
standards addressing the safety of robotic systems are ISO 13849-1 [30], ISO 13855 [31], and
ISO 12100 [32].

The primary role of the mentioned standards is to prevent contact between humans
and robots. However, situations are becoming more common in which, on the contrary,
cooperation between robots and humans is expected or even desirable. Hence, the In-
ternational Organization for Standardization published specification ISO/TS 15066 [33]
addressing the safety of collaborative industrial robots. Specification ISO/TS 15066 is a
supplement to standard ISO 10218. ISO/TS 15066 proposes power and speed limits when
robots and humans collaborate. A risk assessment must also consider where on the body
of the operator contact with the robot is most likely to occur. A model of the human body
containing 29 specific points categorized into 12 areas was prepared for this reason. Actual
contact with a robot is split into quasi-static and transient. During transient contact, some
energy is absorbed by the human body. Hence, when a part of the body is not rigidly fixed,
it can be subjected to greater forces without serious injury than under quasi-static contact.
This applies to the whole body except the head. Table 1 shows speed limits according to
ISO/TS 15066 depending on the effective weight of the robot. This value is converted to
1 cm2 of the human body.
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Table 1. Speed limits for transient contact according to ISO/TS 15,066, which specifies safety
requirements for collaborative industrial robot systems and the work environment.

Body Part
Tool Weight (kg)

1 2 5 10 15 20
Maximum Robot Speed (mm/s)

Palm/fingers 2400 2200 2000 2000 2000 1900
Upper hand 2200 1800 1500 1400 1400 1300
Lower hand 2400 1900 1500 1400 1300 1300

Stomach 2900 2100 1400 1000 870 780
Pelvis 2700 1900 1300 930 800 720

Upper leg 2000 1400 920 670 560 500
Lower leg 1700 1200 800 580 490 440
Shoulders 1700 1200 790 590 500 450

Chest 1500 1100 700 520 440 400

According to the international standards ISO 10218-1 and ISO 10218-2, there are
four types of collaborative robot use. The first is defined as safety monitored stop. This
collaboration method is used when a robot works mostly independently, yet sometimes it
is necessary for a human to enter the robot’s workplace. This means that a human must
perform specific operations on a product when the product is in the robot’s workplace.
The robot must immediately stop all movement as soon as a human enters its workplace.
In this case, the robot does not switch off—only brakes are activated. The less time the
human needs to spend in the robot’s workplace, the more effective the process is. Hand
guiding is another application. This is a type of collaboration used to set a robot’s route
by a human guiding the robot’s arm. This is mainly used in cases when it is necessary to
teach a robot quick tracks for pick and place operations. The robot must be equipped with
an additional device that “feels” the force exerted by the worker on the robot’s tool. Most
commonly, this device is a force torque sensor. Collaboration is only possible in learning
mode, and additional safety elements are needed in other modes. The second-last type of
collaboration between a human and a robot is speed and separation. Here, the workplace is
monitored using a laser or camera system. Safety zones are created in the workplace, and
the robot’s speed is adjusted depending on the zone in which the human is present. The
robot stops when a human enters a danger zone and must wait until this safety parameter
is switched off. Individual safety zones can be scaled depending on the distance from the
robot. The last variant is power and force limiting. The robot is equipped with sensors
in each joint that can detect an external force acting on the joint itself. If a greater than
expected force acts on a joint, the robot immediately stops or reverses the movement that
led to the initial contact. Such robots are designed to be more sensitive than industrial
ones; they are lighter, and their geometry is rounder. A summary of the properties of
collaborative industrial robotic systems is presented in Table 2, where the last column
shows whether the collaborative type can be adapted into a traditional robotic system.

Table 2. Summary of collaborative industrial robotic systems properties.

Collaborative Type Benefit Power and Force
Limited Robot Traditional Robot

Safety-rated
monitored stop

Promptly respond
(stopping or moving)

Yes,
but not always

Yes, requires
additional sensors

Hand-guided High variability of programs,
quick changes Yes Yes, requires

additional sensors
Speed and separation

monitoring
Immediate resumption of

higher speeds
Yes,

but not always
Yes, requires

additional sensors
Power and force

limiting
Aplications requiring frequent

operator presence Yes No
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When choosing an industrial robot, the price needs to be considered in addition
to the type of task. Collaborative robots are more expensive, slower, and have worse
repeatability than classic industrial robots. As mentioned in [34,35], the price increase of
average collaborative robots can be from 50% to over 100%, and is higher compared to
non-collaborative ones. It is, therefore, more advantageous to keep the classic industrial
robot but supplement it with safety and collaborative elements. In a workplace where
human interaction with a robot is expected, the most appropriate collaboration methods are
safety monitored stop or speed and separation monitoring. In the first of these, the robot
must immediately stop when a human enters its workplace. At higher speeds, a robot takes
longer to stop, especially if it is large. As the working speed falls, the time to stop is also
dramatically reduced. When locating sensors that detect objects entering the workplace,
multiple factors must be taken into account. These factors influence the size of the robot’s
working zone. In the case of speed and separation, the robot gradually comes to a stop
while its surroundings are continuously monitored. If a human approaches the robot’s
working zone, the robot begins to move more slowly and can therefore come to a complete
halt more quickly. This is an advantage in silicoations where objects or humans may only
be passing by the robotic workplace and a reduction in working speed is sufficient.

The calculation of the minimum size of the danger zone incorporates several factors.
The first of these is the speed of the average human K, which, according to EN ISO
13,855, is 1.6 m/s. Another factor is the total time to stop T. The robot’s reach SR, the
length of the used tool ST , and the length of the working part SW also play essential roles.
The maximum values that can occur for SR, ST , and SW must always considered in the
calculations. For laser scanners, the last factor is the supplement C (calculated as follows),
which prevents reachover:

C = 1200− (0.4× H), (1)

where H is the height of the laser scanner location and 1200 is a distance in mm. The
following formula is used to calculate the minimum distance:

S = K× T + C + SR + ST + SW . (2)

The total time to stop T is the sum of the response times Ti of each device i. If a
scanner is used as a safety element, it is necessary to take into account the response time
of the laser scanner TS, the robot TR, and the robotic controller TC, as well as the time to
perform the logic cycle TLogicCycleTime. If additional equipment such as a Programmable
Logic Controller (PLC) is used in the safety system, the response time for each must be
calculated separately. The resulting relationship for determining the minimum size of the
danger zone then looks as follows:

S = K× (T1 + T2 + ... + Tn) + C + SR + ST + SW . (3)

Parameters such as TLogicCycleTime, TR, C, SR, and ST must be provided by the manu-
facturer. The size of the warning zone or other safety zones is not subject to such strict
conditions as for determining the minimum size of the danger zone. An example of min-
imum distance calculation is shown in Figure 1, where (1) is the danger zone, (2) is the
warning zone, and lastly (3) is the safe zone.



Sensors 2021, 21, 2419 6 of 27

SRSTK×T+C

S

123

Figure 1. Minimum distance calculation example.

2.2. Real-Time Location Systems

RTLS have multiple uses. The first is the identification of a tag and its carrier, while
others include the location of the carrier and the tracking of its movement in real time. This
technology is primarily intended for the indoor positioning and tracking of objects, with
an accuracy of up to tens of centimetres in the case of Ultra-Wide Band (UWB) technology.

As mentioned in [36], tracking the position of tags in RTLS systems is possible using
several methods, mostly based on determining position using a function of distance
travelled from the time needed to overcome this dependence. A method that works only
on this principle is called Time of Arrival (ToA). A more accurate method that enables
smoother measurement is the Time Difference of Arrival (TDoA) method, which uses
time differences for signals received from neighbouring transmitters, not only absolute
values. This implies the need to synchronize the times of the location system devices
(transmitters and receivers). Another method we could mention is Two-Way Ranging
(TWR). Communication begins with an anchor sending a message, after which a tag
receives the message and responds to the message after a time delay. After the response is
received, it is possible to calculate distance based on the message transmission speed and
the total time between sending the message and receiving the response.

In this paper, the location system uses the previously mentioned UWB technology,
which is based on low-power ultra-wide wireless communication. Signals are sent in short
pulses (0.16 ns) in a wide spectrum (500 MHz) on multiple frequency channels at once.
According to [37], UWB does not interfere with other transmissions in the same frequency
band. In addition, it eliminates the risk of capturing the reflection of the sent signal from
surrounding objects. With such fine time sampling, it is possible to capture and distinguish
such signal reflections, making the technology more accurate and robust.

When constructing an RTLS system based on UWB technology, it is important to
maintain a clear line of sight, meaning that all system devices can see each other. Every
obstacle reflects and absorbs parts of the signal, depending on its radio transparency and
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material type. This causes positioning inaccuracies and reduces the system range. Figure 2
shows how the UWB transmitter sends short signal impulses in a wide range, and the
pulse occupies a wide frequency band.
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Figure 2. UWB communication pulses. (a) Time–domain behaviour. (b) Frequency–domain be-
haviour.

2.3. Vision-Based Detection Technology

Similarly to human eyes, vision systems provide a massive amount of information
about the surrounding environment. According to [38], the current level of vision systems
is comparable to human vision. In addition, vision systems can calculate the distance of
each pixel and so we are able to create a depth map of the surroundings. A single depth
camera can replace several sensors by utilizing its knowledge of objects’ spatial positions
and their identification.

To date, most proposed vision-based recognition methods, as mentioned in [39], have
used additive Red Green Blue (RGB) colour model-based images for object detection.
Nonetheless, as presented by [40], contrast, entropy, correlation, energy, the mean, and the
standard deviation can be calculated from examined images. As stated in [41], the use of
the RGB colour model images has its advantages compared to grayscale ones by providing
three times more data, but it still has significant drawbacks. It omits the scene’s depth
information when converting from three into two dimensional space and providing the
mentioned illumination, texture, and colour information. This is why object recognition
methods based on RGB may be affected by external factors, which could significantly
hinder their usage in most practical applications.

Depth cameras are the result of progress in research and the decreasing costs of depth
sensors integrated with RGB cameras. This has led to the implementation of Red Green
Blue-Depth (RGB-D) images, which define the RGB values and the distance between the
RGB-D sensor of the camera and the captured object of interest. As mentioned in [42,43],
depth information is obtained by stereovision [44], time of flight (TOF) [17,45], or structured
light [46] depth cameras. The described types of depth cameras are shown in Figure 3.
According to [42,43], the working principles of depth cameras can be shortly described
as follows:

• Stereovision cameras use the triangulation principle for the calculation of the depth
of a captured scene. The use of two or more image sensors or cameras is needed to
perceive depth, simulating human binocular perception.

• TOF cameras emit infrared (IR) light, which is reflected back to the camera sensor by
objects in the captured scene.

• The last working principle is cameras based on capturing structured light. The camera
consists of an IR projector and a capturing sensor, which has similarities to stereovision
cameras, with the difference of replacing the second image sensor with a projector.
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Figure 3. Depth camera variations. (a) Passive stereo vision. (b) Active stereo vision. (c) Structured
light. (d) Time Of Flight.

3. Problem Statement and Main Work

Following the introduction, this paper aims to propose an experimental vision and
RTLS-based HRC setup that should provide an approach other than the reviewed state-of-
art technologies. Our aim was to analyze the downsides and try to improve them. Other
states-of-art technologies provide multiple solutions to ignore or exempt areas from the
workplace that are not monitored by the security system. This is beneficial, but it also
has drawbacks. Excluding certain spots within the workspace from virtual fencing could
create security risks. This paper’s approach addresses the issue of dynamically recognizing
objects which could come from any direction with a depth camera. The solution also
extracts the image features and checks with a certain confidence level if the recognized
object is a person. If the recognized object is a person, no exceptions are granted, and the
system reacts like any speed and separation monitored (SSM) HRC system, where the
distance from the person to the robotic system is cyclically compared. If the person enters
warning zones, the system slows down the robotic system’s speed, and if the intrusion
continues into the danger zone it completely stops the robotic system. The recognized
object is also checked against the RTLS tag position data to check if the tag ID has granted
exceptions. If such a case exists, the security system ignores these intrusions only if the
object is not detected as a person and allows it to move around the workplace without
modifying the speed of the robotic system. The results of this experimental collaborative
robotic workplace are presented in the corresponding section, which is followed by a
discussion and conclusion.

3.1. Test Workplace Specifications

The HRC safeguarding of the operator on the test workplace is achieved through SSM
by maintaining a certain minimum separation distance during operation. The intelligent
zoning design was implemented in a functioning robotic workplace. The function of this
workplace is the bin picking of objects that are then assembled using a robotic manipulator.
The maximum reach of the manipulator is 540 mm; its maximum speed in T1 mode is
250 mm/s, and in T2 mode it should achieve a theoretical maximum of up to 2 m/s, based
on [47,48]. A 3D scanner located above the robotic workplace scans a bin containing objects.
After identification, the scanner sends the object’s coordinates to the robot control system,
which sends the trajectory information to the robotic manipulator. The manipulator grabs
the object and assembles it with another object. The supply part of the process is carried
out using an autonomous supply trolley. The workplace floor plan is shown in Figure 4.
As the workplace area is limited, it was necessary to modify the individual zones’ size to
perform experiments for various depth camera settings.
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Figure 4. Test workplace floor plan. The red colour represents the danger zone, the yellow colour represents the warning
zone, and the green colour represents the safe zone. (1) Depth camera. (2) RTLS anchors. (3) Robotic workplace. (A–C)
RTLS measurement point, Table 3.

Table 3. RTLS accuracy based on the tag position within the test workplace.

UWB Settings Tag Position Figure 4 Dispersion of
Measured Values (m) Update Rate (Hz) Failed/Lost

Measurements (%)
A 0.17 3.07 21

Bitrate = 110 kbit/s
Preamble length =

2048 symbols
B 0.25 3.00 21

C 0.38 2.97 21
A 0.14 43.47 0

Bitrate = 850 kbit/s
Preamble length =

512 symbols
B 0.18 38.46 0.6

C 0.20 35.71 0.3
A 0.15 45.45 0.6

Bitrate = 6810 kbit/s
Preamble length = 64

symbols
B 0.20 47.61 0.4

C 0.21 58.82 0

The primary workplace components used for this article’s preparation were a KUKA
KR3 R540 robotic manipulator (the main specifications can be found in the
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datasheet [47,48]), a Stereolabs ZED depth camera (the datasheet can be found in [49]), a
Pozyx UWB real-time location system (details can be found in [50]), a Photoneo PhoXi 3D
scanner (details can be found in [51]), an internally developed supply trolley, and a com-
puter. The entire process can be split into two parts. The first is robot control, consisting of
the bin picking of objects performed by the robotic manipulator and an automated supply
by the mobile trolley. The second part is the supervisory control that monitors and zones
the robotic manipulator’s working environment and, depending on the external stimuli,
adjusts the performed task’s speed. Safety zones are then created using the input data from
the depth camera. The UWB-based location system operates concurrently to monitor the
spatial position of the tags. The depth camera is directly connected to the computer. In
contrast, the RTLS system is first connected to an embedded platform that uses the OPC
Unified Architecture (UA) protocol to communicate with the computer. The computer
then evaluates the input data and sends the information using the TCP/IP protocol to the
robot control system. The data received by the robot control system are processed by the
KUKA user interface KSS (KUKA.SystemSoftwarere), more precisely by a submit file (SF).
The SF is a background process inside the user interface, responding cyclically to changes
using its preprogrammed logic. In other words, the SF is superior to the user interface. In
this case, the SF sets the speed or halts the robot motors based on the computer’s input
data. The KSS user interface contains functions for the trajectory planning of the robotic
manipulator, and these functions are slaves to the SF settings. A simplified architecture
and the method of communication between the components of the security workplace are
shown in Figure 5.

Figure 5. Architecture of the test system.

RGB-D workplace image processing is performed by a ZED depth camera, where the
area covered by the depth camera is presented in Figure 4. The depth camera itself can
operate in four resolution modes, ranging from the lowest-quality Wide Video Graphics
Array (WVGA) at a resolution of Side by Side 2 × (672 × 376) pixels through to a 2.2 K
output at a resolution of 2 × (2208 × 1242) pixels. Depending on the mode, it is possible
to set the frames per second between 15 and 100 Hz. Depth recording uses the same
output resolutions as the RGB recording. The depth range of the camera is between 0.2
and 20 m. The camera’s field of view (FOV) is 110° × 70° × 120° (horizontal × vertical ×
diagonal). An 8-element wide-angle all-glass lens with optically corrected distortion and
an f/1.8 aperture is used. A USB 3.0 port is used for both connection and power supply.
The camera is compatible with the Windows 10, 8, 7; Ubuntu 18 and 16; and Jetson
L4T operating systems. The camera enables integration with third-party SW, including
Unity, OpenCV, ROS, Matlab, Python, and C++. The manufacturer’s minimum system
requirements are a dual-core 2.3 GHz processor with 4 GB RAM and an NVIDIA graphics
card with a compute capability of over 3.0. The camera’s position was optimally chosen so
that it was possible to capture the available space around the robotic workplace.
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The Pozyx location system based on UWB radio waves forms a separate part of the
workplace. This location system requires fixed anchors, tags, and a computing unit to
process the data. The placement of the anchors influences the measurement accuracy.
Figure 4 shows how the anchors are arranged on the ceiling within the room to illustrate
their position accurately as possible. When placing the anchors, the essential advice in [52]
was followed to achieve maximum measurement accuracy. The anchors use the TWR
positioning principle and need a continuous 3.3 V power supply, as they do not have
batteries. The Decawave DW1000 transceiver allows a communication speed of up to
6.8 Mbps. The selected tags are shields compatible with Arduino via an I2C bus. The
board also includes an STM32F4 microcontroller. The tags contain the same transceiver
as the anchors and also require a continuous power supply. The manufacturer states an
accuracy of 10 cm in a noise-free environment, which is sufficient for our purposes. The
initial data processing is performed on an embedded Raspberry Pi 3 platform. Several
tasks are performed on this embedded platform—e.g., reading data, noise filtering, and
then sending the processed data using the OPC UA protocol to the computer. The use of
an embedded platform has proven to be a satisfactory solution.

The main part of the algorithm is run on a computer with a 10th-generation Intel Core
i5 processor and a quad-core processor running at 2.5 GHz with the option of overclocking
to 4.5 GHz. The computer has 16 GB DDR4 RAM running at 2.93 GHz. A 1 TB SSD
provides sufficient storage and enables high read and write speeds. A graphics card that
supports the Compute Unified Device Architecture (CUDA) platform is an essential part of
the computer. In this case, an Nvidia GeForce RTX 2060 with 6 GB RAM has been used.
This graphics solution was needed to provide compatibility between the camera system
and the computer itself.

3.2. Depth Recording Processing

Depth monitoring at a robotic workplace is achieved using a depth camera working
on the passive stereo principle. The camera manufacturer offers interfaces for several
programming languages; Python was used here. An API was created to read data from the
depth camera with the subsequent detection of moving objects. As the camera uses the
passive stereo principle, it is possible to access the left and right video streams separately
and the depth recording. The depth recording from the camera is stored as a Point Cloud
in the variable Point3D. Let the Point Cloud be represented as Point3D = {Pij}, where
Pij ∈ R4 is a layer of information defined as Pij = [xij, yij, zij, RGBAij], with i = 1, . . . , W,
j = 1, . . . , H.

The user selects the width W and height H of the stream—see Section 3.1. The Point
Cloud is composed of data from four 32-bit channels containing [xij, yij, zij] coordinates for
the pixel Pij relative to the center of the camera and an RGBAij component, which contains
colour information, where A is the alpha channel.

To create the safety zones, the principle whereby an initial reference recording of
the room is created to which each measurement is compared was used. The reference
recording contains the distance of each pixel to the center of the camera. The initial scan
quality is critical, as any error is transferred to all the other measurements. The Python
programming language offers the OpenCV library that enables two images to be compared
and find the differences. This work does not compare camera recordings based on changes
in the colour component but rather changes in depth. Therefore, it is necessary to convert
the Point Cloud data into a form used by the OpenCV library by removing the RGBA
element using the method delete(Point3D, 3, axis = 2) contained in the NumPy library.
The depth change between the reference and the actual recording is defined as Point3Ddi f f .
For this subtraction operation, we use the subtract method included in the NumPy library:
subtract(Point3Dre f erence, Point3Dactual). Point3Ddi f f = {Pij}with the same dimensions as
the image, where information about the RGBA component is eliminated and information
about the size of the coordinate change in the X, Y, Z axes is retained for each pixel—i.e.,
Pij = [∆xij, ∆yij, ∆zij]. Figure 6 illustrates the output from the depth camera.
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Figure 6. Depth image of the room.

The values in Point3Ddi f f can be immediately adjusted and possible measurement-
related errors eliminated. The maximum change value is set based on the geometric
dimensions of the monitored room. If this value is exceeded, it is clear that an erroneous
measurement has occurred for the relevant pixel. Another type of undesirable measured
value is a very small number—the result of measurement noise. An experimentally mini-
mum change value for a shift in one axis of 0.3 m was set. At this value, all the undesirable
noise that occurred was eliminated. This value was also sufficiently high to enable the con-
fident identification of a human and a mobile supply trolley. The last type of undesirable
value that occurs in this part is NaN (not a number). By observation, it was established that
these values tended to occur at the edges of the recording. All these types of undesirable
values are a negligible part of the depth recording and can be eliminated without adversely
affecting the image recognition. The elimination of the undesirable measurement values
was performed by replacing them with the value 0. The zero values were acquired by
pixels where there was no change. After the adjustment, Point3Ddi f f contains real values
ranging from 0.3 m to the room’s maximum distance. As the RGB component of each
image contains values from 0 to 255, scaling is required using the following relationship:

valuenew = (255− 0)× value− valuemin
valuemax − valuemin

+ 0, (4)

where 0 is the lower value of the new interval, 255 is the upper value of the new interval,
and valuemin and valuemax are the limit values measured based on the geometry of the room.
After rounding to whole numbers and the conversion to grayscale, it is possible to proceed
to the threshold. The threshold function compares the pixel value with the threshold_value.
If this value is higher than the threshold_value, the pixel value is replaced. This replacement
creates a new image consisting of only two colours. The OpenCV library provides several
threshold types. After testing various threshold methods, the most suitable choice appears
to be Otsu’s binarization. Otsu’s binarization works with bimodal images. These are
images whose histogram has two peaks. According to [53], the threshold value is set as the
mean value between these two peaks.

As mentioned in [54], Otsu’s algorithm tries to find a threshold_value σw(t), which
minimizes the weighted within-class variance given by the equation:

σ2
w(t) = q1(t)σ2

1 (t) + q2(t)σ2
2 (t), (5)
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q1(t) =
t

∑
i=1

P(i), q2(t) =
I

∑
i=t+1

P(i), (6)

σ2
1 (t) =

t

∑
i=1

(
i− µ1(t)

)2 P(i)
q1(t)

, σ2
2 (t) =

I

∑
i=t+1

(
i− µ2(t)

)2 P(i)
q2(t)

, (7)

µ1(t) =
t

∑
i=1

iP(i)
q1(t)

, µ2(t) =
I

∑
i=t+1

iP(i)
q2(t)

, (8)

where q1(t) and q2(t) are the probabilities separated by a threshold t, σ1(t) and σ2(t) are
the variances, µ1(t) and µ2(t) are the mean, P(i) is the probability, i is the quantity of pixels,
and I is the maximum pixel value (255).

The OpenCV library also includes another essential function: f indContours. A contour
is a curve connecting all the continuous points with the same colour. This function requires
three parameters: a grayscale image, a hierarchy between contours, and an approximation
method. The contour hierarchy is the relationship between the parent (external) and child
(internal) contour. In this work, we selected the parameter Retr_External for the hierarchy.
This setting only takes parent contours into account, as it is necessary to identify an object
as a whole. The last parameter determines whether the contour should remember all the
boundary points. This option was not needed, so the approximation method SIMPLE,
which only remembers the two endpoints, was selected. Figure 7 shows the highlighting of
an object that entered the workplace after threshold application, and Figure 8 shows the
same identified object on the depth recording of the robotic workplace.

Figure 7. Highlight of a moving object.

Figure 8. Marked and identified object on the depth image. The red rectangle represents an identified
object based on depth change.
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Once an object is identified, it is possible to proceed to the computation of each pixel’s
distance to the robotic workplace and establish the shortest distance. It is necessary to find
the shortest distance for each object as a whole. Each created contour represents one object.
The algorithm cyclically scans all the values of the pixels in the contour and calculates the
distance of the given pixel D to the center of the robotic workplace using the formula:

d = (x0 − x1)
2 + (y0 − y1)

2 + (z0 − z1)
2, (9)

D =
√

d, if d > 0, (10)

where x0, y0, and z0 represent the displacement for each pixel read from Point3D and x1,
y1, and z1 are the distances between the center of the camera and the center of the robotic
workplace. The camera is 2.5 m above the ground and 0.9 m behind the robotic workplace,
and, in addition, is rotated at an angle of 45°. The camera axis xcam is the same as that of
the robot axis xrob and thus x1 = 0. The values y1 and z1 are subsequently computed using
Formulaes (11) and (12), which stem from Figure 9. Figure 9 shows the relative positions of
the robot and camera coordinate systems.

sin α =
a′

b′
→ a′ = sin α× b′, a′ = y1, (11)

b
b′

=
c

c′′
→ c′′ =

c× b′

b
, c′′ = z1. (12)

Figure 9. Side view of the workplace for the relative positions of the robot and camera
coordinate systems.

3.3. Human Recognition

After successfully processing the depth image and identifying the objects moving in
the robotic workplace, it is vital to establish whether a given object is a human. It is not
suitable to apply human recognition to the depth recording. As a stereo depth camera is
used, left and right RGB streams are available. The data from only one of the streams are
sufficient. The data contain the RGB component of each pixel. The actual identification
of humans is performed using the Histogram of Oriented Gradients (HOG). HOG is a
feature descriptor that focuses on the structure or shape of an object. Unlike edge features,
which can only establish whether a given pixel is an edge, HOG is capable of establishing
both an edge and its direction. This is achieved by dividing the image into small regions
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and a gradient, and the orientation is computed independently for each region. Finally, a
histogram is created for each region separately. More information about the functioning of
HOG and its application in identifying humans can be found in the work [55].

The HOG algorithm is part of the OpenCV library. When initializing HOG, it is
possible to select a preprepared human detector that has already been trained to iden-
tify humans. The used detectMultiScale function for detecting humans has four input
parameters: image, winStride, padding, and scale. The winStride parameter defines the step
size of the detection window in the horizontal and vertical directions. Smaller parameter
values lead to a more accurate result, but also extend the computational time. The padding
parameter indicates the number of pixels in the x and y directions of the detection window.
The last parameter, scale, determines the factor according to which the window is resized in
each layer of an image pyramid. Again, the smaller the scale parameter value, the more ac-
curate the result, but the longer the time needed for the computation. The detectMultiScale
function outputs two attributes. The first attribute rects contains information about all the
boundary boxes. This information is in the format of the coordinates of the lower left point
and the width and height of the individual box. The second attribute is weight, containing
the confidence scores.

The human recognition subroutine is part of the algorithm for identifying objects
from the depth recording. Every object that enters the workplace is identified through the
change in depth and marked with a contour. The contour is defined using the coordinates
of the left lower point and the width and height. The identification of humans alone is not
sufficient to verify whether there really is a person in the workplace. A better option is
when the same pixels, representing the depth change and human identification, overlap. It
is possible to verify overlap using the conditions L1x ≥ R2x or L2x ≥ R1x and L1y ≥ R1y or
L2y ≥ R1y, where L1 and R1 are the coordinates of the lower left and upper right point of
the box, indicating a potential person in the image. Similarly, L2 and R2 are the coordinates
of the contour bounding the depth change. If none of the conditions apply, there has been
an overlap. Figures 10 and 11 show the identification of an object from the depth recording
and the verification of a person’s presence in the same recording.

Figure 10. Object identification.
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Figure 11. Verification of human presence. The red rectangle represents an identified object
based on depth change. The blue rectangle represents an identified potential person based on the
HOG algorithm.

3.4. Supply Trolley Recognition Using RTLS

Autonomous supply trolleys are nothing new in the industry. There are usually several
such trolleys in a factory, and they all generally look alike. Although a camera can identify
them in space, it cannot determine which of the trolleys it sees. The trolleys need to be
equipped with unique ID numbers. In such cases, it is possible to apply a location system
based on the UWB principle.

The RTLS sends information via an embedded platform about each tag’s ID and loca-
tion to a computer. The RTLS works with its own coordinate system, and so the coordinate
systems need to be unified. A procedure was chosen whereby the camera coordinate
system is converted to the RTLS coordinate system. This conversion is performed only for
the point with the smallest value for each identified object. The point with the smallest
value represents the shortest distance to the robotic workplace. The location data are read
from Point3D. Using basic trigonometric functions and the robot’s known location in the
RTLS coordinate system, the coordinates of the nearest point are subsequently converted
to the RTLS coordinate system. It is crucial to consider several factors during the actual
comparison of whether the location from the RTLS is the same as the location from the
camera, as shown in Figure 12. Both systems work with a certain degree of inaccuracy.
The inaccuracy of the camera increases with distance, while the RTLS inaccuracy depends
on several factors. The inaccuracy is increased in a working environment where wave
reflections occur. Another possible factor could be the location of the tag on the supply
trolley. As in this application, the RTLS is not used for precise positioning but to identify a
supply trolley—accuracy is less critical.
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Figure 12. Supply trolley recognition with the help of RTLS and a depth camera. The red rectan-
gle represents an identified object based on depth change, and its location is verified against the
RTLS system.

4. Results and Discussion

During the experiments, the workplace’s primary safety elements—including the
safety laser scanner—were switched off. The robotic manipulator worked in automatic
mode but at a reduced maximum speed. An authorized person supervised the workplace
for the whole period to avoid damage to health or property. Due to a lack of space, the
workplace was split into three zones: danger, warning, and safe. However, the safety
algorithm is not limited by the number of zones. The dynamic safety system’s functionality
using the depth camera and RTLS was verified for two simulation scenarios.

The first scenario was the regular operation of the robotic workplace, including its
supply. In this option, people were not allowed to enter the robotic workplace, and hence
the part of the safety algorithm used to identify humans was omitted, as is shown in
Algorithm 1. Trolleys that do not have a tag can enter the workplace and are not detected
by RTLS, so using only RTLS to determine the objects in the workplace is not a satisfactory
safety source. The objective of this scenario was to verify the reduction in the computational
time needed for the safety algorithm. The processing and evaluation of the data from
the depth camera were performed on a computer. The computation time needed for the
safety algorithm differs depending on the number of objects for which it is necessary to
calculate the smallest distance to the robotic workplace. In this scenario, the measurement
was carried out separately in a case where supply trolleys were carrying out their tasks
at the workplace retained. The second case was where no supply trolleys were at the
workplace and the only thing moving was the robotic manipulator. The actual movement
of the robotic manipulator is evaluated as movement around the workplace. Therefore, the
area in which the manipulator performs its tasks is ignored, resulting in a further reduction
in the computation time. The resolution of the depth camera also influences the speed of
the safety algorithm. Figures 13 and 14 show the time it took for the safety algorithm to
process a single image for different depth camera settings. It is also possible to see the
percentage deviation between the actual measurement and the reference recording.

The scenario’s objective was to grant an exception for a supply trolley whose move-
ment trajectory was known. The supply trolley had a unique ID and did not supply the
given workplace—it only passed through the safety zones. The given trolley did not affect
the operation or safety of the robotic workplace. According to the workplace’s safety
elements, the manipulator speed should be adapted as soon as the trolley entered the safety
zone. The granting of the exception meant that even if the trolley passed through the safety
zone, the robotic workplace’s speed did not change. Of course, this applies only if no other
object enters the zone. A trolley supplying the given workplace directly interferes in the
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production process and does not have an exception at this workplace, so the speed changed
in this case. Many factors are taken into account when evaluating exceptions, including the
size of the material supplied, the distance between the supply route and the robotic system,
and even the possibility of collision. Hence, a safety technician must be responsible for
granting exceptions in practice. The presented safety system results in an increase in the
rate of work without the need for downtime.
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Figure 13. Results without HOG and without movement.
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The second simulation scenario anticipates the presence of a human at the workplace
in addition to supply trolleys. The primary part of the safety algorithm is the same for both
scenarios. In this case, there is also an incorporated subroutine for recognizing humans,
as is represented by Algorithm 2. The speed and quality of human detection are directly
dependent on the entry parameters winStride and scale. These parameter values were
experimentally selected: winStride = (4, 4) and scale = 1.175. When setting the parameter
values, the emphasis was on ensuring that the camera identified the person in every
accessible part of the robotic workplace.On the other hand, these parameter values resulted
in an increase in the safety algorithm’s computational time. A longer processing time for
each image increases the total response time, which is part of Equation (3) and thereby
increases the size of the zone itself. The security algorithm was tested using two cases, as
in the first simulation scenario. In the first case, there were no trolleys or people in the
workplace and the robotic manipulator was the only thing that moved. In the second case,
supply trolleys moved around the workplace and people randomly passed through the
workplace. The experiment was performed with different camera settings. The results
in Figures 15 and 16 show the computing time per cycle and, in addition, the deviation
parameter between the reference recording and the actual measurement.

Algorithm 1 Security algorithm without human recognition
Input: Stereo stream from the depth camera and tag position from the RTLS system.
Output: Robotic system speed (%).

1: Initialize depth camera parameters (resolution) and RTLS system (OPC UA).
2: Set xR−C, yR−C, zR−C, xRTLS−R, yRTLS−R, and zRTLS−R as the known dimensions be-

tween the depth camera (C), robotic system (R), and beginning of the RTLS coordinate
system.

3: Save the reference depth image into point3Dre f erence.
4: while the robotic workplace is switched on do
5: Save actual depth image into point3Dactual .
6: Determine point3Ddi f f = substract(point3Dre f erence, point3Dactual).
7: Convert point3Ddi f f to grayscale.
8: Eliminate initial measurement errors.
9: Scale the point3Ddi f f values using Equation (4).

10: Convert into a binary image using the function cv2.threshold.
11: Contour search with the function cv2. f indContours.
12: Perform distance calculation between each value in the contour and the robotic

system

dist =
√
(valuex − xR−C)2 + (valuey − yR−C)2 + (valuez − zR−C)2.

13: Convert mindist coordinates to RTLS system coordinates.
14: Find all contours where the RTLS system coordinates match with the contour

coordinates and the RTLS tag ID is set to have an exception.
15: if no other contours are found then
16: Set robot_speed = 20.
17: else
18: find mindist of the remaining contours.
19: if mindist ≤ danger_zone_size then
20: Set robot_speed = 0 for the danger zone.
21: else if warning_zone_size ≥ mindist > danger_zone_size then
22: Set robot_speed = 10 for the warning zone.
23: else
24: Set robot_speed = 20 for the safe zone.
25: end if
26: end if
27: end while
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Algorithm 2 Security algorithm with human recognition
Input: Stereo stream from the depth camera and tag position from the RTLS system.
Output: Robotic system speed (%).

1: Initialize depth camera parameters (resolution) and RTLS system (OPC UA).
2: Set xR−C, yR−C, zR−C, xRTLS−R, yRTLS−R, and zRTLS−R as the known dimensions be-

tween the depth camera (C), robotic system (R), and the beginning of the RTLS coordi-
nate system.

3: Save the reference depth image into point3Dre f erence.
4: while the robotic workplace is switched on do
5: Save actual depth image into point3Dactual .
6: Save actual image into image.
7: Search for the coordinates of potential human rects in the picture using function

hog.detectMultiScale.
8: Assign coordinates rects to L1 and R2.
9: Determine point3Ddi f f = substract(point3Dre f erence, point3Dactual).

10: Convert point3Ddi f f to grayscale.
11: Eliminate initial measurement errors.
12: Scale the point3Ddi f f values using Equation (4).
13: Convert into a binary image using the function cv2.threshold.
14: Perform contour search with the function cv2. f indContours.
15: Assign contour coordinates to L2 and R2.
16: Verify that the contour corresponds to the identified person

doOverlap(L1, R1, L2, R2).
17: if doOverlap == True then
18: Set humanPresence = True.
19: end if
20: Calculate the distance between each value in the contour and the robotic

system

dist =
√
(valuex − xR−C)2 + (valuey − yR−C)2 + (valuez − zR−C)2, for dist > 0.

21: Find the mindist of each contour.
22: Convert mindist and minhuman coordinates to RTLS system coordinates.
23: Find all contours where the RTLS system coordinates match with the contour

coordinates and the RTLS tag ID is set to have an exception.
24: if no other contours are found and humanPresence == False then
25: Set robot_speed = 20.

else
26: find mindist of the remaining contours.
27: if mindist ≤ danger_zone_size then
28: Set robot_speed = 0 for the danger zone.
29: else if warning_zone_size ≥ mindist > danger_zone_size then
30: Set robot_speed = 10 for the warning zone.
31: else
32: Set robot_speed = 20 for the safe zone.
33: end if
34: end if

The granting of an exception to transit or enter the safety zone worked on the same
principle as in the first simulation scenario. In this case, however, it was ensured that the
person’s location took priority during the granting of the exception. This change means
that an exception cannot be granted for a supply trolley if a person enters a safety zone
with a trolley in it. Consider safety zone 1 as the nearest to the robotic system and safety
zone 3 as the farthest from it. If a supply trolley with an exception is in safety zone 2 and
a person is in safety zone 3, then the trolley will be granted an exception. We have also
considered that the person will have a tag on them, and this tag has an exception. In this
case, the algorithm will cancel the exception and evaluate the situation in the same way
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as when a person without a tag enters the workplace. This simulation scenario allocates a
higher priority to a person than to other objects.

0 100 200 300 400 500 600 700 800

Measurement No.

0

0.1

0.2

0.3
WVGA resolution without movement

2.85

2.9

2.95

3

0 100 200 300 400 500 600 700 800

Measurement No.

0.4

0.5

0.6

0.7

C
o
m
p
u
te

ti
m
e
p
e
r
c
y
c
le

(s
)

720p resolution without movement

3

4

5

6

D
e
p
th

m
a
p
d
i,
e
re
n
c
e
(%

)

0 100 200 300 400 500 600 700 800

Measurement No.

1

1.4

1.7

1080p resolution without movement

6.7

7.2

7.6

8.1

Figure 15. Results with HOG and without movement.
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Figure 16. Results with HOG and with movement.

Both scenarios were tested for the presence of multiple people or trolleys at the same
time. The algorithm can identify several objects simultaneously. The more objects there are
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in the workplace, the more distances between the object and the robotic workplace must be
calculated by the algorithm, which is reflected in the speed of the algorithm. However, the
safety algorithm is not intended for human–trolley interaction.

A switch to a higher camera resolution causes an increase in measurement or back-
ground noise, which can be seen on the graphs on Figures 13–16. The Testing workspace
does not have adequate protection against adverse lighting effects. The depth camera’s
principle is based on passive stereo, therefore the sunlight strongly affects the lightning
conditions. This impact is shown in the second graph in Figure 15, where the brightness
changes continuously during the measurement, together with external lighting conditions
interfering with the robotic workplace. Meanwhile, the graph in Figure 17 shows the
effect of outdoor lighting condition changes during the day when comparing the reference
image with the actual image. The reference record was made in the morning when the
sun was shining into the room. A subsequent comparison of the current record with the
reference shows that the sun’s rays stopped entering the room at around 09:30. Between
09:30 and 14:30, the lighting conditions were relatively constant, and sunset began around
14:30. To solve this problem, it is necessary to add a reference image refresh function after
some time when no moving objects are detected. This reference refresh could solve the
issue of significant light differences over time in workplaces. A more extended algorithm
computation time means an increase in the safety system’s total reaction time and thus a
necessary enlargement of the safety zones.
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Figure 17. Influence of light changes during the day.

The evolution of computational time per cycle with respect to image quality is shown
in Figure 18. Based on the approximation of the data obtained from the measurements, it is
possible to predict the average calculation time for the depth camera’s 2.2K resolution. The
prediction is shown in Figure 18 and should be around 0.66 s without HOG and around
1.89 s with HOG. A higher camera resolution does not allow for the quick detection of
a person’s presence within the monitored workspace. However, this deficiency can be
compensated for by increasing the safety zone.
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Figure 18. Dependence of the average computational time per cycle on the pixel count.

Human recognition around the robotic workplace was verified for various scenarios.
Figure 19a–c aims to identify a person in different lighting conditions, different positions
in the room, and different clothing colours. Meanwhile, Figure 19d–f focus on identifying a
person who is not fully visible in the camera stream. We found that the HOG algorithm can
just as successfully identify moving people as static ones. Identification problems occurred
when the person was directly under the camera, regardless of whether they were moving
or not. The reason for this is that, when viewed from above, human proportions are lost
from the camera’s view.

The speed and accuracy of the RTLS have a significant impact on the correct identifi-
cation of the supply trolley. Based on the advice in [56], three measurement points were
selected for testing the accuracy. These points reflect the most common cases that can occur.
The positions of the measurement points are shown in Figure 4. During measurement, the
tag was placed on a static supply trolley. Point A on Figure 4 represents an ideal case when
no object is causing interference in the proximity of the tag other than the trolley—clear
line of sight. The most common variant in practice is that around the tag there are objects
causing interference, such as metals—measurement point B. The last point, C, presents a
case where the tag is very close to one of the anchors.
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(a) (b) (c)

(d) (e) (f)
Figure 19. Validation of human recognition for various cases. The blue rectangle represents a potential person identified
using the HOG algorithm. (a) A person wearing a green shirt. (b) A person wearing a blue shirt. (c) A person wearing a
black shirt who is partially visible. (d) A person wearing a red shirt holding a small box. (e) A person wearing a white coat
and holding a big box. (f) A person wearing a white coat behind a whiteboard.

Different UWB communication settings result in different accuracies and total mea-
surement times. Key parameters are the bitrate and preamble length. Parameters such
as channel and pulse repetition frequency do not significantly affect the accuracy and
measurement speed. Table 3 compares the differences between the different UWB settings.
The bitrate of 110 kbit/s and preamble length of 2048 symbols represent slow communi-
cation with a large amount of data; the opposite values and behaviors are shown for the
bitrate of 6810 kbit/s and the preamble length of 64 symbols. The last option is something
between these two settings. The third column of Table 3 shows the measurement accuracy
at different settings and different locations. The smaller the dispersion, the more accurate
the measurement, because the points are closer to each other. The most suitable parameters
are 850 kbit/s for the bitrate and 64 symbols for the preamble length, which were also used
during the testing of the security algorithms. The update rate did not fall below 35 Hz for
these values. As the supply trolley has a maximum speed of 0.65 m/s, the selected UWB
parameters are sufficient for the given application. The trajectory of the trolley movement
during the measurement did not affect its identification by RTLS.

5. Conclusions and Future Work

The contribution and novelty of this paper can be seen in the practical feasibility of the
approach proposed and its improvement on the state-of-the-art technologies, as mentioned
in the introduction. Thus, we have aimed to improve and expand these concepts and create
a different view of the safety of robotic collaborative workspaces. This concept can revamp
existing security solutions through the possibility of granting exceptions for moving objects
entering danger zones. The downtimes created by incorrect intrusion detection will be
reduced, and the RTLS technology can also monitor the flow of material in the process
and optimize the trajectories of autonomous trolleys. Thus, the implementation of RTLS
has multiple benefits for companies. The whole system can be modified according to the
company’s needs. Another advantage is its compatibility with older robotic controllers. Its
disadvantages are its lack of safety certification, the need to deploy RTLS (if not already
available), and the longer per cycle computing time with higher camera resolutions.

The results of the experiments show how the camera resolution and number of objects
in the workplace impact the image processing speed. The results show that lowering the
resolution of the depth camera shortens the computation time. Keeping other things equal
at the workplace, the computation time increased 9.60 times without HOG and 9.64 times
with HOG when the depth camera resolution increased from 672 × 376 to 1920 × 1080.
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The noise rose from 3% to 10% for the mentioned resolutions. A more extended algorithm
computation time means an increase in the safety system’s total reaction time and thus a
necessary enlargement of the safety zones.

For the selected workplace and using the lowest camera resolution of 672 × 376, the
radius of the danger zone size is 3200 mm, according to Equation (3). For a 1920 × 1080
resolution, the danger zone’s radius is increased to 5500 mm due to the longer processing
time of the depth record.

In summary, we proposed an interesting and viable HRC concept with the application
of alternative technologies to improve robotic workplaces’ safety and efficiency. Using a
depth camera, safety zones were created around the robotic workplace and objects moving
around the workplace were concurrently identified. The depth camera was also used to
verify whether an identified object at the workplace is a person by using a Histogram of
Oriented Gradients. The unequivocal identification of supply trolleys was achieved with
the help of a real-time location system based on ultrawideband technology. The robotic
manipulator’s speed of movement was regulated based on the objects identified and their
distance from the robotic workplace. The benefit of this method lies in its ability to grant
exceptions for supply trolleys that do not disrupt or jeopardize the operation of the robotic
workplace, thus avoiding undesirable downtime. Based on our practical experience, we
have not seen in industrial applications the interconnection of RTLS technology and depth
cameras for the purpose of increasing the safety of robotic workplaces, as mentioned in the
article, which we consider to be our main contribution.

Future work could focus on transferring the demanding image processing from a
Central Processing Unit (CPU) to a Graphics Processing Unit (GPU), which could signifi-
cantly reduce the computation time and provide an opportunity to increase the resolution
of the processed image. One interesting alternative would be to use a CPU and GPU for
simultaneous computation. The depth camera API offers the option to save a captured
point cloud in the GPU memory. This would enable us to utilize the GPU’s computa-
tional power for some of the computational work, and the result would be sent to the
CPU for further evaluation. It would be worth considering using the NVIDIA Jetson
platform for image processing and evaluation or using cloud-based computing options for
decentralized computations.
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