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Why are most organelle genomes
transmitted maternally?

Stephan Greiner�, Johanna Sobanski and Ralph Bock

Why the DNA-containing organelles, chloroplasts, and

mitochondria, are inherited maternally is a long standing

and unsolved question. However, recent years have seen a

paradigm shift, in that the absoluteness of uniparental

inheritance is increasingly questioned. Here, we review the

field and propose a unifying model for organelle inheri-

tance. We argue that the predominance of the maternal

mode is a result of higher mutational load in the paternal

gamete. Uniparental inheritance evolved from relaxed

organelle inheritance patterns because it avoids the

spread of selfish cytoplasmic elements. However, on

evolutionary timescales, uniparentally inherited organelles

are susceptible to mutational meltdown (Muller’s ratchet).

To prevent this, fall-back to relaxed inheritance patterns

occurs, allowing low levels of sexual organelle recombi-

nation. Since sexual organelle recombination is insufficient

to mitigate the effects of selfish cytoplasmic elements,

various mechanisms for uniparental inheritance then

evolve again independently. Organelle inheritance must

therefore be seen as an evolutionary unstable trait, with a

strong general bias to the uniparental, maternal, mode.

Keywords:.cytoplasmic incompatibility; Muller’s ratchet; organelle

inheritance; organelle recombination; paternal leakage;

plastome-genome incompatibility; selfish cytoplasmic

elements

Introduction

The eukaryotic genome is distributed among different genetic
compartments that follow contrasting modes of inheri-
tance [1]. Nuclear genes usually display Mendelian segrega-
tion. In contrast, non-Mendelian inheritance patterns are
characteristic of the DNA-containing cell organelles: plastids
(chloroplasts) and mitochondria. The non-Mendelian inheri-
tance of organelles is predominantly uniparental, usually
maternal. Thus, organelle inheritance can be recognized
as reciprocal difference in sexual crosses (Fig. 1). Other
features of organelle inheritance include somatic segregation
(sorting-out) of genetically distinct organelles (Box 1; Fig. 1),
and the virtual absence of recombination [1, 2]. Due to the
different evolutionary origins and inheritance modes of the
genomes of the eukaryotic cell, severe evolutionary con-
sequences arise:

(i) Nuclear and organellar genomes differ fundamentally
in their genome organization, coding capacity, mutation rate,
and phylogeography [3, 4]. (ii) Uniparental transmission of
organelles implies the existence of different mating types and
sexes. However, uniparental organelle inheritance alone does
not seem to represent a sufficiently strong driving force for
the evolution of anisogamy and of two sexes ([5, 6]; Box 2).
(iii) Uniparental inheritance can induce genome conflicts
between the nucleus and the organelles. In both plant and
animal systems, an increased female fitness associated with
the organellar genotype (cytotype) has been observed [7, 8].
This phenomenon of a sex-specific selective sieve (“mother’s
curse”) applies, for example, if female and male metabolic
requirements are different [9]. The best studied case is
cytoplasmic male sterility (CMS) in plants. This typically
mitochondrially encoded trait mediates sex determination in
gynodioecious populations and induces a counter-selection
for nuclear fertility restorer genes [8, 10, 11]. (iv) Finally, the
tight co-evolution of nuclear and organellar genomes can
result in genetic incompatibilities when new genome
combinations are generated through hybridization. Although
the organellar genomes of related species are often very
similar and typically have identical coding capacities,
organelles are not freely exchangeable between species.
Enforced by uniparental inheritance and lack of sexual
recombination, co-evolution, and co-adaptation of the genetic
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compartments lead to tight genetic interdependence of the
nucleus and the organelles [7, 12, 13]. Combination of a
nuclear genome with an alien mitochondrial or plastid
genome thus can result in inter-specific hybrids that display
so-called cytoplasmic incompatibilities (Fig. 1). Such incom-
patibilities can create hybridization barriers and contribute
to speciation [8, 13, 14].

Despite being of enormous importance, the causes of
the predominantly maternal inheritance mode of organelles
are not fully understood (e.g. [15, 16]). Uniparental inheritance

excludes organelles from sexual recombination. However,
recombination is believed to be necessary to allow genomes to
escape mutational meltdown, a process known as Muller’s
ratchet. Uniparental (maternal) organelle transmission should
therefore be an evolutionary dead end. However, accumulat-
ing evidence for at least occasional biparental transmission
(paternal leakage) provides opportunities for sporadic
sexual recombination events between organellar genomes.
Those could significantly slow down Muller’s ratchet [16–18].
The past few years have seen a paradigm shift in that the
absoluteness of maternal organelle transmission is increas-
ingly challenged [15, 16, 18–20]. Nevertheless, there must be a
selection pressure toward the evolution of uniparental
transmission, for example to avoid the spreading of selfish
cytoplasmic elements. Such elements can be mutant organ-
ellar genomes that replicate faster than the wild-type genome,
but are maladaptive to the organism. However, whether these
elements indeed represent the driving force leading to
uniparental inheritance and predominance of the maternal

Figure 1. Paternal leakage, biparental chloroplast inheritance, sort-
ing-out, plastome-genome incompatibility, and gamete controlled
paternal exclusion. A: Paternal leakage of plastids in tobacco
seedlings detected by antibiotic selection. Green areas correspond
to cells harboring spectinomycin-resistant paternal chloroplasts,
whereas white sectors contain only cells with antibiotic-sensitive
maternal plastids [79]. Diffuse areas of green tissue indicate
incomplete sorting-out of maternal and paternal plastids (Box 1). B:
Biparental chloroplast inheritance in evening primroses, as evidenced
by variegated progeny from the inter-specific cross Oenothera
villaricae x Oe. picensis. The two species are diploid structural
heterozygotes that, due to the genetic phenomenon of permanent
translocation heterozygosity, inherit their haploid genomes as com-
plete units. Oe. villaricae consists of the haploid genomes “B” and
“l”, whereas Oe. picensis has the genomic composition “v” and “I”.
The variegated hybrid individual shown here represents one of the
possible F1 segregants and consists of the haploid genomes “l” and
“v”. It is heteroplasmic for the plastids of Oe. villaricae (green
sectors) and the plastids of Oe. picensis [chlorotic (virescent)
sectors]. The chloroplast genome of Oe. picensis is incompatible
with this hybrid nuclear background. Note that sorting-out in this
particular individual is likely completed, as indicated by the sharp
borders between green and chlorotic tissue sectors. C: F1 hybrid
“l � v” of Oe. villaricae x Oe. picensis homoplasmic for the compatible
chloroplast genome from Oe. villaricae. D: F1 hybrid “l � v” from the
reciprocal cross (Oe. picensis�Oe. villaricae), homoplasmic for the
incompatible chloroplast genome from Oe. picensis. Since green
and variegated “l � v” individuals occur only if Oe. villaricae (“B � l”) is
the mother, and the reciprocal cross with Oe. picensis (“v � I”) as
maternal parent produces only incompatible homoplasmic “l � v”
offspring, it can be concluded that the haploid genome “l” is unable
to transmit plastids into the next generation [93]. Scale bars: 0.5mm
for panel A, 5 cm for panels B-D.

Box 1

Heteroplasmy: Sorting-out and the
genetic bottleneck

In contrast to the nuclear genome, organelle genomes
occur at high copy numbers and are usually distributed
among multiple organelles per cell. Polyploidy and free
vegetative segregation of organelles and their genomes are
hallmarks of cytoplasmic inheritance. Starting from a so-
called “mixed cell” (a cell that is heteroplasmic for its plastid
or mitochondrial genomes, due to either de novo mutation
or biparental inheritance), resolution of heteroplasmy by
sorting-out of the two organellar genotypes typically occurs
during subsequent rounds of cell division. Since the
distribution of organelles and their DNA to daughter cells
is, in principle, a stochastic process, mixed cells usually
disappear after a certain number of cell divisions, and
homoplasmic cell lineages arise. Speed and sorting
mechanisms are variable between organisms and organ-
elles. For example, sorting-out of plastids in seed plants is a
rapid process that is typically completed before flower
formation (Fig. 1). In contrast, at least in some animal
systems, heteroplasmy (in the germ line) can persist for
several generations. Sorting-out results in intra-organismic
genetic drift. The process does not change allele frequen-
cies of neutral alleles within a population, but it does so
within an organism. It further provides an opportunity for
selection on particular oDNA genotypes, if a mutation is
harmful or the two genome types differ in their replication
speed. The phenomenon of the “genetic bottleneck” refers
to an extreme intra-organismic shift in oDNA genotypes
that is especially pronounced in the germline ofmulticellular
organisms. The copy number of organelle genomes in the
germline is often drastically reduced compared to the vast
amount of organelle genome copies present in somatic
tissues, thus resulting in rapid segregation to homoplasmy
at high probability [1, 12, 15].
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mode has remained enigmatic. Further, the validity of the
assumption that rare biparental transmission and sporadic
sexual recombination of organelle DNA (oDNA) can stop the
ratchet remains to be assessed.

This article describes recent progress in our understand-
ing of organelle inheritance. It discusses the current views
on the driving forces and evolutionary consequences of
maternal inheritance in plants, animals, algae, and fungi
and highlights important unresolved problems. We suggest
a unifying model of organelle inheritance, and argue that
the dominance of uniparentally maternal transmission is
an evolutionary unstable trait. Mutational meltdown of
organelle genomes is overcome by episodes of recombina-
tion between organelle genomes. The driving force for the
fall-back to strict uniparental inheritance comes from a
certain type of selfish cytoplasmic elements (i.e. organellar
genomes that are maladaptive, but faster replicating than
the native genome). Importantly, such elements cannot be
disarmed by recombination. Finally, we propose experi-
mental strategies to test the assumptions underlying our
model.

Theoretical models for the occurrence of
uniparental organelle inheritance

Although not universal, maternal inheritance is the predomi-
nant mode of organelle transmission in all eukaryotic king-
doms. This raises the question as to which evolutionary forces
favor its prevalence. Currently available mathematical models
typically link uniparental (maternal) organelle inheritance with
the evolution of anisogamy and/or sex determination (e.g. [21–
24]; but also see [5, 6, 25]; Box 2). Below, we briefly discuss the
main models in the light of existing experimental evidence. We
point out unsettled questions and assumptions that remain to
be scrutinized. It should be emphasized that these models are
not necessarily mutually exclusive.

Genomic conflict models

As originally proposed by Grun [26] and based on genetic
observations in evening primroses (genus Oenothera), the
most frequently expressed explanation for the evolution of

Box 2

Is organelle inheritance a by-product or the cause of two sexes?
Isogamous algae can answer this question

One of the most commonly suggested models for the
existence of two sexes is based on uniparental organelle
inheritance. Is it assumed that twomating types exist to avoid
costs of cytonuclear conflicts, for example, by competing
and maladaptive cytotypes. Uniparental inheritance has first
evolved in isogamous organisms and was then enforced by
anisogamy to regulated uniparental inheritance via only one
gamete. In this way, the organelles define the sex ([23, 24];
see main text). However, besides the fact that various other
models for the evolution of anisogamy (and two sexes) exist,
the cytonuclear conflictmodel can bequestioned. First, there
are some fungi where organelle inheritance is regulated
independently of gamete size or mating type. Second, it is
difficult to judge if organelle inheritance is just a by-product of
anisogamy. Organelle inheritance could be coupled second-
arily to an already pre-existing mating type. Also, it may
typically associate with the larger gamete in a quantitative
manner (reviewed, e.g., in [6, 25, 44]). If one assumes a higher
mutational load of the smaller paternal gamete as driving
force for the maternal predominance of organelle transmis-
sion (as we propose here), this would be a very reasonable
scenario.

Most eukaryotes are unicellular and many of them are
isogamous. In many isogamous species, oDNA inheritance
appears to be linked to a mating type. Hence it seems
reasonable to assume that the organelles indeed define the
mating type. Importantly, one of the arguments standing
against this view can be questioned based on our present
theory of oDNA inheritance. If oDNA inheritance is
phylogenetically unstable (Box 3; see main text), fungi that
regulate oDNA inheritance independently of gamete size or

mating type can be interpreted as derived forms. Another
important point to clarify is whether uniparental organelle
inheritance represents a by-product of the evolution of
mating types or its cause? This question is difficult to
address in organisms that carry only one organelle type
(mitochondria). Disregarding biparental transmission, mito-
chondrial inheritance is almost always associated with the
larger gamete, and so far, studies in isogamous organisms
have not provided a clear answer either. However, if
uniparental oDNA inheritance was a prerequisite for
anisogamy, one would expect a clear linkage between
mating type and organelle inheritance in those isogamous
species that possess two types of organelles. This can be
tested in algae that contain both plastids and mitochondria.
Interestingly, the green alga Chlamydomonas reinhardtii
inherits its plastid by the mtþ (“maternal”) mating type. The
mitochondria, however, are inherited by the mt� (“pater-
nal”) mating type. By contrast, Volvox, a close relative of
Chlamydomonas, is oogamous (anisogamous) and displays
maternal inheritance of both organelles ([84]; Table 1). This
example can be interpreted as evidence for uniparentally
maternal oDNA inheritance indeed being a by-product of
anisogamy. However, since oDNA inheritance is phyloge-
netically unstable (see main text), a much larger dataset on
organelle transmission in algae should be analyzed.
Unfortunately, mostly due to technical constraints, organ-
elle transmission in (isogamous) algae is largely under-
studied. While data for red algae are essentially lacking, the
few examples reported so far for green and brown algae
argue against regular co-transmission of plastid and
mitochondria in isogamous algal species [84, 85].
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uniparental organelle inheritance is the avoidance of cytonu-
clear conflicts [21, 22]. The general model diverges into two
types: “avoiding competition” (between organelles) and
“avoiding negative interaction” (between organelle genomes
and/or organelle genomes and the nuclear genome). From a
modeling perspective, the two schemes cannot be fully
discerned from each other [27–30].1

“Avoiding competition” models posit that two non-recombin-
ing clonal lineages (i.e. the maternal and paternal organellar
genomes) will enter direct competition. Mutations in one of
the genomes, for example in a locus determining the
replication speed of the organelle, would allow one of the
lineages to outgrow the other. Also, mutations in oDNA might
arise that mar the competing organelles by their attempts
to gain a competitive advantage [24, 35]. Metaphorically
speaking, the nuclear genome does not have an “interest” in a
war between organelles in the cytosol [22].

“Negative interaction” models purport that diverging
cytotypes generally reduce fitness [36]. As an exemplary
mechanistic explanation, and somewhat overlapping with the
“avoid competition” hypothesis, there could be a locus that is
maladaptive to the nucleus but favors an aggressive (faster
replicating) cytotype [26, 30]. Considering organelles alone,
negative interaction could be caused by loci in the two
organellar genomes that are not co-adapted to each other, but

Box 3

Modes and mechanisms of oDNA inheritance and their phylogenetic distribution

Especially in vascular plants, where chloroplast transmis-
sion has been extensively studied, a large dataset supports
repeated and independent evolution of biparental plastid
transmission [16, 46, 86]. In many branches of the
phylogenetic tree, plastid transmission modes vary from
maternal, maternal with paternal leakage, biparental (unbi-
ased or with maternal or paternal dominance) to paternal.
Interestingly, about one third of the plant species analyzed
so far display the potential for biparental plastid transmis-
sion [49, 87]. Relaxed uniparental maternal inheritance is
also observed in ferns and algae. Moreover, mitochondria
and plastids can be inherited independently of each other
by different sexes. For example, plastids are maternally
inherited whereas mitochondria are paternally inherited in
cucumber ([46, 47, 49, 53, 54, 84, 85]; Table 1). Although
biparental inheritance of the mitochondria was observed in
Pelargonium, compared to plastids, a higher predominance
of uniparentally maternal inheritance seems to exist in
plants (Table 1). However, paternal or biparental mitochon-
drial inheritance is frequently found in fungi [22]. Biparental
transmission (or at least strong paternal leakage) has been
reported for bees. In mussels of the genusMytilus, a unique
mechanism of so-called doubly uniparental inheritance has
evolved (Table 1). Thus, in addition to maternal inheritance,
various other types of organelle inheritance are observed.

If inheritance is uniparental, it is often not strict. More
and more evidence is accumulating that heteroplasmy and
paternal leakage are quite common in natural populations of
plants, animals, and fungi [15, 18–20, 88–91]. This seems
particularly frequent in inter-species crosses, where exclu-
sion mechanisms of different species may not function
properly upon hybridization [20]. For a few plant species,
paternal leakage frequencies of plastids could be deter-
mined experimentally. The observed leakage frequencies
are rather high, and thus blur the boundary between
uniparental and biparental transmission [16, 79, 92].

The mechanisms of how uniparental organelle transmis-
sion is achieved are also very diverse [46–49, 53, 54]. Many
different organelle exclusion mechanisms exist, and they
can act either before, during or after fertilization (Fig. 2;
Table 1). Birky [16] lists 12 different cellular mechanisms for
organelle exclusion. Often, the mechanism is not even
conserved between closely related taxa. For example, in
mammals such as mouse, cow or rhesus monkey, the
paternal mtDNA undergoes a reduction in the sperm but is
fully degradedonly later during early embryogenesis (i.e. after
initially biparental transmission). By contrast, in the Chinese
hamster, mtDNA seems to be excluded during fertilization
(reviewed in [48]). In tomato, themale generative cell does not
contain plastids. By contrast, in potato, the paternal plastids
are eliminated at a later stage of gametogenesis. Remark-
ably, tomato and potato belong to the same genus (Fig. 2).
These two examples indicate that uniparental (maternal)
inheritance evolved repeatedly even between closely related
taxa. Further, this convergent evolution frequently results in
paternal gamete-controlled organelle exclusion (“killing one’s
own paternal cytoplasm”), which so far has been difficult to
explain by modeling approaches (see main text).

The nuclear genetics of organelle exclusion also appears
to be rather heterogeneous. In many plant species, the
mode of chloroplast inheritance depends on the crossing
direction, and varies between crosses involving different
ecotypes. It can be controlled by the genetic constitution of
thematernal and/or the paternal gamete ([90, 93–98]; Fig. 1).
Similar data are available for mitochondrial inheritance [15,
20, 99]. This indicates that organelle exclusion is, in many
cases, haplotype dependent.

Taken together, modes, mechanisms, phylogenetic
distribution, and genetic architecture of organelle inheri-
tance are very diverse among eukaryotes. This strongly
suggests repeated and independent evolution of diverse
patterns of organelle transmission.

1 Integrated in some models is the idea that uniparental inheritance
might also help with reducing the negative impact of cytoplasmic
parasites [31, 32]. However, with few exceptions (e.g. Wolbachia and
related infectious bacteria in arthropods and nematodes), the frequent
presence and vertical transmission of cytoplasmic parasites is not
documented for many eukaryotes. In addition, the assumption that
mixing of such parasites generally reduces host fitness is doubt-
able [33]. Moreover, uniparental transmission may exclude organelles
from vertical transmission, but not necessarily parasites at the same
time. For example, paternal transmission of a virus was observed in
barley [34], a species that inherits its organelles maternally (Table 1).
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Figure 2. Different cytological mechanisms can result in maternal inheritance of plastids in angiosperms [120]. Species belonging to the
Lycopersicon type (tomato type), exclude plastids in pollen mitosis I. As the result of an unequal cell division, the resulting large vegetative
cell receives all plastids, whereas the generative cell is devoid of plastids. Species of the Solanum type (potato type) exclude plastids after
pollen mitosis I. Their generative cell contains a few plastids which, however, are selectively degraded (by an unknown mechanism) prior to
division of the generative cell into the two sperm cells in pollen mitosis II. Both mechanisms must be under genetic control of the paternal
gamete. Species of the Triticum type (wheat type) produce sperm cells that still contain plastids. However, the plastids are stripped off upon
fertilization and thus do not enter the cytoplasm of the egg cell. Alternative mechanisms are possible in which the paternal plastids enter the
egg cell, but do not contribute to the embryo. The close phylogenetic relatedness of tomato and potato, which belong to the same family
(Solanaceae; nightshade family) and, according to the most recent taxonomy, even to the same genus (tomato, formerly called Lycopersicon
esculentum, was renamed Solanum lycopersicum), suggests significant evolutionary flexibility and repeated independent evolution of the
mechanisms leading to (paternally controlled) maternal plastid inheritance.
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combined by sexual recombination. Alternatively, there is
the possibility that different organelles harbor different
alleles of one locus, and their heteroplasmic combination is
maladaptive to the cell [37]. Obviously, a strict uniparental
inheritance of organelles largely avoids these problems.
Indeed, modeling of such scenarios frequently leads to the
fixation of a nuclear inheritance modifier that causes switch-
ing from an ancestral biparental to a derived uniparental
mode of inheritance.

Mutation pressure and the “bottleneck model”

Another starting point toward explaining uniparental inheri-
tance is the assumption that sexual recombination of oDNA is
not the only force that counteracts Muller’s ratchet (see
below). Hence, strict uniparental organelle transmission may
be less harmful than widely assumed. Most relevant in this
context is that organelles pass a genetic bottleneck when
entering the germline (Box 1). By this mechanism, organelle
mutations can become purified by intra-cellular genetic drift
in that genome segregation to homoplasmy occurs [38, 39].
Subsequently, deleterious mutations can be eliminated
effectively by selection [12, 40]. Modeling work showed
that paternal leakage (or biparental transmission) would
interfere with this process [41]. Interestingly, in the “bottle-
neck model”, absence of sexual recombination of oDNAs is,
to some extent, the driving force rather than the consequence
of uniparental inheritance.

Co-adaptation model

Another model that deserves consideration was postulated
recently [42]. The establishment of DNA-containing organelles
by endosymbiosis was followed by massive gene transfer from
the genome of the endosymbiont to the nuclear genome of
the host cell [43]. Sincemany of the encoded gene products are
re-imported into the organelle, organellar genomes and
nuclear genomes rely on tight co-evolution and co-adaptation.
Mathematical modeling shows that co-adaptation is enhanced
by both uniparental inheritance and the genetic bottleneck,
suggesting that selection for co-adaptation was a driving force
for uniparental inheritance and the evolution of two sexes.
Like the other models, the co-adaptation model assumes lack
of sexual oDNA recombination.

The evolutionary cause for uniparentally maternal
inheritance is still unclear

In particular, the different types of genomic conflict
hypotheses have been modeled extensively. From this work,
several theoretical problems arose. A general argument
against these hypotheses is that a mutation leading to
uniparental transmission can only be advantageous if a
selfish cytoplasmic element is present, but not yet fixed in the
population [6, 16, 44]. According to Hutson and Law [45],
fixation of an inheritance modifier (inducing the switch from
ancestral biparental inheritance to uniparental inheritance)

requires a heterozygous advantage at this locus and the tight
linkage to a self-incompatibility allele. Uniparental inheri-
tance can, therefore, only evolve within rather strict boundary
conditions. It seems that these problems can be solved by a
recently proposed model [5]. It makes the assumption that
the gametes control organelle inheritance. It further takes the
dynamics of the fitness costs of biparental inheritance into
account in that cells do not suffer from a fixed cost of
biparental inheritance, but the actual costs depend on the
number of selfish or maladaptive mutations. Consequently,
the model predicts that the relative advantage of uniparental
inheritance declines in a mutation frequency-dependent
manner within a population. This appears to be the case
under very broad parameters. Hence, the model is compatible
with the different inheritance patterns of oDNA, varying
between (low-level) paternal leakage and regular biparental
inheritance (Box 3; Table 1). It can also account for genomic
conflicts, mutation pressure, and nuclear-organelle co-
adaptation as potential driving forces for uniparental
inheritance. However, in agreement with previous modeling,
it was found that an inheritance modifier that kills its own
organelles cannot spread. Paternal exclusion should, there-
fore, be evolutionarily unstable [28]. This is mainly due to the
mechanistic problem that such an allele cannot be genetically
linked with the fittest cytotype [5, 6, 44]. Nevertheless,
achievement of maternal inheritance by paternal exclusion of
organelles (“killing one’s own cytoplasm”) is frequent among
plant and animal species ([46–49]; Fig. 2; Table 1). It is,
however, obviously associated with fitness costs. According to
Sreedharan and Shpak [50], the trait can arise only if one
assumes very high mutation rates of selfish cytoplasmic
elements (5% per generation). However, in contrast to
mammalian mitochondrial DNA, the nucleotide substitution
frequencies in plastid and plant mitochondrial genomes are
very low [51, 52]. Developing the idea further, the occurrence
of hermaphrodites with uniparental organelle transmission
(as is the case for many self-pollinating plant species) is
difficult to explain. In these organisms, maternal transmission
implies a costly mechanism for the organism to eliminate
its own paternal cytoplasm. The second argument that can
be raised against all models for uniparental inheritance is
the implicit assumption that the cytotype transmitted into the
hybrid (typically the maternal cytotype) is generally fitter than
the excluded (paternal) cytotype (e.g. [25, 46]).

In summary, the available models of organelle inheri-
tance fail to explain why the uniparentally paternal mode of
organelle inheritance is rare [46] and why “killing one’s own
(paternal) cytoplasm” occurs. Hence, the current theoretical
problem connected with organelle inheritance is not its sex
linkage per se, but rather the dominance of the maternal over
the paternal mode and in many cases its control by the
paternal gamete. Arguing that gamete size simply deter-
mines organelle inheritance in a largely quantitative manner
(in that female gametes are larger and, therefore, harbor
more organelles), is not satisfactory either. Especially in
plants, many examples exist for (i) contrasting modes of
plastid DNA (ptDNA) and mitochondrial DNA (mtDNA)
inheritance, and (ii) biparental or predominantly paternal
transmission, implying a high organelle load in the paternal
gamete ([46, 49, 53, 54]; Table 1; Box 3).

S. Greiner et al. Prospects & Overviews....

86 Bioessays 37: 80–94,� 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.

P
ro
b
le
m
s
&
P
a
ra
d
ig
m
s



Alternative explanations for uniparental organelle
DNA inheritance do not apply to the whole
eukaryotic domain

In view of the problems outlined above, some authors assume
that the current models do not provide a fully satisfactory
explanation for the prevalence of uniparental transmission of
plastids andmitochondria in the entire eukaryotic domain [16,
42, 44, 47]. Organelle genomes of plants and animals as well
as those of unicellular and multicellular eukaryotes differ
greatly in genome organization, coding capacity, copy
number per cell and mutation rate, as do cell and gamete
sizes and ecological niches. In theory, modes of organelle
transmission could even be explained as an evolutionary by-
product of selection forces shaping organellar genomes in a
lineage-specific manner [16].

On the other hand, the predominance of maternal
organelle transmission, along with the virtual absence of
sexual recombination between organelles in most lineages of
eukaryotic evolution, is striking. It thus appears likely that
there is a general explanation for the observed pattern (but
also see [55]). The exclusion of organelles from the germline
is an active process and should be costly [46–49]. Also, it
has likely evolved repeatedly ([16, 46, 49]; Fig. 2; Box 3;
see below). Hence, there must be a strong, general selection
pressure maintaining this trait.

By arguing from a physiological point of view, a possible
explanation was offered by Allen [56]. It posits that only the
maternal organelle DNA is maintained because it is protected
from oxidative damage (as caused by the electron transfer
reactions in photosynthesis and respiration). Since the sessile
egg cell has a lower energy demand than the mobile sperm,
the paternal oDNA may suffer from higher oxidative damage
and, therefore, is excluded from inheritance. By contrast, the
maternal germline cells are protected in specialized tissues,
where organelles would display low metabolic rates. This
assumption seems to be true for a wide range of animal
systems [57], and likely also for proplastids in plant meristems.
However, since the meristem confers plant growth and cellular
differentiation, it has a high energy demand. Therefore, its
mitochondria should not be protected from reactive oxygen
species. Also, the hypothesis cannot apply to unicellular
organisms. Thus, like most of the genetic models described
above, the theory falls short of explaining organelle inheritance
patterns for all eukaryotes. Even though it provides an elegant
explanation for why paternal exclusion of cytoplasms could be
frequent, the theory cannot explain the widespread occurrence
of biparental transmission of chloroplast, paternal leakage, and
cases of paternal oDNA inheritance ([46, 49, 53]; Table 1).

A unifying model for organelle inheritance

Taking a number of theoretical considerations into account,
we propose here a unifying model for organelle inheritance
(Fig. 3). We argue that uniparental inheritance arises to avoid
the spread of selfish (faster replicating) organelle genomes
that are maladaptive and/or incompatible with the host
nucleus. However, uniparental inheritance is evolutionarily
unstable, because organelles are subject to Muller’s ratchet.

This drives a relaxation of strict maternal inheritance by
paternal leakage or regular biparental transmission. Biparen-
tal inheritance is again susceptible to the evolution of selfish
genomes and, therefore, is repeatedly lost and restored over
evolutionary timeframes. In other words, the mutational
meltdown by Muller’s ratchet is escaped from by episodes (or
longer periods) of sexual recombination between organelle
genomes. Importantly, sexual oDNA recombination is not
sufficient to stop the spread of selfish cytoplasmic elements.
The observed maternal predominance in uniparental trans-
mission is due to a higher mutational load of paternal
cytotypes, which in turn is caused by oxidative damage and/or
genetic drift and is most pronounced if oDNA copy numbers in
the sperm cell are small. The load is high enough to favor the
evolution of paternal gamete-controlled organelle exclusion
mechanisms (“killing one’s own cytoplasm”). What is the
actual evidence for these assumptions?

Patterns of organelle inheritance are
phylogenetically unstable

If uniparental inheritance is evolutionarily unstable, three major
patterns in organelle inheritance should be observable. First,
biparental transmission should evolve repeatedly and indepen-
dently. Second, paternal leakage should be relatively frequent.
Third, the switch back to sex-specific organelle exclusion
(uniparental inheritance) should occur by diversemechanisms
that can differ between closely related species or even between
haplotypes. Strikingly, these patterns are indeed observed,
throughout the eukaryotic domain (Box 3; Fig. 1; Table 1).

In addition, paternal gamete-controlled organelle exclu-
sion certainly plays an important role in organelle exclusion.
As for the observed predominance of maternal organelle
transmission (see above), any general theory of organelle
inheritance must therefore give a reasonable explanation for
“killing one’s own (paternal) cytoplasm”.

The predominance of maternal oDNA
transmission might be due to higher
mutational load in the male gamete

In all sexually reproducing eukaryotes, the zygote develops
through fusion of an egg cell with a (usually motile) sperm
cell. It subsequently undergoes rapid divisions that incur a
high energy demand. Hence, in agreement with the “oxidative
damage model”, there should be an immediate selection for
the fittest organelle genotype. This should be the case for both
mtDNA and ptDNA, because inmany seed plant taxa, embryos
are green (at least in the early stages of seed development the
embryo is exposed to light) and perform photosynthesis [58].
If selection in the zygote is the driving force for paternal
exclusion, one must, however, assume higher mutation rates
for paternally inherited organelle genotypes. This can be
tested in paternally inherited cytotypes as found in gymno-
sperms. Strikingly, oDNA mutation rates are indeed higher
in these taxa, suggesting that, compared to the egg cell,
organelles in the pollen carry a higher mutational load [52, 59,
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60]. The “oxidative damage” assumption [56] could be
relevant to this observation. However, since oxidative damage
fails to explain relaxed maternal organelle inheritance
patterns (see above), it cannot be the sole and universal
driving force for the observed patterns of oDNA inheritance.
However, paternal oDNA copy numbers in the sperm cell are
typically substantially smaller thanmaternal copy numbers in
the larger egg cell. Hence, genetic drift of oDNAs due to
stronger genetic bottlenecking at the level of the gamete might
represent an additional relevant factor. Consequently, pater-

nal or biparental oDNA inheritance should be associated with
(i) high organelle numbers and oDNA copy numbers in the
pollen, as it is the case, for example, in alfalfa, melon or
Pelargonium [49, 61], and/or (ii) a much larger population
size of the pollen compared to the egg, as it is the case in
gymnosperms which are wind-pollinated. This view is in line
with theoretical considerations, arguing that the higher
mutational load of organelle genomes in general is not due
to asexuality per se, but is the result of the small effective
population size of organellar genomes [62].

Figure 3. Repeated origin and loss of uniparental organelle inheritance in evolution and selection pressures for uniparental and biparental
organelle transmission. A: Biparental organelle inheritance likely represented the ancestral stage. It is selected against to avoid the spread of
selfish cytoplasmic elements (left panel). This drives evolution for uniparental inheritance. It is typically maternal and, due to its lineage-
dependent evolution, realized by various cellular mechanisms (indicated by different colors). Uniparental paternal inheritance (dashed arrow)
can evolve, if the mutational load for paternally inherited organelles is low and/or comparable to that of organelles in the egg cell. Strict
uniparental inheritance leads to organelle genome susceptibility to mutational meltdown (middle panel). This, in turn, provides a driving force
for a fall-back to relaxed organelle inheritance patterns to allow (low levels of) sexual oDNA recombination. Repeated evolution of uniparental
inheritance is necessary, since biparental transmission allows the spread of selfish cytoplasmic elements, even if organelle genomes undergo
sexual recombination (right panel). B: Selection pressure for uniparental organelle inheritance as caused by an aggressive and maladaptive
cytoplasm. Organelle genomes a and b are both compatible with their nuclear host genomes AA and BB, respectively. Consider that
cytotype b is incompatible with the hybrid nuclear genome AB, whereas cytotype a is compatible. Upon uniparental inheritance of the two
organelles, reciprocal crosses will give 50% viable offspring (top panel). Identical offspring viability is achieved if both organelles are inherited
biparentally and have identical multiplication speeds (i.e. assertiveness rates in the zygote and the F1 generation; middle panel). The situation
changes dramatically, if in the cytotype that is incompatible to the hybrid a mutation arises (b’) that can overgrow the compatible cytotype a
in the offspring. If transmitted biparentally, it will effectively eliminate the compatible cytotype a. This situation would provide a strong selection
pressure for the evolution of uniparental inheritance (lower panel). C: Spread of maladaptive and aggressive cytoplasmic genotypes cannot be
prevented by sexual oDNA recombination. Assume that the compatible cytotype a carries two genetically unlinked loci (cf. Box 4) that confer
compatibility with the hybrid nucleus (inc) and normal replication speed (fast). The incompatible and aggressive cytotype b’ harbors the alleles
Inc and Fast, conferring incompatibility in the hybrid nuclear background and faster replication. Further assume that the allele Fast shifts the
input ratio of the two cytoplasms a and b’ into the zygote from 1:1 (upon biparental inheritance with no maternal or paternal bias) to 1:3.
Since in an organelle cross, input frequencies reflect output frequencies and homologous recombination can occur between genomes
(Box 4), the allele combinations inc/fast, inc/Fast, Inc/fast and Inc/Fast will occur in a 1:3:3:9 frequency. [The a and b’ genomes can
recombine with themselves, resulting in 1�1 a (inc/fast), and 3�3 b’ (Inc/Fast) genotypes. Recombination between a and b’ results 1�3 in
the allele combinations inc/Fast and Inc/fast, respectively.] If all oDNA genomes carrying the allele fast are overgrown by Fast genotypes
during ontogenesis, the only two remaining genotypes will be inc/Fast (25%) and Inc/Fast (75%). The latter is incompatible with the host
nuclear genome, but substantially overrepresented in the hybrid population, thus conferring a strong selective disadvantage.
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Taken together, maternal dominance in organelle inheritance
could be due to a lower mutational load, since in most
organisms, more oDNA copies are inherited by the mother.
However, in organisms where bottlenecking is less severe for
the male gamete, paternal oDNA inheritance can evolve, thus
potentially explaining why contrasting modes of organelle
inheritance exist. This especially applies to isogamous
organisms, carrying two organelles such as green algae
(Box 2). Moreover, the higher mutational load in the paternal
oDNA might be the selection force for the evolution of
mechanisms that “kill one’s own (paternal) cytoplasm”.
Finally, uniparental (maternal) inheritance must be seen as
a consequence of, rather than the underlying reason for,
anisogamy (Box 2).

Possible selection pressures for
uniparental organelle inheritance

Maternal dominance of uniparental inheritance could be
explained by a higher mutational load of the paternal gamete.
However, why does uniparental inheritance exist at all,
and what are the selection forces, leading to uniparental
(maternal) inheritance?

Deleterious interactions between co-existing
organelle genomes

A commonly suggested putative selection force for uniparen-
tal inheritance is deleterious epistatic interaction between co-
existing organelle genomes. In the case of mitochondria, a
possible mechanistic scenario could, for example, involve
the unscheduled onset of apoptosis. That can be triggered
by production of reactive oxygen species if improperly co-
adapted subunits of the mitochondrial respiratory chain are
combined with each other [63]. However, to what extent
deleterious epistatic interactions between co-existing organ-
elles occur in nature, is currently unclear. At least for plastids
of seed plants, such interactions are difficult to image, since
plastids usually do not undergo fusion [16, 46, 54]. There is no
molecular or cell biological evidence for negative interactions
between co-existing plastids, even though some classic
genetic evidence could be interpreted in this direction (pages
154–155 of [26], [64]). Negative interactions between mito-
chondria in plants and animals seem to be possible, and
were reported in some cell fusions [65, 66]. Recently, it was
demonstrated that heteroplasmic mice display reduced
respiratory activity and behavioral phenotypes, whereas mice
homoplasmic for either of the two mitochondrial genotypes
had no phenotype [36]. Taken together, inter-organellar
epistasis seems to exist, although its mechanisms are largely
enigmatic. However, analyses on sexual oDNA recombination
in yeast and Chlamydomonas somewhat argue against the
widespread occurrence of deleterious epistasis between
oDNA alleles, since the expected segregation distortion is
not normally observed (Box 4). Given the few documented
examples, the general significance of deleterious epistatic
interactions between organelles is currently questionable.

Selfish cytoplasmic elements, nuclear-
cytoplasmic co-adaptation, and their interplay

Another common posit is that uniparental inheritance has
evolved to avoid the spread of selfish cytoplasmic elements.
Some solid datasets are available for competition between
organelle genomes in both plant and animal systems.
Examples have come from cell fusion events, oDNA mutants
and sexual crosses [6, 12, 18, 67, 68]. For example, in evening
primroses, plastids display different multiplication speeds in
sexual crosses depending on the plastid genotype [64]. If the
avoidance of competition between organelles was the major
driving force for the evolution of uniparental inheritance, a
replication race between oDNAs must be harmful to the
nucleus. Although some human diseases are associated with
altered mtDNA copy numbers [69], in most eukaryotic systems
studied so far, the amounts of oDNA versus nuclear DNA
remain constant within a rather narrow range and are likely
under nuclear control [1, 12, 69–71]. Hence, it appears unlikely
that solely differences in oDNA replication speeds provide
sufficient driving force for the evolution of uniparental
inheritance.

A likely much stronger selection force for uniparental
inheritance will arise if an organelle with a higher replication
speed carries a genotype that is incompatible with or
maladaptive to the host nucleus. Prime examples are some
of the petite mutants of yeast, which lack the capability for
respiration due to large deletions in themitochondrial genome.
Although yeast can grow anaerobically, growth rates achieved
by fermentation are substantially lower. However, due to the
presence of more replication origins and/or their smaller
genome size, these petite mutant mitochondria are able to
overgrow the wild-type mitochondria [72]. In evening primro-
ses, the competitive advantage of specific plastid genotypes is
largely independent of the nuclear background and is also
observed when the more competitive plastid genotype is
deleterious [73, 74], exemplifying a naturally occurring
aggressive and maladaptive cytotype [26].

Strikingly, cytotypes that are maladaptive to the nucleus
are well known in plants, fungi, and animals. They lead to
cytoplasmic incompatibilities, which are the result of
diverging evolution between the organellar and nuclear
genomes involved ([7, 8, 13, 14]; Fig. 1). Together with
potentially ubiquitously present differences in organelle
replication speeds, this can lead to a hitchhiking of
cytoplasmic incompatibilities. Potentially, this provides a
strong selection force for uniparental organelle inheritance
([26, 30]; Fig. 3B) which, however, cannot be disarmed by
sexual recombination of oDNAs (Fig. 3C).

How much sexual oDNA recombination
is needed to overcome Muller’s ratchet?

As summarized by Birky [16], the assumption that sexual
recombination in oDNA is required to counteract Muller’s
ratchet has been challenged. Hence, the virtual absence of
recombination may be less harmful than widely assumed. A
major argument is that organelles generally undergo a genetic
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Box 4

Sexual recombination of oDNA: experimentally determined frequencies and
occurrence in natural populations

Recombination between biparentally inherited organelle
genomes has been reported for some taxa, but is
controversial in others ([15, 16, 18, 20] for references). It is
important to note that, upon strict uniparental inheritance (and
lack of sexual recombination), selective sweeps should be
frequent in organellar genomes, but are barely observed [12].
Detailed genetic linkage analyses based on sexual oDNA
recombination were conducted in yeast (e.g. [100]), and
genetic linkage maps were also established for ptDNA and
mtDNA in the green alga Chlamydomonas (e.g. [101–103]).
Both organisms display biparental inheritance or paternal
leakage of their organelles (Table 1). Linkage analyses in
yeast and Chlamydomonas uncovered remarkable differ-
ences of oDNA recombination compared to recombination
mapping in the nuclear genome. Similar to “phage crosses”,
where two phages are mixed and allowed to recombine in
bacteria upon double infection, the maximum recombination
frequency in an inter-organelle cross is 25% (rather than
50%), because half of the recombination events occur
between identical genotypes. This value is supported by
experimental data in that the maximal recombination
frequencies observed are indeed in the range of 20–25%.
However, in contrast to a phage cross where titers and
double infection rates can be easily determined, models for
oDNA recombination usually assume that oDNA contribution
from both parents is equal and that there is no intra-cellular
selection for or against particular recombinants. Furthermore,
randompairing of oDNAmolecules, multiple rounds of paring
and recombination, and random segregation of oDNA copies
is assumed [104]. In spite of these uncertainties, genetic
distances obtained from segregation analyses usually
correlate well with the physical distances of the genetic
markers [102, 105, 106]. Although generally high, recombi-
nation frequencies of oDNAs vary between species (on
average, 15–20% recombinant clones are observed within a
given sequence interval of 1kb in brewer’s yeast, 3.2%
in ChlamydomonasmtDNA, 1.6% in fission yeast, and 1% in
Chlamydomonas ptDNA; [102]). Since the lowest observed
recombination frequency of 1% within 1kb reflects the
existence of a linkage group only for a 25kb distance
(because 25% recombination is the maximum possible
frequency), it appears that, if sexual recombination within
oDNA occurs, large portions of the genome can be
genetically unlinked. Also, recombination hotspots can exist
in oDNAs [107]. Another important finding from genetic
analyses was that oDNA recombination events are mostly
non-reciprocal at the level of the individual, but reciprocal at
the level of the population [101, 108]. This is likely due to gene
conversion, but other factors may be involved as well [109].

The general features of sexual oDNA recombination as
worked out for unicellular organisms may be transferable to
many multicellular eukaryotes. However, there are some
limitations concerning the frequency of organelle mixing and
fusion. For example, plastids of seed plants do not seem to

regularly undergo recombination in crosses, not even in
organisms with biparental plastid inheritance [110]. However,
especially in cell fusion experiments ptDNA recombinationwas
occasionally seen (e.g. [111, 112], but see also [3, 64]). It
appears likely that recombinationbetweenplastomes in sexual
crosses of seed plants is largely prevented by the absence of
plastid fusion in the zygote [46, 47, 54]. This is in contrast to
Chlamydomonas, where plastid fusion occurs after syngamy.

Organelle recombination of plant mitochondrial genomes
was repeatedly demonstrated in protoplast fusion [3, 65, 113]
and preliminary evidence for recombination in sexual crosses
has also been obtained [114]. If biparental transmission
occurs, sexual recombination of plant mtDNA is expected,
because plant mitochondria regularly undergo fusion (and
fission), and homologous recombination events seem to
occur frequently in mitochondrial genomes [115, 116]. In
contrast to plants and fungi (reviewed in [20]), occurrence
and evolutionary relevance of mitochondrial genome recom-
bination in animals are still controversial. Mixed evidence is
available in that recombination was detected in some animal
species, but not in others [2, 15, 117, 118].

The general presence of sexual oDNA recombination
has gained some support from investigations of natural
populations. Circumstantial phylogenetic evidence points
to sexual recombination in both plant and animal systems,
but the currently available data are still sparse and a bit
controversial [1, 3, 15, 18, 89]. While genetic studies in
natural populations of campion (genus Silene) suggest
presence of recombination [19], somewhat contradicting
evidence has been obtained for fruit flies and fungi [91,
119]. More rigorous and systematic investigations of oDNA
recombination in natural populations and hybrid zones are
needed that, for example, also take into account the
possibility of selection against recombinant genotypes.

In summary, it seems possible that sexual recombination
of oDNA is widespread and perhaps even a general
phenomenon. As paternal leakage of plastids occurs at
least occasionally in many, if not all, species, sexual
recombination of plastids in seed plants may be limited
by the rarity of plastid fusion events. In contrast, the limiting
factor in sexual recombination of mtDNA may be paternal
leakage and reduced recombination ability, at least in some
animal taxa, most notably in mammals (cf. [2, 3, 15, 18–20]).
It is noteworthy in this respect thatmammalianmitochondrial
genomes have considerably higher nucleotide substitution
rates than plastid genomes and plant mitochondrial
genomes. Interestingly, plant mitochondria, which are likely
subject to paternal leakage and regularly undergo fusion and
mtDNA recombination, display one of the lowest nucleotide
substitution rates known in nature [51, 52]. However,
whether or not oDNA recombination frequencies in all
organisms, and especially in mammalian mitochondria and
seed plant plastids, are high enough to overcome Muller’s
ratchet, remains to be determined (see main text).
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bottleneck when entering the germline. Thus, organelle
genomes become purified by intra-organismic genetic drift,
rapidly segregate to homoplasmy, and therefore malfunction-
ing genotypes can be eliminated effectively by selection ([12,
38, 39]; Box 1). Also, organelles may have very efficient DNA
repair mechanisms that might have evolved to cope with the
constant exposure to high levels of reactive oxygen species
that are generated as unavoidable by-products of respiratory
and photosynthetic electron transfer reactions. In plants,
nucleotide substitution rates in ptDNA and mtDNA are much
lower than in the nucleus, thus defying Muller’s ratchet [51,
52]. High genome copy numbers, together with active gene
conversion, seem to be effective mechanisms for slowing
down the ratchet, at least in plant oDNAs [75]. Nonetheless,
the ratchet should still be clicking, raising the question how
much recombination is needed to stop it. According to
Charlesworth et al. [76], assuming a population size of no
more than 100 diploid individuals and a chromosome with
1,000 loci, 10�5 cross-over events per locus and generation are
sufficient (for review see [62]). If applied to a sexual oDNA
recombination frequency of 3.2% within 1 kb (Chamydomonas
mtDNA, with each base pair representing a locus; Box 4),
and the paternal leakage frequency of tobacco mitochondria
(10�4 to 10�5; [77]), this would result in 3.2� 10�6 to 3.2� 10�7

recombination events per locus and generation. Although this
estimate may be an over-simplification [78], the calculated
frequency comes close to the value expected to suffice. Based
on this value, it also seems clear that, for the chloroplast
genome (upon leakage frequencies between 10�4 and
10�5; [77, 79]), due to rarity of plastid fusion (Box 4 and
see above), paternal leakage might be insufficient to stop the
ratchet from clicking. This could explain why uniparental
inheritance of plastids is evolutionarily particularly unstable,
and biparental transmission is more frequently observed for
plastids than for mitochondria.

Killing one’s own cytoplasm

As mentioned above, a major problem with the current
theoretical modeling of the occurrence of uniparental
inheritance lies in the frequent occurrence of paternal
gamete-controlled exclusion of organelles. However, the
present models might be too simple to reflect the true pattern
of organelle inheritance. For example, the probably best
theoretical approximation to the naturally observed organelle
inheritance patterns [5] assumes a unicellular organism, a
simple single-locus genetics of nuclear control of organelle
inheritance, and the absence of sexual recombination of
oDNA. Furthermore, no sex-specific mutational load is
assumed. However, organelle inheritance can be controlled
by multiple nuclear loci [80, 81], the mutational load in
paternal oDNA may be elevated, and sexual recombination of
oDNA is known to occur in many systems (Box 4). In addition,
improved models should take into account more complex
patterns of sorting-out, as they occur in multicellular
eukaryotes, and the underlying population genetics. Although
this unavoidably complicates the modeling, a higher paternal
mutational load and the possibility for sexual recombination
of oDNA might explain why “killing one’s own cytoplasm” is

frequent in nature. In the presence of occasional sexual oDNA
recombination, the fittest alleles of the paternal cytotype
might be able to escape a uniparental inheritance modifier.
The key question then will be whether the theoretical values
that can be deduced from refined modeling approaches are
in agreement with observed paternal leakage frequencies,
oDNA recombination rates, and the strength of the selection
pressures for uniparental inheritance.

Experimental model systems

As suggested above, the avoidance of spreading of an
incompatible but aggressive cytoplasm with a faster replicat-
ing genotype might be a major driving force for uniparental
organelle inheritance. However, for a full understanding of
oDNA inheritance patterns, one needs to assess the fitness
effects of all potential driving forces of uniparental inheri-
tance. It further will be necessary to identify the nuclear
factors responsible for organelle exclusion as well as the
organellar loci controlling replication speed and the loci
conferring deleterious epistatic interactions between co-
existing organelles or between organelles and the nucleus.
The interplay of these genetic factors in natural populations
must be studied, taking sexual oDNA recombination into
account. Currently, excellent experimental models are
available to study sexual oDNA recombination, especially
yeast and Chlamydomonas. Also campions (genus Silene) and
fruit flies have proved to be valuable systems for studying
paternal oDNA leakage and oDNA recombination in natural
populations. High-throughput application of next-generation
sequencing technologies will certainly increase our under-
standing of organelle inheritance. Paternal leakage, sorting-
out of genome types, selection against deleterious variants as
well as oDNA stability and recombination dynamics are now
accessible at much finer scale (Boxes 1 and 4) and at all levels:
in cells, tissues, individuals, and entire populations. Never-
theless, there is currently a shortage of suitable models that
would allow the investigation of fitness effects and evolution-
ary consequences of relaxed oDNA inheritance in natural
populations. For plants, evening primroses provide such a
model. Major principles of chloroplast genetics were initially
worked out in evening primroses. Moreover, early theoretical
considerations on the selection forces of uniparental inheri-
tance were formulated based on data from evening primroses
by Grun [26]. Evening primroses also represent a uniquely
suited system to test possible selection pressures for
uniparental transmission at the population level for several
reasons. First, the genus offers an extremely well character-
ized formal genetics at the population level. Second,
biparental transmission of chloroplasts is the rule in evening
primroses. Third, plastome-genome incompatibility occurs
frequently in inter-specific hybrids. These incompatibilities
are associatedwith genetically distinguishable plastome types
(I–V), which are already known to differ in their multiplica-
tion speeds. Of particular interest is the common evening
primrose (Oenothera biennis), a hybrid species that is
naturally distributed in the eastern half of North America.
It harbors the basic nuclear genomes A and B (in a stable
heterozygous state) associated with either plastome type II or
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III in overlapping subpopulations [13]. Due to hybridization
within the population, the incompatible combinations AA-III
and BB-II are sometimes observed, building asymmetric
hybridization barriers of different strengths (Fig. 1). Other
observed combinations, such as AA-II, BB-III, AB-II, or AB-III,
are compatible. Since plastids with plastome III are
multiplying faster than those with plastome II, they have
the potential to outcompete plastome II plastids in this
population. Moreover, this constellation provides a hitchhik-
ing opportunity for a maladaptive trait in inter-specific
hybridization events [8, 13, 82, 83]. In view of all these
attractive features, the Oenothera system is clearly one of the
most suitable models for testing some of the key predictions of
our current hypotheses on organelle inheritance.

Conclusions and outlook

Here, we propose a unifying, potentially universal and testable
model, to explain the evolution of organelle inheritance. We
argue that uniparentally maternal organelle inheritance is an
evolutionarily unstable trait. In anisogamous organisms, the
maternal predominance seems to be due to a higher
mutational load of the paternal gamete. The major driving
force for uniparental inheritance could come from selfish
cytoplasmic genomes that are maladaptive to the host nucleus
but replicate faster than the native cytoplasmic genome. The
model is in line with the various inheritance patterns observed
in nature. To test the underlying assumptions, the factors
involved in and/or leading to uniparental (maternal) organelle
inheritance need to be identified and quantified. We must
understand nature and function of selfish mutations and
determine their strength in selection. Also, it will be necessary
to measure sexual oDNA recombination rates in natural
populations, to identify the genes involved in organelle
exclusion and to investigate their population genetics. Further,
age and extinction rates of lineages displaying uniparental
or biparental inheritance need to be determined (cf. [16]). All
these parameters should then be used in advanced modeling
approaches, to solve one of the most fundamental and
puzzling questions in genetics and evolutionary biology.
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