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Along with the improvement of survival after cancer, cardiotoxicity due to antineoplastic treatments has emerged as a clinically
relevant problem. Potential cardiovascular toxicities due to anticancer agents includeQTprolongation and arrhythmias,myocardial
ischemia and infarction, hypertension and/or thromboembolism, left ventricular (LV) dysfunction, and heart failure (HF). The
latter is variable in severity, may be reversible or irreversible, and can occur soon after or as a delayed consequence of anticancer
treatments. In the last decade recent advances have emerged in clinical and pathophysiological aspects of LV dysfunction induced
by the most widely used anticancer drugs. In particular, early, sensitive markers of cardiac dysfunction that can predict this form
of cardiomyopathy before ejection fraction (EF) is reduced are becoming increasingly important, along with novel therapeutic and
cardioprotective strategies, in the attempt of protecting cardiooncologic patients from the development of congestive heart failure.

1. Introduction

The prognosis of cancer has dramatically improved in the
last decades: several types of malignancies can be now
cured or maintained in remission for a long time and
patients can live the remainder of their lives free of disease.
However, they are also exposed to chronic complications of
antineoplastic treatments. Many classes of chemotherapeutic
drugs can impair cardiovascular homeostasis and favor or
even trigger cardiovascular disorders. The more the survival
of oncological patients increases, the higher is the likeli-
hood that cardiovascular consequences of cancer therapies
become the major health problem after tumor elimination
is achieved. The most common side effects of anticancer
treatment include vasospastic and thromboembolic ischemia,

arterial hypertension, arrhythmia, and cardiac dysfunction
up to heart failure (HF) [1, 2]. The latter is an especially
fearful long-term complication of chemotherapy because it
remains a slowly progressing condition that ultimately can
only be resolved by heart transplantation. Nevertheless, this
procedure can be offered only to a small percentage of
subjects due to the limited availability of donor organs. In
fact, the number of heart transplants has remained static
worldwide and the number of heart transplants performed
each year in the United States has plateaued at about 2100 for
the past few years (2001 Heart and stroke statistical update.
Dallas: American Heart Association, 2000).

Here we first give an updated overview of the main
characteristics and mechanisms of chemotherapy-associated
cardiac toxicity, since a thorough knowledge of this
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phenomenon can provide important hints to predict, treat,
and prevent it. Special attention is paid for chemotherapy-
related cardiac dysfunction, in the light of the clinical and
social burden of heart failure that may ensue [3, 4]. Next, we
examine the approaches that have already been implemented
in clinical practice or are currently being investigated for
the prompt diagnosis and effective management of chemo-
therapy cardiotoxicity.

2. Classification of Chemotherapy-Related
Cardiotoxicity

Left ventricular (LV) dysfunction induced by anthracyclines
has historically been themost relevant form of chemotherapy
cardiotoxicity [7]. Nevertheless, new oncological drugs, such
as intracellular signaling inhibitors, may be also cardiotoxic,
as they target pathways that also play a major role in the
maintenance of cardiac homeostasis, especially when during
stressful conditions, such as hypertension or hypertrophy
[1]. For instance, human epidermal growth factor receptor 2
(HER/ErbB2) and angiogenesis inhibitors, which have entered
clinical practice in relatively recent years, profoundly affect
cardiac metabolism and contractile proteins (for important
reviews on such mechanisms, please refer to [2, 8–12]). This
type of toxicity does not display cardiomyocyte disruption,
is most often reversible with treatment discontinuation, and
has been named type II LV dysfunction [13]. Conversely,
cardiotoxicity produced by anthracyclines is typically irre-
versible, with marked ultrastructural myocardial derange-
ments, and is referred to as type I [13]. However, these two
paradigms of cardiotoxicity may overlap: for example, the
anti-ErbB2 antibody, trastuzumab, can trigger irreversible
cardiac damage in patients previously treated with anthracy-
clines [14].

3. Cardiotoxicity of Anthracyclines

Anthracyclines are antibiotics belonging to the family of
rodomicine, originally isolated from Streptomyces peucetius,
with very potent antineoplastic activity [15]. In particular,
doxorubicin and epirubicin are currently the cornerstone
of treatment of many malignancies, including breast can-
cer, lymphomas, and sarcomas. It has been estimated that
approximately 10% of patients receiving doxorubicin or its
derivatives will develop cardiac complications, even up to
10 years after the completion of chemotherapy [1]. However,
endomyocardial biopsy studies and seriate measurements
of troponin I have revealed that cardiac cell alterations
already occur during or a few hours after exposure to
anthracyclines, regardless of when clinical manifestations
appear. Furthermore, an early and subclinical deterioration
of systolic function can be detected in most patients exposed
to anthracyclines with Tissue Doppler or Speckle Tracking
echocardiography [16, 17]. The delay between cardiac injury
and clinical presentation may be explained by the fact that
anthracycline cardiotoxicity is temporarily compensated for
by the activation of protective signaling pathways and by a
myocardial functional reserve [18, 19].

The probability of developing anthracycline cardiomy-
opathy is primarily dose dependent [20]. Additional risk
factors are genetic predisposition, very young or old age,
female gender, intravenous bolus infusion, hypertension,
diabetes mellitus, preexisting cardiac disease, previous or
concurrent mediastinal radiation therapy, and combination
with alkylating or antimicrotubule chemotherapeutics [1, 21–
26]. Thus, accurate medical history may be helpful in identi-
fying individuals susceptible to anthracycline cardiotoxicity.
However, it should be noted that many of the aforementioned
risk factors have been identified over relatively short follow-
up periods and that long-term investigations are needed to
confirm their relevance [1].

3.1. Molecular Mechanisms of Anthracycline Cardiotoxicity.
Anthracyclines are DNA intercalating agents that form a
ternary complex with topoisomerase 2. This enzyme tran-
siently breaks the DNA backbone to untangle the super-
coiled DNA complex in a process required for transcrip-
tion, replication, and recombination [2, 27, 28]. Under
physiological conditions topoisomerase 2 reanneals the cut
strands. Conversely, when the complex with anthracyclines
is formed, the relegation is inhibited resulting in an uncon-
trolled occurrence of DNA strand breaks. The resulting
cascade of molecular events, referred to as DNA damage
response, eventually leads to mitochondrial dysfunction and
accumulation of reactive oxygen species (Figure 1) [27].
Consistent with this model, doxorubicin cardiotoxicity is
prevented in mice knockout for the gene encoding the
cardiac isoform of topoisomerase 2 [27]. Besides eliciting
the DNA damage response, anthracyclines also cause the
formation of reactive oxygen species by accepting and imme-
diately releasing electrons onto the oxygen molecules present
inside the cardiomyocyte, especially in mitochondria [15,
27–31]. Furthermore, anthracyclines induce the intracellular
accumulation of iron and form complexes with it, further
inducing the production of free oxygen radicals via metal-
catalyzed oxidoreductions [15, 29–31]. The DNA damage
response and oxidative stress initiate a number of secondary
cellular alterations, such as changes in calcium homeostasis
and abnormalities of the contractile apparatus [15, 29–31].
At the ultrastructural level loss of myofibrils, dilation of the
sarcoplasmic reticulum and cytoplasmic vacuolization are
observed [15, 29–31]. Eventually, cardiomyocytes may die
or undergo senescence following exposure to anthracyclines
[32]. This can be because of direct toxicity of anthracyclines
or as a result of the impairment of antiapoptotic signaling
axis. For instance, our recent work has pinpointed a state
of resistance to insulin-like growth factor-1, a hormone
fundamental for cardiomyocyte survival, as a mechanism
of doxorubicin-triggered death of cardiac cells [33, 34]. It
has been proposed that apoptosis and senescence of cardiac
progenitor cells chiefly contribute to the pathogenesis of
anthracycline cardiomyopathy, as depletion of these cell
population hinders the ability of the heart to regenerate in
response to minor injuries which, thereby, accumulate and
affect cardiac structure and function [35, 36].

Moreover, it is conceivable that anthracyclines also alter
the activity of cardiac fibroblasts and the turnover of the
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myocardial extracellular matrix. Doxorubicin enhances the
expression of MMP2 and MMP9, thus weakening the col-
lagenous matrix and contributing to myocardial remodeling
[15, 37, 38]. Indeed, fibrosis is observed in hearts that have
been exposed to doxorubicin [36] and may impinge on both
diastolic and—viamisalignment of cardiomyocytes—systolic
function.

Anthracyclines also induce a local immune response,
with the involvement of dendritic cells and distinct subsets of
T lymphocytes, whichmay underlie part of the antineoplastic
effect [39]. However, immune activation and inflammation
may be harmful to the heart. Since anthracycline-triggered
inflammation is at least in part secondary to the activity
of IL-1𝛽, suppression of the latter might blunt some of the
adverse inflammatory effects that complicate chemotherapy
with anthracyclines [40].

3.2. Other Agents. Mitoxantrone is an anthracycline analog
that can damage myocytes, resulting in LV dysfunction
similarly to anthracycline [1, 41]. Large single doses of
cylophosphamide are able to cause hemorrhagic cell necrosis,
bringing to heart failure or even death. Such toxic effects are
seen very rarely since lower doses are being used these days
[1, 42]. Another drug that has been linked to late-onset LV
dysfunction (milder than anthracyclines) is cisplatin [1, 43].

Also, taxanes such as paclitaxel and docetaxel are antimi-
crotubule agents that bind to tubulin, thus impairing the
disassembly ofmicrotubules and inhibiting cell division.They
are widely used in the treatment of multiple malignancies.
The incidence of HF associated with such drugs, according to
retrospective analysis, is relatively low (1.6% among patients
treated with docetaxel-doxorubicin-cyclophosphamide and
0.7% for those treated with 5-fluorouracil-doxorubicin-
cyclophosphamide) [44, 45].

The antimetabolite 5-fluorouracil (5-FU) has been shown
to cause angina-like chest pain and, in rare cases, myocar-
dial infarction, arrhythmias, LV dysfunction, and sudden
death [46–48]. In animal models, direct toxicity on the
myocardium has been postulated. This could be due to
myocardial accumulation of citrate that has been attributed
to generation of fluoroacetate (formed from the degradation
of 5-FU parenteral preparation) and can interfere with the
Krebs cycle [48–51]. Also 5-FU can induce dose- and time-
dependent depletion of high energy phosphates, apoptosis
[48, 51–53], autophagy, ROS elevation, and senescence of
cardiomyocytes and endothelial cells [54].

4. Cardiotoxicity of Type II Agents

4.1. Anti-ErbB2 Agents. The first and most widely used type
II cardiotoxic drug is trastuzumab, a humanized monoclonal
antibody against the extracellular domain IV of HER/ErbB2
[8, 9].

ErbB2 (also called HER2) is a member of the epider-
mal growth factor receptor family. Upon ligand binding,
these transmembrane receptors homo- or heterodimerize,
undergo transphosphorylation, and initiate a number of
cellular responses. As no specific ligand for ErbB2 has been

identified so far, it is believed that it normally functions as
a dimerization partner of the other ErbBs [9]. By contrast,
ErbB2 is overexpressed in about 30% of breast cancers, in
which it spontaneously interacts with the other ErbBs inde-
pendent of ligand stimulation, and triggers signaling cascade
promoting tumor growth and survival [55]. Trastuzumab is
highly effective in treating ErbB2-positive breast and also
gastric cancers. However, it also causes cardiac dysfunction
in a substantial proportion of patients, which was found
to peak to 28% when trastuzumab is coadministered with
anthracyclines [56, 57]. In fact, this association is now
avoided.

As a class II cardiac dysfunction [58], trastuzumab-
induced cardiac dysfunction appears to arise from impair-
ment of contractility rather than loss of myocytes, and
the release of troponin shown in sequential treatment with
anthracyclines + trastuzumab seems to be ascribed to the
previous chemotherapy [59]. EF is likely to recover and
there is evidence that it is relatively safe to readminister
trastuzumab after it has been discontinued and myocardial
function has returned to baseline [13].

Pertuzumab is another, more recent anti-HER2 antibody
that binds to the domain II of the receptor. A third HER2-
targeting agent is lapatinib, a small molecule inhibitor of the
intracellular tyrosine kinase domain of HER2. Trastuzumab
only disrupts ligand-independent HER2 signaling; con-
versely, pertuzumab interferes with the formation of ligand-
induced HER2 heterodimers. Lapatinib affects both ligand-
triggered and ligand-independent HER2 signaling [9]. Inter-
estingly, lapatinib seems to be less toxic than trastuzumab.
Data about the toxicity of pertuzumab are limited [57].

Cardiotoxicity of HER2-targeting drugs has been
ascribed to the inhibition of fundamental actions of neureg-
ulin-1 in the heart [57, 60]. Neuregulin-1 acts on cardiac cells
via ErbB4/ErbB4 homodimers and ErbB4/ErbB2 heterod-
imers to elicit protective pathways in response to stress
(Figure 1) [60]. By blocking neuregulin-1 effects in the heart,
HER2 inhibitors may make it more vulnerable to noxious
stimuli, among which anthracyclines. Consistent with
this interpretation, mice with cardiac-specific deletion of
ErbB2 show dilated cardiomyopathy, with increased suscep-
tibility to cardiomyocyte death after anthracyclines [61].
The ErbB2 pathway is required for cell survival and contin-
uing function and seems to be activated when the myocar-
dium faces adverse hemodynamics or other stress, such as
anthracycline therapies [62]. Upon withdrawal of trastuz-
umab, the normal ErbB2 pathway is reestablished, and the
declined EF can return to normal, opposite to anthracyclines
that produce a type I toxicity with permanent myocyte
dysfunction.This is consistent with the increase in cardiotox-
icity when trastuzumab is associated with anthracyclines:
trastuzumab enhances or even uncovers the damage caused
by anthracyclines. Once ErbB2 inhibitors block the ErbB2-
triggered repair mechanisms, the oxidative damage induced
by anthracyclines proceeds without control [59]. Indeed,
experimental studies have shown that neuregulin 1modulates
doxorubicin damage in rat cardiomyocytes [14, 57, 63, 64].
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Figure 1: Schematic representation of the main mechanisms by which cardiomyocytes are damaged by the most cardiotoxic anticancer
agents among those currently in use. Anthracyclines induce a DNA damage response and reactive oxygen species (ROS) production; these
two initial events result in a cascade of secondary alterations affecting mitochondrial integrity and function, intracellular calcium dynamics,
and contractile proteins. By blocking the activity of tyrosine kinase receptors, such as vascular endothelial growth factor receptor (VEGFR) or
ErbB2/ErbB4, bevacizumab, trastuzumab, and tyrosine kinase inhibitors (TKIs) altermitochondria andmodulate gene expression. SERCA2a:
sarcoendoplasmic reticulum calcium ATPase. Black arrows indicate physiologic, homeostatic effects. Red arrows indicate deleterious effects.
Modified from [5, 6].

With its cardioprotective features, neuregulin is now
being intensively studied in clinical trials as a therapeutic for
heart failure [65].

4.2. Antiangiogenic Drugs. Among drugs that induce type
II cardiotoxicity we have to acknowledge antiangiogenic
drugs. In particular, bevacizumab, sorafenib, and sunitinib are
now widely used in oncology; more recently, pazopanib and
vandetanib have also been approved by the US Food and
Drug Administration [1, 66, 67]. All these drugs interfere
with vascular endothelial growth factor (VEGF) signaling
(Figure 1). As VEGF contributes to cardiomyocyte function
and growth on the one hand and to the integrity and
expansion of the coronary and systemic circulation on the
other one [8, 10, 11, 45, 67–70], it is not surprising that
VEGF antagonism may lead to cardiovascular side effects,
principally hypertension, thromboembolism, LV dysfunc-
tion, and HF [71–73]. Indeed, like cancer, the heart is highly
dependent on adequate perfusion for its normal function
[8, 10, 11, 45, 67–70], both relying on similar HIF-1 and
VEGF pathways. Indeed, the inhibition of HIF-1 by p53
causes cardiac dysfunction during chronic pressure overload
[74], and conditional expression of a VEGF scavenger caused
microvessel rarefaction and myocardial hibernation which
was fully reversible even months after switching off the
expression of the scavenger [75, 76]. These data suggest that
the heart is especially sensitive to antiangiogenic therapies in
the setting of hypertension-related pressure overload.

Bevacizumab is an antibody, which binds specifically to
circulating VEGF-A (that activates signaling in endothelial
cells), and is currently approved for the treatment of advanced

carcinoma of the lung, breast, and colon-rectum [77, 78].
Bevacizumab has been reported to induce LV dysfunction in
1% of chemotherapy-näıve patients and 3% of patients who
have already received chemotherapy [79]. Instead, sunitinib
and sorafenib, which are used in metastatic renal cancer
and in imatinib-resistant gastrointestinal stromal tumors
[72, 80], belong to the class of small molecule tyrosine
kinase inhibitors. They are not very selective and also block
signaling cascades other than the one of VEGF [10]. In
particular, sunitinib inhibits more than 30 other receptor
and nonreceptor tyrosine kinases, including c-Kit, platelet-
derived growth factor receptor (PDGFR) alpha and beta,
rearranged during transfection (RET), FMS-related tyrosine
kinase 3 (FLT3), and colony-stimulating factor 1 receptor
(CSF1R) [8, 10, 39, 81], which may be why it appears to be
more cardiotoxic than other angiogenesis inhibitors, with a
reported decrease in EF in up to 28% of treated patients [82–
85]. Seminal studies [86–90] have proven the importance of
these pathways in cardiovascular homeostasis. The higher
incidence of sunitinib cardiotoxicity is also explained by
inhibition of off-target kinases, such as ribosomal S6 kinase
(RSK), with consequent activation of the intrinsic apoptotic
pathway, and 5 AMP-activated protein kinase (AMPK,
important for the response to energy stress), with worsening
of ATP depletion [8, 91]. Therefore, LV dysfunction would
occur due to myocyte dysfunction. In mice treated with
sunitinib and exposed to pressure load, Chu and colleagues
[82] observed that cardiomyocytes exhibited opening of
the mitochondrial permeability transition pore and marked
mitochondrial swelling with destruction of the normal mito-
chondrial architecture. Moreover, direct administration of
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sunitinib on different myocardial preparations results in a
dose-dependent inotropic effect, accompanied by decline
in intracellular Ca2+ and increased reactive oxygen species
(ROS) production [67, 92].

At clinically relevant concentrations in in vitro kinase
assay, sorafenib inhibits at least 15 kinases, including VEGF
receptor, PDGFR, Raf-1/B-Raf, c-Kit, and FLT3 [8, 10, 67].
The rate of cardiotoxicity associated with sorafenib is not
yet clear. Two meta-analysis, including almost 7000 patients
treatedwith sunitinib and 900 patients treatedwith sorafenib,
found a 4.1% rate of sunitinib-induced HF and 1% for
sorafenib-associated cardiac dysfunction [93, 94], but most
of these data are from retrospective analyses; only few
trials have evaluated cardiac function and HF prospectively.
Schmidinger and colleagues [71] reported that 3 out of
14 patients treated with sorafenib who experienced cardiac
events showed abnormal EF.

Interestingly, a recent work from the Paolocci group
[95] reported that a tyrosine kinase-receptor such as TrkB,
with its endogenous ligand BDNF, is able to modulate
the cardiac excitation-contraction coupling process directly,
independently and in parallel to G protein-coupled receptor
signaling. Such findings corroborate the concept that tyrosine
kinase inhibition during anticancer therapies can disrupt
important signaling, leading to consequent derangements in
cardiac mechanical work that may largely contribute to loss
in LV function [96].

Significant hypertension is seen with all three major
antiangiogenic agents [97]. Bevacizumab results in a more
serious form of hypertension that, at least in some instances,
does not reverse with the removal of the offending agent.
Remarkably, it has been suggested that drug-induced hyper-
tension may be a biomarker of anticancer efficacy since
patients who developed hypertension survived longer than
those who did not [98]. In the work of Scartozzi and col-
leagues [99] on metastatic colorectal cancer patients, 20% of
patients developed grade 2-3 hypertension. A partial remis-
sion was observed in 75 % of patients with bevacizumab-
related hypertension and only in 32% of those without
hypertension. Furthermore, patients who developed grade
2-3 hypertension had significantly longer progression-free
survival than nonhypertensive patients [99].

4.3. Other Type 2 Agents. The BCR-ABL inhibitors, imatinib
and dasatinib, are tyrosine kinase inhibitors used for treat-
ment of chronic myelogenous leukemia and gastrointestinal
stromal tumors. These two drugs were initially reported to
induce HF, but large follow-up studies did not confirm such
data [1, 100, 101].

5. Assessment and Treatment of Cardiac
Damage during Cancer Treatment

Assessment of anticancer drug-related cardiotoxicity is an
essential procedure before, during, and after treatment
with these drugs. The majority of currently used methods
used to assess cardiac function cannot differentiate between
irreversible and reversible cardiotoxicity and may mislead

physicians to stop potentially lifesaving cancer therapies. Car-
diovascular side effects such asmyocardial ischaemia, arterial
hypertension, and dysrhythmia can be readily diagnosed, but
detection of cardiac dysfunction is more challenging [1].

Preclinical screening for cardiotoxicity is fundamental for
kinase inhibitors. Much preclinical screening focuses on the
hERG (K+ channel) assay becausemany drugs increase risk of
arrhythmia. Primary cell cultures of human cardiomyocytes
dedifferentiate and die quickly over time; therefore, they
are not a good reflection of what happens in vivo. In the
future, stem-cell-based assays and assays based on the use
of engineered heart tissue could be used. These assays could
integrate effects on membrane action potential, calcium
handling, myofilament function, gene expression, and cell
survival [1, 8, 9, 11, 66, 67, 103].

For initial screening and detection of cardiac dysfunc-
tion in oncologic patients, along with ECG and physical
assessment, noninvasive imaging with echocardiography or
MUGA (Multiple Gated Acquisition) scans are now com-
monly used in cancer patients [1, 45, 57, 104, 105]. These
methods are useful for evaluating patients for cardiotoxicity
but have limited accuracy for risk stratification [1]. Attention
should be paid not only to systolic but also to diastolic cardiac
function. It should be noted that patients with advanced
cancermay already have cardiovascular abnormalities such as
fatigue, dyspnea, malaise, and propensity to severe arrhyth-
mia. Distinguishing these from side effects attributable to
cancer therapies requires a specific expertise.

One important and very active field of research is the
search of new indexes of cardiac function other than the
ejection fraction [106, 107]. Although strong outcomes data
support MUGA for estimation of LVEF, such methodol-
ogy is limited by radiation exposure. On the other hand,
echocardiographic EF measurement is to be preferred for
its simplicity and availability, but has the downside of being
variable and insensitive [108]. Indeed, the normal heart has
a huge recruitable contractile potential; therefore it must
have undergone a considerable damage and myocyte loss
in order for EF to be decreased [109]. On such basis, it
is important to use other markers for cardiac function in
the diagnostic armamentarium [57, 59, 105, 109–116]. More
sensitive techniques to be used in the cardiotoxicity settings
could be contrast that increases border definitions, enhancing
accuracy and limiting interobserver variability [117–119],
while echo-stress could evidence undiagnosed functional
changes [119–121]. Tissue Doppler and strain techniques
have been shown to detect anthracycline-induced cardiac
dysfunction earlier than conventional echocardiography, but
it is not known if these methods have a higher specificity
to detect type I cardiotoxicity [122]. Instead, other superior
imaging methodologies such as cardiac magnetic resonance
(CMR) look promising (Table 1). A downside of this method-
ology is its limited availability, but it can provide improved
accuracy and reproducibility of EFmeasurements [108]. Also,
it has the unique property of characterizing the myocardial
tissue, identifying myocardial inflammation, edema, and
strain [119]. Other explored modalities include the use of
the uptake of iodine-123-metaiodobenzylguanidine (MIBG),
a radiolabeled analogue of norepinephrine, which decreases
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Table 1: Current insights in prevention, monitoring and treatment of cardiac dysfunction induced by anticancer drugs. Modified from [102].

Prevention Monitoring Treatment
Alternative anticancer strategies
Reduced chemotherapeutic dose
Liposomal formulations
Less toxic alternatives (epirubicin, lapatinib)
Better patients selection
Age
Cardiac risk
Cardiac function
Use of cardioprotective drugs
𝛽-blockers
ACE inhibitors
ARBs
Dexrazoxane
Statins

Imaging
Assess the best modality
Assess the best frequency
Biomarkers
BNP
Troponins
Novel markers (MPO?)

Hold or stop antineoplastic treatments
Start HF therapies

following cardiac damage [119, 123, 124]. Additionally, acto-
myosin antibodies could be used to detect myosin exposed
after myocardial injury [119, 125, 126]. Finally, a predictor
of cardiotoxicity may also be the uptake of radiolabeled
chemotherapeutics [119, 127, 128].

The use of cardiac biomarkers (Table 1) can solve the
limitations of cardiac imaging to stratify the risk in cancer
patients with cardiac dysfunction. Cardiac biomarkers such
as troponins and natriuretic peptides may be expected to
be elevated with significant cardiotoxicity. Patients treated
with anthracyclines showed a transient increase in brain
natriuretic peptide (BNP), but the predictive value for long-
term cardiotoxicity may be limited when such marker is used
alone [129, 130]. Instead, troponins I and T have been shown
to predict late anthracycline cardiotoxicity in children [131],
and in an adult population they can identify anthracyclines-
treated patients that can benefit from ACE-inhibitors [132].
In spite of these promising results, the assessment of cardiac
biomarkers is not being performed routinely in patients
undergoing cancer treatment, and multicentre trials to eval-
uate the role of biomarkers in this population are a need
[1]. A 2014 study from Ky et al., while confirming TnI to
be associated with LV dysfunction in patients with breast
cancer undergoing sequential therapy with doxorubicin and
trastuzumab, also showed that a marker of oxidative stress
such as myeloperoxidase (MPO) could be mechanistically
relevant to cardiotoxicity with cancer therapy [133].

All things said, there is no current established algo-
rithm for preoncologic treatments evaluation and follow-
up of patients during and after cancer therapies. Never-
theless, we need to avoid that patients who survive cancer
today develop cardiac dysfunction tomorrow.Therefore such
patients should be strictly monitored by both cardiolo-
gists and oncologists [134]. In patients with indication for
anticancer therapies, a first step would be to evaluate the
cardiovascular risk (Table 1).This should be done on the basis
of the identification of concomitant cardiovascular diseases
and potential cardiovascular complications before anticancer
treatments are started, keeping in mind that preexisting
hypertension and heart diseases are common in oncologic
patients. All in all, clinicians need to recognize and treat

cardiovascular risk factors (hypertension, diabetes, current
and previous cardiovascular disease, subclinical organ dam-
age previously documented by ECG or echocardiography
or carotid ultrasound study, established or subclinical renal
disease, age, smoking, dyslipidemia, family history of pre-
mature cardiovascular disease, and abdominal obesity) in
order to allow long-term continuous therapy with anticancer
drugs [1, 45, 57, 67]. Age is indeed an important factor, with
elderly patients being at higher risk of both type 1 and type
2 cardiotoxicity [1]. Interestingly, anthracyclines are used for
cancer in children, too, and both elderly patients and children
can develop LV dysfunction at lower cumulative doses [1, 22,
23]. Indeed the Childhood Cancer Survivor Study showed
that, 30 years after anthracyclines, 73% of pediatric cancer
survivors would develop at least 1 chronic condition, while
42% would develop a serious life threatening condition or
even die of a chronic condition [48, 135]. Greater suscep-
tibility to anthracycline cardiotoxicity has been associated
also with female gender [26]. This may be due not only to
differences in the pharmacokinetic of anthracyclines between
the two sexes, but also because of protection conferred by
androgens. Indeed, unpublished data from our laboratory
show that testosterone reduces the toxicity of doxorubicin in
cultured cardiomyocytes. Finally, it has to be acknowledged
that, besides elderly and children, there is a certain risk of
cardiotoxicity with occupational exposure to antineoplastic
drugs in health care workers, through inhalation of vapors
or skin contact with drops. This is particularly true for
anthracyclines, while there is no clear evidence of 5-FU
cytotoxicity, although there can be chest pain, aspecific ECG
disorders, and induction of coronary disease [136].

A complete history and examination, with ECG and
blood pressure measurement, are absolutely indicated. Care-
ful monitoring and treatment of blood pressure throughout
therapywith angiogenesis inhibitors is important [66, 103]. In
such patients, ACE inhibitors, angiotensin receptor blockers
(ARBs), and beta-blockers are to be preferred, especially
considering that they are effective in preventing HF (Table 1)
[67].TheUSNational Cancer Institute has recently published
recommendations to maintain patients’ blood pressure at
lower than 140/90mmHg [66, 103].
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In spite of the above-mentioned limitations about EF
monitoring, Suter and coworkers have proposed an EF based
algorithm [1, 137] (EFdecreases by 15%points or 10%points to
a value below 50)which is easy to follow and can be combined
with troponins andBNP.On such basis, when LVdysfunction
is detected, systolic function should be reevaluated after 3
weeks, and eventual standard HF treatments can be started
[1, 45, 57, 67]. If life expectancy is good, aggressive therapies
with devices can also be considered [1, 138]. The priority for
oncologic patients is reintroduction of anticancer treatments,
even if cardiac therapies are concomitantly administered.
Therefore strict monitoring of cardiac function is necessary.
At the end of cancer treatments, EF should be monitored to
check for late cardiotoxicity 6 months after the conclusion of
the therapeutic regimen, then yearly for 2-3 years, and then
every 3–5 years for life [1].

6. Novel Potential Perspectives in
Prevention of LV Dysfunction Induced by
Antineoplastic Drugs

According to the 2013 Focused Update of the AHA HF
Guidelines, in order to prevent the onset of HF, patients
on anticancer drugs should be considered as stage A HF
patients [139]. This stage identifies patients at high risk
of developing HF, but without structural heart disease or
symptoms of HF yet. On such basis, patients on cardiotoxic
agents should undergo noninvasive evaluation of LV function
with imaging tests and biomarkers (Table 1). HF symp-
toms and signs should be monitored; cardiovascular risk
factors should be addressed. Current strategies to prevent
cardiotoxicity (Table 1) include regulation of infusion times
to limit peak serum concentrations of anthracyclines, use
of liposomal anthracyclines, use of chemotherapy regimens
not containing anthracyclines, administering anthracyclines
and trastuzumab sequentially rather than concurrently [44,
137, 140, 141], and implementing schemes of cardioprotection
(Table 1) [102]. Although the use of preventive cardioprotec-
tive therapeutics has been proposed [142–144], most of the
studies on HF induced by anticancer drugs have focused on
early detection and attenuation or reversion of signs of LV
dysfunction [102, 111, 145].

Until now, the vast majority of the studies on cardio-
protection have been performed mostly on anthracyclines
and, in the case of breast cancer, on anthracyclines +
trastuzumab [30, 146] and have been proposing dexrazoxane
[147], ACE inhibitors [148], and statins [149, 150] (Table 1).
Interestingly, a recent study has evaluated the use of 𝛽-
blockers (Table 1) to prevent anthracycline-induced car-
diotoxicity. Concomitant 𝛽-blocker use may be cardiopro-
tective in patients receiving trastuzumab, anthracyclines, or
both [151]. Kalay and colleagues [152] observed that, in
patients treated with carvedilol, LV ejection fraction and
dimensions do not change with respect to control sub-
ject, while undergoing anthracycline chemotherapy.However
several preclinical investigations suggest that all 𝛽-blockers
may not be equally effective in preventing chemotherapy-
induced cardiotoxicity [102]. Selectivity for 𝛽 receptors

seems important for cardiac protection from chemotherapy.
In animal models of doxorubicin-induced cardiomyopathy,
𝛽2 receptor-deficient mice develop severe and lethal acute
cardiotoxicity, and the additional deletion of 𝛽1 receptors
rescues this completely [153]. Thus, in animals exposed to
anthracyclines,𝛽1 activation seems to be cardiotoxic, whereas
𝛽2 activation is cardioprotective. These data suggest that
𝛽1 selective antagonist, rather than nonselective 𝛽 blockers,
may offer greater protection against anthracycline-induced
cardiomyopathy. Molecular mechanisms of cardioprotection
from 𝛽2 receptors activation are activation of prosurvival
kinases and decrease in the intracellular concentration of
calcium, thus attenuating themitochondrial dysfunction seen
with anthracyclines [154].

Among 𝛽-blockers, carvedilol also has well-known
antioxidant properties [155] and is able to protect cells
against doxorubicin toxicity by reducing oxidative stress
and apoptosis [156–158]. The same authors [159, 160] also
showed the effects of ARBs in preventing oxidative stress and
cardiotoxicity from anthracyclines. Nebivolol, a 𝛽1 selective
antagonist and 𝛽3 agonist, has also been shown to reduce
oxidative stress, decrease markers of myocardial injury, and
improve LV function [161].

7. Conclusions

Cancer drugs currently in use and novel agents that target
signaling pathways may all cause problems for the heart.
Therefore, to prevent the development of heart failure, it
is important that oncologic patients are strictly monitored
from cardiologists. Indeed, a fundamental component of
cardiooncologic strategies is to establish the vital balance of
accepting temporary cardiovascular side effects so as not to
impede a patient’s ability to benefit from cancer treatment.
In a patient with metastatic disease, risk of cardiotoxicity
becomes a minor concern; instead, in a patient with a good
prognosis, the risk of cardiotoxicity becomesmore important
[1, 57, 134]. Knowledge of the cardiac effects of anticancer
agents balancedwith knowledge regarding the natural history
of themalignancy and the likelihood of tumor response offers
such patients the greatest chance for long-term disease-free
survival [1].

In the first place, it is important to recognize patients
who are at increased risk for developing cardiac dysfunction
associated with cancer treatments. The major mechanisms
of left ventricular dysfunction are based on the develop-
ment of oxidative stress [15, 27–31] and inhibition of cell
signaling pathways, by new treatment modalities such as
kinase inhibitors, that may also be important for the survival
and homeostasis of cardiovascular tissue (Figure 1) [8, 10,
11, 67]. Through observation of side effects caused by new
anticancer agents, some cardiovascular signaling pathways
have becomemore clearly understood. Indeed, it is important
to understand the relevance of such pathways in order to
treat heart failure patients and improve longevity and quality
of life for cancer patients. Currently, about 20% of all the
investments on drug development is dedicated to small
molecule kinase inhibitors, the majority of which (about
80%) being in cancer (with little component in inflammatory
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and other diseases) [10]. This class is second only to research
on drugs targeting G-protein-coupled receptors. Based on
the number of kinase inhibitors currently in phase 1 or later
clinical trials (about 150 [162]) there appears to be no slowing
down in drug development in this area [10]. Beside the
fact that this field of research is particularly lucrative, this
means that in the next years we are likely going to see a
huge increase in the market in the number of compounds
which will produce more cardiac dysfunction [10]. In parallel
to such increase in drug development, an extremely active
field of research is the pursuit of novel strategies to face
cardiotoxicity employing new therapeutic approaches or
genetic manipulation, miRNAs, and gene transfer [4, 163–
172].
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