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Immunotherapy has become an effective therapy for cancer treatment. However,
the development of biomarkers to predict immunotherapy response still remains a
challenge. We have developed the DNA Methylation Immune Score, named “MeImmS,”
which can predict clinical benefits of non-small cell lung cancer (NSCLC) patients
based on DNA methylation of 8 CpG sites. The 8 CpG sites regulate the expression
of immune-related genes and MeImmS was related to immune-associated pathways,
exhausted T cell markers and immune cells. Copy-number loss in 1p36.33 may affect
the response of cancer patients to immunotherapy. In addition, SAA1, CXCL10, CCR5,
CCL19, CXCL11, CXCL13, and CCL5 were found to be key immune regulatory genes in
immunotherapy. Together, MeImmS discovered the heterogeneous of NSCLC patients
and guided the immunotherapy of cancer patients in the future.

Keywords: DNA methylation, immunotherapy, non-small cell lung cancer, machine learning, immune regulatory
genes

INTRODUCTION

Non-small cell lung cancer (NSCLC) is the most common cancer type of lung cancer and one of
the leading causes of cancer-associated deaths (Bray et al., 2018). Immunotherapy is an emerging
cancer treatment and has provided significant clinical benefits to NSCLC. Immunotherapy
includes adoptive T-cell therapy and immune checkpoint blockade (Kennedy and Salama, 2020).
Programmed cell-death protein 1 ligand 1 (PD-L1) released by tumor cells bind to the programmed
cell-death protein 1 (PD-1) present on cytotoxic T cells, which cause T cell exhaustion (Kuzume
et al., 2020). Checkpoint inhibitors targeting CTLA-4, PD-1, and PD-L1 have yielded response
in NSCLC and melanoma. A variety of monoclonal antibodies against PD-1/PD-L1 have been
produced, such as nivolumab, pembrolizumab (Borghaei et al., 2015; Ribas et al., 2015). These
PD-1/PD-L1 inhibitors can lead to stable regression of tumor cells. However, immunotherapy
response is not universal, and only some patients can benefit from immunotherapy. Precise
biological markers are essential for personalized immunotherapy. Tumor mutation burden,
cytolytic activity (CYT), major histocompatibility complex (MHC) class I and the number of
tumor-infiltrating lymphocytes can predict the response to immunotherapy (Zaravinos et al., 2019;
Goodman et al., 2020). However, there is very little research on the role of DNA methylation in
immunotherapy response.
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Abnormal DNA methylation occurs in the early stage of
carcinogenesis and presents different patterns in NSCLC. DNA
methylation was an accurate biomarker for the prognosis and
chemotherapy drug of NSCLC (Sandoval et al., 2013; Grasse
et al., 2018). Recent research found that utilization of epigenetic
targets is becoming an effective method of cancer treatment (Yoo
and Jones, 2006). T cell exhaustion state is associated with DNA
methylation, and inhibiting DNA methylation of activated CD8
T cells can maintain the function of T cells (Emran et al., 2019).
Therefore, DNA methylation may be an effective predictor of the
clinical benefit of immunotherapy.

In this study, we constructed DNA methylation immune
Score (MeImmS), which can predict clinical benefit of anti-
PD-1/PD-L1 immunotherapy in NSCLC patients based on
DNA methylation. Multiple key immune regulatory genes
were identified based on MeImmS, some of which have been
confirmed in recent research to be closely related to the
immune response.

MATERIALS AND METHODS

Publicly Available Cohort Datasets and
Preprocessing
Raw data of 78 NSCLC patients treated with anti-PD-1/PD-L1
therapy were obtained in the form of IDAT files from GEO
database (GSE119144 and GSE126045). The files were parsed
into R using the “ChAMP” and were normalized using BMIQ
(Teschendorff et al., 2013; Tian et al., 2017). The beta value of
each probe is calculated for subsequent analysis. The formula for
DNA methylation beta value is as follows,

beta = signal B /(signal A+ signal B+ 100)

which signal A represents unmethylated signal intensity and
signal B represents methylated signal intensity.

In addition, patients were classified as responders if they
showed partial response or stable disease for > 6 months,
and patients who showed progressive disease (PD) or stable
disease (SD) for < 6 months were classified as non-responders,
including 20 responders and 58 non-responders. RNA-seq data
of these NSCLC patients were downloaded from GSE135222 and
GSE126044, including 11 responders and 23 non-responders.
TPM of gene was calculated and normalized by Combat using
R package “sva” (Leek et al., 2012).

Lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) datasets were downloaded from The Cancer
Genome Atlas (TCGA), including DNA methylation, gene
expression and somatic mutation. The DNA copy number (SNP
6.0) of LUAD and LUSC were collected from FireBrowse1.

Construction of DNA Methylation
Immune Score (MeImmS)
We developed a MeImmS pipeline that can evaluate the
immunotherapy response in NSCLC. Firstly, differentially

1http://firebrowse.org/

methylated CpG sites were identified by t-test at p-value
threshold of 0.001 and methylation difference threshold of
0.15 between the responders and non-responders. Then, Least
Absolute Shrinkage and Selection Operator (LASSO) regression
model, RandomForest model and SVM model were constructed
for predicting immunotherapy response of NSCLC patients based
on DNA methylation of differentially methylated CpG sites
using the R package “glmnet,” “randomForest,” and “e1071,”
respectively. LASSO regression model was found to have the best
predictive performance for immunotherapy response in these
three models and identified 8 key CpG sites. Therefore, DNA
Methylation Immune Score (MeImmS) was calculated by DNA
methylation and weight of 8 CpG sites identified by LASSO
regression model:

MeImmS =
n∑

i = 1

βimi + c

where mi represents the DNA methylation of ith CpG site, βi
represents the weight of ith CpG site and c = −1.294. And
MeImmS could divide NSCLC patients in responders and non-
responders with a threshold of 0.

MHC Score and CYT Score
The mean expression level of HLA-A, HLA-B, HLA-C, TAP1,
TAP2, NLRC5, PSMB9, PSMB8, and B2M was calculated as MHC
score (Lauss et al., 2017). CYT score was calculated based on
geometric mean of granzyme A (GZMA) expression and perforin
(PRF1) expression.

Enrichment Score of
Immune-Associated Pathway
We collected 1,793 genes of 17 immune-related signaling
pathways from the ImmPort database2, and calculated the
enrichment score of each pathway based on the gene expression
data of LUAD and LUSC by using “GSVA” packages. The 17
immune-related signaling pathways are “Antigen Processing
and Presentation,” “Antimicrobials,” “B cell receptor (BCR)
Signaling Pathway,” “Chemokines,” “Chemokine Receptors,”
“Cytokines,” “Cytokine Receptors,” “Interferons,” “Interferon
Receptor,” “Interleukins,” “Interleukins Receptor,” “Natural Killer
Cell Cytotoxicity,” “T cell receptor (TCR) signaling Pathway,”
“TGFb Family Member,” “TGFb Family Member Receptor,” “TNF
Family Members,” and “TNF Family Members Receptors.”

Immune Cell Analysis
The proportion of immune cells was estimated based on gene
expression data of LUAD and LUSC by using CIBERSORTx3.
CIBERSORTx can use a deconvolution algorithm to compute the
abundance of 22 cell types (Newman et al., 2019). Samples with
p < 0.05 were selected for analysis because the proportion of
immune cells of these samples was estimated more accurately.

2https://www.immport.org/
3https://cibersortx.stanford.edu/
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Statistical Analysis
The T-test and Wilcoxon rank sum test were used for
comparisons of the proportion of immune cells and expression
of exhausted T cell markers between MeImmS-High and
MeImmS-Low, respectively. Mutation frequency of each gene
was calculated by using R package “maftools” based on Mutation
Annotation Format (MAF) of somatic mutation. Copy number
variation region was identified by GISTIC 2.0. Five types of
discretized copy number calls (-2, -1, 0, 1, and 2) for copy
number variation region were determined. Logistic regression
algorithm to calculate the copy number variation difference
between the MeImmS-High and the MeImmS-Low. The R
package “limma” was used to screen differential expression
genes (adjusted P < 0.05 and fold-change > 1.5 or fold-
change < 0.67) between MeImmS-High and MeImmS-Low. The
results were considered statistically significant when the p < 0.05
in R versions 3.6.3.

RESULTS

Identified of Immune-Associated CpG
Sites
To characterize the differential DNA methylation pattern in
NSCLC patients, we integrated the DNA methylation data of 78
NSCLC patients before receiving anti-PD-1/PD-L1 therapy. Of
these patients, 20 patients were responders and 58 patients were
non-responders. Next, 129 differential methylation CpG sites
were identified between responders and non-responders. Of the
129 CpG sites, 27 CpG sites showed hypermethylation, and 102
CpG sites showed hypomethylation in responders (Figure 1A).
In order to explore the genome position of these differentially
methylated CpG sites, we analyzed the distribution of 129
CpG sites on chromosome. Most of the CpG sites exhibiting
hypomethylation in responders were distributed on chromosome
3 and 11, while the CpG sites exhibiting hypermethylation were
mainly distributed on chromosome 5 and 12 (Figure 1B).

To verify the role of 129 CpG sites in predicting
immunotherapy response, we constructed prediction models of
immunotherapy response. Firstly, we constructed the dataset
containing 78 samples and 129 CpG sites (named “MeImm”
dataset). We utilized the MeImm dataset to construct prediction
models of response to immunotherapy by three machine learning
methods, which were LASSO regression model, RandomForest
model and support vector machine (SVM) model. The area under
the curve (AUC) was used to compare the predictive power of
the three models for immunotherapy response, when 10-fold
cross-validation was performed. After 100 times sampling, it is
found that the LASSO regression model has the best predictive
performance. AUC of LASSO regression model, RandomForest
model and SVM model were 0.801, 0.792, and 0.751 (Figure 1C).

CYT score is a useful tool to assess clinical benefit of
immunotherapy. We compared the performance of CYT and
DNA methylation in predicting response to immunotherapy.
However, AUC of CYT score was only 0.607 in NSCLC patients
receiving anti-PD-1/PD-L1 therapy, which was lower than

predictive performance of 129 CpG sites for immunotherapy
response (Figure 1D).

Construction of DNA Methylation
Immune Score
To describe the immunotherapy response of each NSCLC
patient, LASSO regression model was used to screen key CpG
sites based on MeImm dataset. 8 CpG sites of 129 CpG sites
were identified to construct DNA methylation immune score
(MeImmS) with minimized lambda (lambda = 0.01060691).
Next, MeImmS was constructed based on DNA methylation
and weight of 8 CpG sites. In the MeImm dataset, the AUC of
MeImmS was 0.973 in predicting response to immunotherapy
(Figure 2A). The performance of MeImmS is significantly better
than CYT in predicting immunotherapy response of NSCLC
patients (Figure 1D).

To further verify the performance of MeImmS, we
downloaded 486 LUAD samples and 370 LUSC samples
from the TCGA database. Next, we calculated the MeImmS of
patients in lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC) from TCGA and found that MeImmS
was significantly correlated with MHC score and CYT score
(Figure 2B). cg01996116, cg1012055, cg1116414, cg02774935,
and cg19475870 located in the promoter region of ACKR2,
NFATC3, PPP1R1B, YPEL1, and CDH9, respectively. The DNA
methylation level of these CpG sites was significantly negatively
correlated with gene expression (Figures 2C–J). The deficiency
of ACKR2 can increase the recruitment of natural killer cells
and increase the lethality of tumors (Hansell et al., 2018). DNA
methylation level of these CpG sites could inhibit gene expression
and affect immune-related function. Cadherin 9 (CDH9) is an
important protein that strengthens the interaction between
immune lymphocytes and tumor cells (Durgeau et al., 2018;
Mami-Chouaib et al., 2018). NFATC3, PPP1R1B, and YPEL1
play an important role in immune and carcinogenic pathways
(Rao et al., 1997; Kelley et al., 2010; Klebanoff et al., 2017).

Finally, we divided the tumor samples of LUAD and LUSC into
high DNA methylation immune score group (MeImmS-High)
and low DNA methylation immune score group (MeImmS-Low)
based on the median value of the DNA methylation immune
score (Figures 2K,L).

Correlation Analysis Between DNA
Methylation Immune Score and Immune
Markers
To determine MeImmS is associated with immune function,
immune-associated pathway enrichment score of each sample
was calculated by using GSVA in LUAD and LUSC, respectively.
In 17 immune-associated pathways, MeImmS was significantly
positively associated with enrichment score of 13 immune-
associated pathways in LUAD and LUSC (Figure 3A). In
immunotherapy, tumor cells are destroyed by activating the
function of T cells. Therefore, the T cell receptor (TCR) signaling
pathway plays an important role in immunotherapy. We found
that MeImmS was strongly correlated with T cell receptor
signaling pathways. Moreover, MeImmS was also strongly
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FIGURE 1 | Immune-associated CpG sites in NSCLC. (A) Differential methylated CpG sites between responders and non-responders. Yellow represents responders
and light blue represents non-responders. (B) Circos diagram of the distribution of differential methylation CpG sites on chromosomes. (C) In NSCLC patients with
anti-PD-1/PD-L1 therapy, receiver operating characteristics (ROC) analysis of 129 differential methylation CpG sites in LASSO regression model, RandomForest
model, and SVM model. The AUC is labeled. (D) ROC analysis of CYT score in NSCLC patients with anti-PD-1/PD-L1 therapy.

correlated with enrichment score of T cell receptor signaling
pathway from REACTOME in LUAD and LUSC (Figures 3B,C).

Studies have found that exhausted T cell markers can measure
the patients’ response to immunotherapy and patients with more
exhausted CD8+ T cells are more suitable for immunotherapy
(Snell et al., 2018). We collected 7 exhausted T cell markers:
CTLA-4, HAVCR2, LAYN, LAG3, PDCD1, TIGIT, and VDR.
CTLA-4, HAVCR2, PDCD1, TIGIT and VDR were significantly
different between MeImmS-High and MeImmS-Low, and both
show high expression in MeImmS-High (Figures 4A–L).

In addition, by comparing the difference between the
MeImmS-High and MeImmS-Low in the proportion of immune
cells, it was found that the proportion of activated CD4
memory T cells was significantly higher in the MeImmS-High
(Figures 4M,N). Studies have found that patients with functional
CD4 immunity and high expression of PD-L1 exhibited response
rates of 70%, revealing the important role of CD4 immunity

in anti-PD-L1/PD-1 therapy (Zuazo et al., 2019). The MeImmS
was significantly associated with immune pathways and immune
markers, suggesting that the MeImmS can be used to predict the
response to immunotherapy in NSCLC patients.

Genomic Mutation Between
MeImmS-High and MeImmS-Low
We calculated the gene mutation frequency in LUAD and LUSC
using somatic mutation data, respectively. In LUAD and LUSC,
we found that six genes with the highest mutation frequency
were the same, which were TP53, TTN, MUC16, CSMD3,
RYR2, and LRP1B (Figure 5). In addition, we found that
TP53, TTN, and CSMD3 mutation frequencies were significantly
different between MeImmS-High and MeImmS-Low in LUAD
(Chi-square test TP53: p = 8.96e-4, TTN: p = 0.014, CSMD3:
p = 0.0095). It suggests that TP53 mutation can guide the
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FIGURE 2 | Construction of DNA methylation immune score. (A) In NSCLC patients with anti-PD-1/PD-L1 therapy, ROC analysis of the predictive ability of MeImmS
on response to immunotherapy. (B) Correlation analysis of between MeImmS and MHC score, CYT score in LUAD and LUSC from TCGA database. The gradient
from red to blue represents the degree of correlation between MeImmS and MHC or CYT. (C–J) Correlation analysis of between DNA methylation of
immune-associated CpG sites and expression of immune-associated gene in NSCLC from TCGA database. Blue blots represent LUAD samples and orange blots
represent LUAD samples. (K,L) Scatter diagram of MeImmS of and heatmap of 8 CpG sites in LUAD and LUSC. Yellow blots represent samples of MeImmS-High
and light blue blots represent samples of MeImmS-Low.
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FIGURE 3 | Correlation analysis of between enrichment score of immune-associated pathways and MeImmS in LUAD and LUSC. (A) Heat map of between GSVA
score of 17 immune-associated pathways and MeImmS in LUAD and LUSC. Red represents a significant positive correlation between GSVA score of
immune-associated pathway and MeImmS, and blue represents a significant negative correlation between GSVA score of immune-associated pathway and
MeImmS. Gray represents that there is no correlation between the immune pathway and MeImmS. The numbers in the graph represent the correlation coefficient
and p-value between GSVA score of immune pathway and MeImmS. (B,C) Scatter plot of between enrichment score of TCR signaling pathway and MeImmS in
LUAD and LUSC.

immunotherapy effect of LUAD patients. In previous studies,
TP53 mutation can be used as a predictor of anti-PD-1/PD-L1
immunotherapy in LUAD patients (Dong et al., 2017). CSMD3
is a transmembrane protein, which plays a significant role in
protein-protein interaction and immune response (Ahn et al.,
2014). Therefore, mutation of TP53, TTN, and CSMD3 maybe
have the potential biomarker to predict the immunotherapy
response of LUAD patients.

The study found that the oncogene KRAS is the main
driving factor of LUAD, so we further analyzed the KRAS in
LUAD. It was found that among the 65 patients with KRAS
mutation in the MeImmS-Low of LUAD, nearly half of them
had KRAS c.34G > T (p.Gly12Cys) (31/65) mutation. The
second is KRAS c.35G > T (p.Gly12Val) mutation (12/65).
However, in the 61 patients with KRAS mutation in the
MeImmS-High of LUAD, the highest mutation frequency
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FIGURE 4 | Comparison of immune related markers between MeImmS-High and MeImmS-Low. (A–L) Violin plots show the expression of exhausted CD8+ T cell
markers between MeImmS-High and MeImmS-Low. (M,N) Boxplot shows the immune cell proportions between MeImmS-High and MeImmS-Low in LUAD (M) and
LUSC (N).

site of KRAS is c.35G > T (p.Gly12Val), the mutation
frequency was 17/61, and the KRAS c.34G > T (p.Gly12Cys)
site mutation frequency is only 16/61. It indicates that

LUAD patients with KRAS c.34G > T (p.Gly12Cys) mutation
may have poor immunotherapy effect and are not suitable
for immunotherapy.
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FIGURE 5 | Comparison of gene mutation frequency between MeImmS-High and MeImmS-Low. (A,B) Gene mutation frequency of MeImmS-High and
MeImmS-Low in LUAD. (C,D) Gene mutation frequency of MeImmS-High and MeImmS-Low in LUSC.

Next, we analyzed the copy number variation difference
between MeImmS-High and MeImmS-Low in LUAD and LUSC,
respectively. We identified 411 copy number variation regions
in LUAD, of which 228 regions were copy number amplification
and 183 regions were copy number deletion. And 347 copy
number variation regions were identified in LUSC, of which
181 regions were copy number amplification and 166 regions
were copy number deletion. Finally, 80 immune-associated copy
number variation regions were identified in LUAD and 71 copy
number variation regions were identified in LUSC using logistic
regression algorithm (p < 0.05).

Key Regulatory Gene of Immunotherapy
We identified 381 and 288 differently expressed genes between
MeImmS-High and MeImmS-Low in LUAD and LUSC,
respectively (Figures 6A,B). Then, enrichment analysis of
differently expressed genes was performed in LUAD and LUSC.
In the LUAD, we found that the differently expressed genes
between MeImmS-High and MeImmS-Low were significantly
enriched in immune-related biological function and signaling
pathway, such as leukocyte migration, antigen binding and
cytokine activity, immunoglobulin complex and IL-17 signaling
pathway (Supplementary Figures 1A–D). In LUSC, we also
found that the differently expressed genes between the two

immune subgroups were significantly enriched in immune-
related biological function and signaling pathway, such as
lymphocyte migration, chemokine activity, and chemokine
signaling pathway (Supplementary Figures 1E–H). In summary,
the differentially expressed genes between MeImmS-High and
MeImmS-Low in LUAD and LUSC were mainly enriched
in immune-related function and pathway. It suggests that
MeImmS-High and MeImmS-Low divided by MeImmS have
significant differences in immune function, which further proved
that MeImmS can be used as an indicator to evaluate the
immunotherapy response of NSCLC.

In order to further explore the key regulatory factors affecting
immunotherapy response, we calculated the protein-protein
interaction relationship between differentially expressed genes by
using String database4 in LUAD and LUSC, respectively. Finally,
we got 303 relationship pairs in LUAD, and 202 relationship
pairs in LUSC (Figures 6C,D). We found that the protein-protein
interaction network of LUAD, the key immune checkpoint PD-
1 and PD-L1 are all related to CD3D. Interestingly, researchers
found that CD3D is the T cell-related marker, and CD3D
defects can cause severe immunodeficiency (Rowe et al., 2018),
which indicates the potential role of CD3D in predicting the

4https://string-db.org/
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FIGURE 6 | Identification of key regulatory gene of immunotherapy. (A,B) Differentially expressed genes between MeImmS-High and MeImmS-Low in LUAD (A) and
LUSC (B). (C,D) Protein-protein interaction network of differentially expressed genes in LUAD (C) and LUSC (D).

immunotherapy response. It further shows that CD3D can be
used as a key regulatory factor of immunotherapy response for
cancer patients.

Next, we screened key regulatory genes in LUAD and LUSC,
respectively. In the protein-protein interaction network of LUAD,
there are 26 key regulatory genes with degree >10. In the protein-
protein interaction network of LUSC, there are 15 key regulatory
genes with degree >10. Interestingly, SAA1, CXCL10, CCR5,
CCL19, CXCL11, CXCL13, and CCL5 had significant regulatory
effect in LUAD and LUSC. Moreover, CXCL10, CXCL11, and
CXCL13 all belong to the CXC chemokines subfamily. In

addition, studies have found that the highly expressed CXCL10
is an important marker of immune response (Antonelli et al.,
2014), so the CXC subfamily genes may have regulatory effect
on immunotherapy.

In order to further verify the immunomodulatory effects
of these genes in cancer patients, we downloaded RNA-seq
data of 348 urothelial carcinoma patients (IMvigor210) who
received anti-PD-L1 (Atezolizumab) treatment (Necchi et al.,
2017). Then we identified 1,654 genes related to immunotherapy
response. Interestingly, we found that SAA1, CXCL10, CCL5, and
CXCL13 also had significant differences between responders and
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non-responders in IMvigor210 dataset. It suggests that SAA1,
CXCL10, CCR5, CCL19, CXCL11, CXCL13, and CCL5 have
important function in immunotherapy for cancer patients, and
may be used as key regulator genes of immunotherapy.

DISCUSSION

DNA methylation is an important epigenetic modification
that can regulate gene expression without changing the
DNA sequence. DNA methylation plays an important
regulatory role in the differentiation of immune cells, which
may have an impact on the response to immunotherapy
(Jones et al., 2019). Previous research has found that
DNA methylation of CTLA-4 could predict response of
anti-CTLA-4 and anti-PD-1 immune checkpoint blockage
in melanoma (Goltz et al., 2018). DNA methylation of
costimulatory/immune checkpoint molecules could reflect
tumor immunogenicity of pan-cancer (Berglund et al., 2020).
Hence, DNA methylation may be an important predictor of
immunotherapy response.

Lung tumor is a heterogeneous disease, which has
different response to anti-PD-1/anti-PD-L1 treatments. In
this study, MeImmS was constructed based on 8 CpG
sites by using machine learning, which could predict
the immunotherapy response of NSCLC patients. DNA
methylation of the 8 CpG sites affected the expression level
of multiple immune genes, which may have an important
impact on the immune response. In addition, MeImmS
was also significantly associated with predictive markers
of immunotherapy, such as MHC score and cytolytic
activity. Excellent predictive performance of MeImmS
implied the predictive ability of DNA methylation in
immunotherapy response. With increasing DNA methylation
data for immunotherapy, MeImmS pipeline for predicting
immunotherapy response based on DNA methylation can be
extended to more cancers.

Besides, genomic variation is also an important factor affecting
the response of immunotherapy. Identifying the genomic variant
of cancer patient may be helpful for improving the treatment.
Seven key immune regulatory factors were identified in NSCLC
samples, which could play an important role in immunotherapy.
In addition, CXCL10 and CXCL11 were closely related to CD8+
tumor-infiltrating lymphocytes, which may predict benefit from
PD-1 blockade therapy (Wu et al., 2019).

Our research shows that DNA methylation plays an important
role in regulating and predicting immunotherapy response. And
DNMT inhibitors have been approved for the treatment of
myelodysplastic syndrome and acute myeloid leukemia (Zhou
et al., 2021). Therefore, the combined application of epigenetic
inhibitors and immune checkpoint inhibitors may be an effective
therapy for cancer treatment in the future.
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