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ABSTRACT Bronchoscopy inspection, as a follow-up procedure next to the radiological imaging, plays a
key role in the diagnosis and treatment design for lung disease patients. When performing bronchoscopy,
doctors have to make a decision immediately whether to perform a biopsy. Because biopsies may cause
uncontrollable and life-threatening bleeding of the lung tissue, thus doctors need to be selective with
biopsies. In this paper, to help doctors to be more selective on biopsies and provide a second opinion on
diagnosis, we propose a computer-aided diagnosis (CAD) system for lung diseases, including cancers and
tuberculosis (TB). Based on transfer learning (TL), we propose a novel TL method on the top of DenseNet:
sequential fine-tuning (SFT). Compared with traditional fine-tuning (FT) methods, our method achieves
the best performance. In a data set of recruited 81 normal cases, 76 TB cases and 277 lung cancer cases,
SFT provided an overall accuracy of 82% while other traditional TL methods achieved an accuracy from
70% to 74%. The detection accuracy of SFT for cancers, TB, and normal cases are 87%, 54%, and 91%,
respectively. This indicates that the CAD system has the potential to improve lung disease diagnosis accuracy
in bronchoscopy and it may be used to be more selective with biopsies.

INDEX TERMS Bronchoscopy, lung cancer, tuberculosis, DenseNet, deep learning, sequential fine-tuning,
computer-aided diagnosis, transfer learning.

I. INTRODUCTION
Lung cancer is also called bronchogenic carcinoma, because
about 95% of primary pulmonary cancers originate from
bronchial mucosa. Lung cancer is the most deadly cancer,
with a five-year survival rate of 18.1% (based on 2007-
2013 SEER database [1]). In 2014, it was estimated that there
were 527,228 people living with bronchogenic carcinoma in
the United States.1 In China, lung cancer is the most common
cancer and the leading cause of cancer death, especially
for men in urban areas [2]. There were 546,259 tracheal,

1https://seer.cancer.gov/statfacts/html/lungb.html

bronchus, and lung (TBL) cancer deaths, about one third of
the 1,639,646 deaths on a global scale in 2013 [3]. Another
serious health problem in developing countries derived from
the lung is tuberculosis (TB). China accounts for more than
10% of the global TB burden. Currently, Chinese govern-
ment aims to suppress the TB prevalence from 390 per
100,000 people to 163 per 100, 000 people and stabilize it
by 2050 [4].

Chest X-ray is a cheap and fast imaging device which are
commonly used for the diagnosis of lung diseases including
pneumonia, tuberculosis, emphysema and cancer. It is partic-
ularly useful for emergency case. With a very small dose of
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radiation, X-ray generates a 2D projection image of chest and
lungs. However, due to its limitation in visualizing lung in 3D,
it is gradually replaced by chest CT that offers 3D imag-
ing. The chest CT is widely used for lung nodule detection.
The downside of chest CT is its relatively higher radiation.
However, in developing countries, chest X-ray is still used
as a primary tool for tuberculosis screening or diagnosis.
With these radiological imaging tools, radiologists are able
to diagnose lung diseases or make a referral in a screening
situation.

Once patients are suspected to have lung cancer or TB
with X-ray or CT, bronchoscopy can be a followed-up from
radiological imaging. Bronchoscopy is used as one invasive
tool to directly detect diseases since 1960s [5]. Fig. 1 shows
an example of normal tissue, TB and lung cancer in bron-
choscopy. We can observe that for invasive TB, the lumen
surface suffers from inflammatory change with hyperemia,
edema and ulceration. Lung adenocarcinomas grow extralu-
minally and lead to lumen stenosis without affecting mucosal
surface of lumen and therefore, the mucosal surface of lumen
is relatively smooth. However, squamous lung cancers always
form intruding nodules and are difficult to be differentiated
from TB granuloma visually. Computational aid is therefore
needed in bronchoscopy, especially for lesion discrimination
and detection. Accurately targeting disease areas could sig-
nificantly reduce the biopsy trauma and increase diagnostic
accuracy [6].

One typical computer-aided diagnosis (CAD) technique
for bronchoscopy is so called virtual bronchoscopy (VB)
[7], [8]. VB is normally created from CT scans and used
for guiding the bronchoscopy to locate lesions [9], [10].
Several techniques, such as segmentation [11], [12], registra-
tion [13]–[16] and tracking [17]–[19], has been introduced to
the VB to facilitate the guiding process. Despite the guiding,
VB also improves diagnostic accuracy for peripheral lesions
compared with traditional bronchoscopy [9].

Due to the limitation of traditional bronchoscopy in detect-
ing small lesions (e.g. a few cells thick), autofluorescence
bronchoscopy (AFB) [20]–[22] and narrow band imaging
(NBI) [23] are introduced. These new imaging techniques
improved the sensitivity [24] or specificity [23] for the early
stage cancer detection. Although AFB and NBI have their
advantages for lung cancer diagnosis, the traditional bron-
choscopy is still the most used technique in daily clinical rou-
tine practice and bronchoscopic biopsy is a cornerstone for
the pathological diagnosis. However, bronchoscopic biopsy
may cause life-threatening bleeding during the operation.
Therefore, it is very necessary to be selective on the bron-
choscopic biopsies. To improve the diagnostic accuracy with
less trauma in bronchoscopic biopsies, CADs technique can
play a role.

Although CADs were widely studied in other medical
imaging area [25]–[31], to the best of our knowledge, CAD
system has not properly studied for the traditional bron-
choscopy yet. In this study, we are the first group to develop
a CAD system to classify cancer, TB and normal tissues in

FIGURE 1. A bronchoscopy image of a normal (a), TB (b) and cancer
(c) case.

traditional bronchoscopy. To boost classification perfor-
mance, we applied the latest deep learning techniques in
this study. To deal with the limited number of labeled data,
we are the first to propose a novel transfer learning concept:
sequential fine-tuning.

II. METHOD
A. CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (CNNs) [32] is a powerful
tool for automatically classifying 2D or 3D image patches
(input). It usually contains several pairs of a convolution layer
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FIGURE 2. Demonstration of Densenet 121 used in our system.

and a pooling layer. The intermediate outputs of these layers
are fully connected to a multi-layer perception neural net-
work. Recently, new tricks, including dropout [33], batch nor-
malization [34] and resnet block [35], have been introduced.
The purpose of dropout is to solve over-fitting that is caused
by co-adaptations during training. Batch normalization helps
to accelerate the training of deep networks by normalizing
activations. It achieves the same accuracy with 14 times fewer
training steps [34], and outperformed the original model.
Resnet block is proposed in [35], where the authors find
that identity shortcut connections and identity after addition
activations are important for smoothing information propaga-
tion. They also design 1000-layer deep networks and obtain a
better classification accuracy. Their novel deep networks are
designed for creating a direct path for propagating informa-
tion through the entire networks instead of within one residual
unit and are trained easily in comparison with the original
ResNet architecture [36].

B. USING PRE-TRAINED NETWORKS / TRANSFER
LEARNING
A big advantage of CNN is that when the number of training
images increases, the performance of the networks improves.
Training a deep learning model requires a large amount of
labeled data. However, in many medical image classification
cases, the number of labeled data is limited for training.
Transfer learning has been proposed [37] to effectively tackle
this problem. Transfer learning literally means that expe-
rience gained from one domain can be transfered to other
domains. From CNN perspective, it means that the param-
eters trained on one type of dataset can be reused for a new
type of dataset. Practically, the first n layers of a trained CNN
model could be copied to the first n layers of a new model.
The remaining layers of the new model are initialized ran-
domly and trained according to the new task [38]. Afterwards,
to train the networks from the new dataset, either we only
allow the parameters from the fully connected layers of the
networks to be tuned, or we fine-tune more layers or even
the whole network layers. It is also possible to keep the
first convolutional layer fixed, as this layer is often used for
edge extraction which is common for all kinds of problems.
Since not all parameters are retrained or trained from scratch,
the transfer learning is beneficial to problems with a small
labeled dataset which is common in medical imaging field.

Transfer-learning have been applied on two specific CAD
problems: thoraco-abdominal lymph node (LN) detection and
interstitial lung disease (ILD) classification [39]. The state-
of-the-art performance has been achieved on the mediastinal
LN detection. This CNN model analysis can be extended
to design high performance CAD systems for other medical
imaging tasks. In ultrasound, transfer learning is used in
fetal ultrasound [40], [41] breast cancer classification [42],
prostate cancer detection [43], thyroid nodules classification
[44], [45], liver fibrosis classification [46] and abdominal
classification [47]. Christodoulidis et al. [48] pre-train net-
works on six public texture datasets and further fune-tune the
network architecture on the lung tissue data. The resulting
conversational features are fused with the original knowl-
edge, which is then compressed back to the network. Com-
pared to the same network without using transfer learning,
their proposed method improves the performance by 2%.
In [49], experiments are conducted to answer the research
question ‘‘Can the use of pre-trained deep CNNs with suffi-
cient fine-tuning eliminate the need for training a deep CNN
from scratch?’’. They conclude that deeply fine-tuned CNNs
are useful for analyzing medical images and they perform
as well as fully trained CNNs. When the training data is
limited, the fine-tuned CNNs even outperformed the fully
trained ones.

C. OUR SYSTEM
In this work, we took a pre-trained DenseNet as our pre-
trained model. Huang et al. [50] propose DenseNet as a
network architecture where each layer is directly connected to
every other layer in a feed-forward fashion (within each dense
block). For each layer, the featuremaps of all preceding layers
are treated as separate inputs whereas its own featuremaps are
passed on as inputs to all subsequent layers. In their work, this
connectivity pattern yields state-of-the-art accuracies. On the
large scale ILSVRC 2012 (ImageNet) dataset, DenseNet
achieves a similar accuracy as ResNet by using less than half
the amount of parameters and roughly half the number of
FLOPs (floating-point operations per second). Fig. 2 shows
the architecture of this work. The number 121 corresponds
to the number of layers with trainable weights (excluding
batch normalization layer). The additional 5 layers include
the initial 7x7 convolutional layer, 3 transitional layers and a
fully connected layer.
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Inspired by previous work on transfer learning, in this
paper we proposed a novel way of performing transfer learn-
ing. Instead of only fine-tuning the fully connected (FC)
layers or fine-tuning the whole networks, we made best use
of limited data meanwhile also had the power of all layers
of the networks. We sequentially fine-tuned a pre-trained
networks from FC layers to layers before. For a following
epoch or a following set of epochs, we additionally allowed
fine-tuning s layers prior to layers which were already fine-
tuned in previous epochs. For example, we used n epochs
for training and our networks consisted of m layers. For each
sequential step, we performed x epochs. In total, to train the
whole networks, we needed to perform n/x steps of SFT and
for each step, we allowed extra m*x/n layers to be trained. n,
x and m were parameters to set.
Since the percentage of each class was different dur-

ing training, to eliminate the effect of the unbalanced
data, we used weighted-cross-entropy as the cost function
to update the parameters of our networks. To obtain the
final label or class of each sample, we just assigned the
label or class where the corresponding node in the last layer
gave the highest likelihood value. For training, we limited the
number of epochs (n ) to be 150 and set x to be 5. We resized
all input images to the size of 224*224 to fit the pre-trained
model.

III. MATERIALS
A total of 434 patients who were suspected to have lung
diseases by CT/X-ray images were enrolled in this study.
All patients were processed at the Department of Respira-
tion in the First Hospital of Changsha City, China, from
January 2016 to November 2017. Inclusion criteria included:
1) image-suspected lung/bronchus diseases; 2) aged between
18 and 70 years old; 3) liver, renal and blood test with
neutrophil count > 2.0 g/l, Hb > 9 g/l, platelet count >

100 g/l, AST and ALT > 0.5 ULN, TBIL <1.5 ULN, and
Cr < 1.0 ULN. The exclusion criteria included: 1) patients
with immune-deficiency or organ-transplantation history;
2) patients with severe heart disease or heart abnormalities,
such as cardiac infarction, or severe cardiac arrhythmia. This
study was approved by the Ethics Committee of the First
Hospital of Changsha City. Informed consent was obtained
from each patient before study. Basic demographic and clin-
ical information, including age, sex, radiological images and
treatment history were recorded.

Before bronchoscopy was performed, patients were pro-
hibited to eat and drink for at least 12 hours. 5-10 minutes
before performing bronchoscopy, patients received 2 per-
cent lidocaine (by high pressure pump) plus localized
infiltrating anesthesia. Some received additional conscious
sedation or general anesthesia. During the operation, flexible
biferoptic bronchoscopy (Olympus BF-260) was inserted to
nosal cavaty, glottis and bronchus. Computer workstationwas
configured to receive bronchoscopy images. Once abnormal-
ity of suspect was detected visually, the area was captured by

FIGURE 3. The confusion matrix and the normalized confusion matrix of
our proposed method using sequential fine-tuning. (a) Confusion matrix.
(b) Normalized confusion matrix.

a camera from a high-definition television (HDTV) system
and saved as JPG or BMP files (319 by 302 pixels).

Pathological test was the gold standard for the diagno-
sis of malignant/premalignant airway disease. Therefore,
specimens from bronchial biopsy were obtained in all
cases of this study. Specimens for pathologic diagnosis
were obtained from the following ways: brushing from the
lesion or bronchial washings, fine needle aspiration biopsy,
and forcep biopsy from visible tumor or TB lesions or sus-
pected regions. Histological diagnosis was made by expe-
rienced pathologists. Two independent pathologists firstly
made their diagnosis individually. If their diagnosis were
inconsistent, another arbitrator pathologist would make the
decision. Such histological results were used as ground truth
of this study. According to pathological confirmation, among
recruited 434 patients, 81 cases were diagnosed as healthy,
76 were diagnosed as TB, and 277 were diagnosed as lung
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TABLE 1. Patient number statistics.

FIGURE 4. ROC curve of binary classification of abnormal (TB+cancer,
positives) and normal (negatives) with fine-tuning all layers together
(orange), only fine-tuning the fully connected layers (red), our proposed
method using sequential fine-tuning (blue), respectively.

cancer patients. Table 1 summarized patient distribution in
terms of age and gender.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTS
In this work, considering the limited number of samples,
in order to obtain an unbiased evaluation of the classification
performance, a 2-fold cross-validation was employed to eval-
uate the performance of our method. Specifically, the input
dataset was randomly divided into 2 equal parts, where one
part was left for testing, and the other part was split again for
training (70%) and validation (30%) to avoid the bias. The
best classifier based on the validation set was used for testing.
Such a procedure was repeated 2 times with a different part
used for testing. We pooled the results from both two parts
and evaluated the performance measurements.

Since we aimed to solve a three-class classification prob-
lem, the measurements of accuracy (ACC) and confusion
matrix were used for the evaluation purpose. We also inves-
tigated two-class (binary) classification problems such as
abnormal versus normal cases, TB versus cancer cases and
non-cancer cases versus cancer cases. The receiver operating
characteristic (ROC) analysis and the area under the ROC
curve (AUC) were used for the evaluating the two-class clas-
sification performance.

B. RESULTS
The overall three-class classification accuracy of the three
methods was 73.7%, 70.2% and 82.0% for from fine-tuning

FIGURE 5. ROC curve of binary situations of TB (negatives) and cancer
(positives) with fine-tuning all layers together (orange), only fine-tuning
the fully connected layers (red), our proposed method using sequential
fine-tuning (blue), respectively.

FIGURE 6. ROC curve of binary situations of non-cancer (negatives) and
cancer (positives) with fine-tuning all layers together (orange), only
fine-tuning the fully connected layers (red), our proposed method using
sequential fine-tuning (blue), respectively.

all layer together, fine-tuning the fully connected layers and
our proposed method (sequential fine-tuning), respectively.
Our proposed method achieved the most accurate result.
Fig. 3(a) and Fig. 3(b) showed the confusion matrix and
the normalized confusion matrix from our proposed method
(sequential fine-tuning).

Fig. 4 showed ROC for the binary classification between
normal cases and abnormal cases (TB+cancer) from fine-
tuning all layer together, fine-tuning the fully connected lay-
ers and our proposed method. The AUC was 0.98, 0.97 and
0.99, respectively.
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FIGURE 7. A cancer case was misclassified as a normal case (a), a normal
case was misclassified as a cancer case (b), a TB case was misclassified
as a cancer case(c).

Fig. 5 showed the ROC for the binary classification
between TB cases and cancer cases from fine-tuning all
layers together, fine-tuning the fully connected layers and
our proposed method. The AUC was 0.73, 0.68 and 0.77,
respectively.

Fig. 6 showed the ROC for the binary situation between
non-cancer cases and cancer cases from fine-tuning all
layers together, fine-tuning the fully connected layers and
our proposed method. The AUC was 0.85, 0.83 and 0.87,
respectively.

TABLE 2. Performance measures included three-class classification
accuracy (ACC), AUC for problem 1 (P1) of abnormal versus normal cases,
problem 2 (P2) of cancer versus TB cases and problem 3 (P3) of
non-cancer versus cancer cases from different methods.

Fig. 7 showed examples of misclassified cases. Fig. 7a
indicated a cancer case that had pale mucosa and yellow
secretion and it was mis-classified as a normal case by CAD,
while Fig. 7b indicated a normal case that had smooth red
mucosa and was mis-classified as a cancer case by CAD.
Fig. 7c. indicated a TB case that had a round nodule with
smooth mucosa and was mis-classified as a cancer case by
CAD. Mucosa color, secretions and smoothness were impor-
tant features for cancer and TB discrimination. In cancer
cases, the tumor mucosa is pale, rigid and has dirty secretion.
Themis-classification in Fig. 7might be due to a small dataset
for training. Larger training set would extract more minor
mucosa features to avoid such mis-classification.

Table 2 summarized different performance measures from
different methods. Our proposedmethods outperformed other
compared methods regarding all measures.

V. CONCLUSION AND DISCUSSION
A computer aided diagnosis system was developed for the
classification of normal, tuberculosis and lung cancer cases
in bronchoscopy. In the system, a deep learning model based
on pre-trained DenseNet was applied. Using the sequential
fine tuning, our model in combination with 2-fold-cross-
validation, obtained a overall accuracy of 82.0% for a dataset
of 81 normal cases, 76 tuberculosis cases and 277 lung cancer
cases. The detection accuracy for cancers, TB and normal
cases were 87%, 54% and 91% respectively. This indicated
that the CAD system had potential to improve diagnosis and it
also might be used for more selective biopsies. Furthermore,
we showed that the performance of the deep-learning model
was improved with our proposed sequential fine-tuning.

To our best knowledge, we were the first group to bring
up the concept of sequential fine-tuning in deep learning
networks andwe showed the benefits of using sequential fine-
tuning compared to fine-tuning all layers and fine-tuning only
fully connected layers. Our explanation was that since the
dataset size was relatively small, it was not reasonable to fine-
tune a very large set of parameters of the whole networks
at the beginning. Therefore, we chose to sequentially and
gradually fine-tune more and more layers from a pre-trained
model. The other benefits of doing sequential fine-tuning
was that instead of fitting data to two sub-models of the
DenseNet (a model with no layers fixed and a model with
fully connected layers fixed), we fitted our data to more
sub-models as sequentially we fixed different sets of layers.
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By doing so, we had a better chance of finding a good model
for the data.

We also investigated our classification power of different
binary classification situations. The area under the ROC curve
from the binary classification of abnormal cases and normal
cases was very high (0.99). From the ROC curve, we could
see that we were able to keep the sensitivity of detecting
abnormal cases of our CAD system to be 1 while the speci-
ficity was 0.65. It meant that our CAD system could identify
65% normal cases without missing any abnormal cases. It had
the potential to reduce the false positive rate of doctors and
avoid further with biopsies of these normal patients. The
area under the ROC curve from the binary classification of
TB cases and cancer cases was 0.77 where there was still
space to improve. Although the discrimination power was
not very high, we could still triage these abnormal patients
and almost 10% of TB patients were correctly identified by
our CAD system without missing any cancer patients. Again,
these patients would not necessarily go for biopsies. For some
cases, the CAD system did not perform well. Fig. 7 showed
misclassified cases. The TB case was mistakenly classified
as a lung cancer case by our CAD system. This TB nodule
looked very like a malignant tumor. However, for doctors,
there was still one feature for the discrimination: TB surface
was more smooth than cancer surface. With a larger training
set, more features would be extracted automatically, and this
kind of mistakes would be eliminated or suppressed. In this
study, TB cases from the training set was small and thus the
trained model was not good enough to capture subtle features
of difficult cases.

In this study, we investigated neither the actual diagnostic
performance of doctors on bronchoscopy images nor the
performance of doctors with the aid of our CAD system.
In the future, we would conduct a reader study to evaluate
the benefits of using our CAD system. Bronchoscopy as an
invasive instrument plays a key role in lung disease diagnosis
and determining treatment plans for the patients. With bron-
choscopy doctors can directly observe the lung tissue and
diagnose the problem to some extent. The doctors needs to
make a decision whether to biopsy the patients timely when
performing bronchoscopy. Although mortality because of the
biopeis is only between 0%-0.04% [51], bleeding during
diagnostic bronchoscopy occurs in between 0.26% and 5% of
cases. In the case of an massive bleeding or an acute massive
iatrogenic haemoptysis after biopsy, a life-threatening situa-
tion associated with a high mortality rate can develop. Fur-
thermore, avoiding unnecessary biopsies will also reduce the
anxiety of patents. With aid of our computer system, doctors
can already correctly eliminate 65%normal patients, 10% of
TB patients to avoid unnecessary biopsies/risk for patients
which is of great help in clinical operation. To further sup-
press the number of biopsies, in the future, we will investigate
the possibility of boosting this CAD system for identifying
specific types of lung cancers. That means more labeled data
should be collected in the future. The future work may also
extend our CAD system in combining with other imaging

techniques(e.g. AFB) to cover broader a range of diseases and
meanwhile combining deep learning networks together with
human crafted features from domain knowledge.
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