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Abstract: The enzyme mimetic activity of nanomaterials has been applied in colorimetric assays and
point-of-care diagnostics. Several nanomaterials have been exploited for their peroxidase mimetic
activity toward 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. However,
an efficient nanomaterial for the rapid and strong oxidation of TMB remains a strategic challenge.
Therefore, in this study, we developed copper-loaded tin oxide (SnO2-Cu) nanocomposites that
rapidly oxidize TMB. These nanocomposites have strong absorption at 650 nm and can be used for
highly sensitive colorimetric detection. An environmentally friendly (green), rapid, easy, and cost-
effective method was developed for the synthesis of these nanocomposites, which were characterized
using ultraviolet-visible, energy-dispersive X-ray, and Fourier-transform infrared spectroscopy, as
well as scanning electron microscopy. This is the first green synthesis of SnO2-Cu nanocomposites.
Their enzyme mimetic activity, which was first studied here, was found to be strongly dependent on
the temperature and pH value of the solution. The synthesized nanocomposites have the advantages
of low cost, high stability, and ease of preparation for enzyme mimetic applications. Hence, SnO2-
Cu nanocomposites are a promising alternative to peroxidase enzymes in colorimetric point-of-
care diagnostics.

Keywords: green synthesis; SnO2-Cu nanocomposites; nanozyme; peroxidase mimetic activity;
colorimetric detection; 3,3′,5,5′-tetramethylbenzidine

1. Introduction

Nanomaterials and nanocomposites have attracted the attention of scientists owing
to their unique magnetic, chemical, optical, and electrical properties, which make them
suitable for various applications, such their use as catalysts [1,2], photocatalysts, drug-
delivery systems [3–5], colorimetric sensors [6], and antibacterials [7,8]. Semiconductors
and metallic nanostructures have been extensively applied in various fields. However,
semiconductor–metal hybrids show improved magnetic, chemical, optical, and electrical
properties compared to their independent counterparts owing to the impregnation of noble
metal nanoparticles on the surface of the semiconductor–metal hybrids. Furthermore,
the synthesis of nanocomposites with controllable sizes, shapes, and surface properties is
important for various practical applications [9]. Zinc oxide (ZnO)-based nanocomposites
are the most exploited in various fields because of their wide band gap (3.6 eV) and large
exciton binding energy (130 meV) [10]. However, the combination of noble metals with tin
oxide (SnO2) is a promising approach for enhancing the physical and chemical properties of
nanocomposites. Copper (Cu) ions are suitable to be used for the catalytic activity required
for the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) [11] and
its nanoflowers have shown excellent activity in the catalytic detoxification of dyes [12].
Therefore, Cu-loaded (SnO2-Cu) nanocomposites are potential nanomaterials for chemical
catalysis and other applications. Copper nanoparticles are very attractive because of their
high natural abundance, low cost, and excellent catalytic, optical, electrical, mechanical,
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and antifungal/antibacterial properties [13,14]. Various approaches have been exploited to
develop SnO2 and Cu nanohybrids, such as the magnetron sputtering method [15] and the
chemical coprecipitation method [16]. Environment-friendly (green) synthesis methods
have attracted researchers’ attention as the ideal chemical and physical synthesis methods
for nanomaterials [17]. Therefore, in the present study, a green synthesis method was
used for the development of SnO2-Cu nanocomposites. A previous study has proven that
palladium-loaded ZnO (ZnO-Pd) nanosheets show peroxidase mimetic activity, oxidizing
the colorless 3,3,5,5-tetramethylbenzidine (TMB) substrate in the presence of hydrogen
peroxide (H2O2); the oxidized TMB (oxTMB) showed dark-blue color and a strong peak at
650 nm [18].

Horseradish peroxidase (HRP) catalyzes the oxidation of a substrate in the presence
of H2O2, which acts as an electron acceptor. Due to its excellent properties, HRP is the
most extensively employed enzyme in a variety of biochemical applications, such as
chemiluminescence, colorimetry, and fluorimetry [19]. Enzymes have inherent drawbacks
such as high preparation and purification costs, low operational stability, sensitivity to
environmental conditions, and difficulties in recycling. To overcome these drawbacks,
researchers are developing nanomaterials with peroxidase-like activities, functioning as
artificial substitutes for enzymes with high stability. Various nanomaterials, such as gold
nanoparticles [20], Pd nanoclusters [21], graphene oxide [22], and ZnO-Pd nanosheets
have been developed [18]. Nanozymes (enzyme-mimicking nanoparticles) show excellent
activity under harsh conditions of pH and temperature, and are resistant to protease
digestion [18].

In the present study, we focused on the development of an easy, cost-effective, and
green method for the biosynthesis of SnO2-Cu nanocomposites using a premature seed pod
extract of Platycladus orientalis, and then investigated the nanocomposites’ enzyme mimetic
activity for the oxidation of TMB. Platycladus species are enriched sources of carbohydrates,
alkaloids, glycosides, flavonoids, tannins, and saponins [23]. These biomolecules are
important sources for the biosynthesis of nanomaterials [24–26]. Platycladus species extracts
have already been used for the synthesis of copper nanoparticles and reduced graphene
oxide [27,28]. The synthesized SnO2-Cu nanocomposites were then characterized using
various techniques and were found to have excellent peroxidase mimetic activity through
their rapid oxidation of TMB with strong absorption at 650 nm.

2. Materials and Methods
2.1. Materials

Tin chloride dihydrate (SnCl2•2H2O) and copper sulfate pentahydrate (CuSO4•5H2O)
were purchased from Sigma–Aldrich (St. Louis, MO, USA) and used as precursors for
the synthesis of the SnO2-Cu nanocomposites. The chromogenic substrate TMB was also
acquired from Sigma–Aldrich for the analysis of the enzyme mimetic activity of the SnO2-
Cu nanocomposites. H2O2 was obtained from Samchun Chemical Co., Ltd. (Seoul, Korea).

2.2. Preparation of Pod Extract

Fresh premature P. orientalis seeds were collected from the campus of Sungkyunkwan
University, Gyeonggi-do, Republic of Korea. The extract was prepared by adding 33.9 g
of premature P. orientalis seed pods, that were thoroughly washed, dried, and chopped
into fine pieces, to 100 mL of deionized water in a 250 mL Erlenmeyer flask. The mixture
was boiled at 80 ◦C for 60 min before decanting. The solution was then cooled and filtered
using Whatman paper number 1. The obtained filtrate was collected and stored at 4 ◦C for
use in the preparation of SnO2-Cu nanocomposites.

2.3. Biosynthesis of SnO2-Cu Nanocomposites

Tin chloride dihydrate (0.05 M) was dissolved in 50 mL of deionized water. An
aqueous solution of tin chloride dihydrate was stirred with a magnetic stirrer at 65 ◦C and
360 rpm. After 15 min, 5 mL of pod extract was added dropwise with continuous stirring.
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The solution was stirred continuously at 65 ◦C for 60 min. The nanostructure of SnO2 was
separated from the aqueous medium by centrifugation at 3500 rpm for 15 min.

The purified nanostructure of SnO2 was re-dispersed in 50 mL of deionized water and
the solution was stirred with a magnetic stirrer at 85 ◦C and 360 rpm. Subsequently, 5 mM
copper sulfate pentahydrate was added to the above solution. The solution was stirred
for 15 min at 85 ◦C and 360 rpm, and then 5 mL of pod extract was added to the reaction
mixture. The solution was stirred continuously at 85 ◦C for 60 min. The pH of the reaction
solution was maintained at 9 ± 1 using a 0.1 M NaOH solution.

2.4. Characterization of SnO2-Cu Nanocomposites

The biosynthesized SnO2-Cu nanocomposites were analyzed by ultraviolet–visible
(UV–vis) spectroscopy (UH-5300, Hitachi, Ibaraki, Japan) with a scanning range of 300–800 nm.
The nanocomposites were analyzed using dynamic light scattering (DLS; Zetasizer Nano
S90, Malvern, UK) to determine their size distribution profile and zeta potential values. The
structural characteristics of the biosynthesized SnO2-Cu nanocomposites were determined
using scanning electron microscopy (SEM, Zeiss EVO 18, Jena, Germany). The elemental
composition of the SnO2-Cu nanocomposites was determined by energy-dispersive X-ray
spectroscopy (EDX), Pegasus2040 (EDAX, Mahwah, NJ, USA). The X-ray diffraction pat-
terns were analyzed with an X-ray Diffractometer (X’Pert PRO, PANanalytical, Netherland)
with CuKα radiation (λ = 1.5417 Å) with 40 KV and 30 mA. The participation of biological
molecules in the synthesis of nanocomposites was analyzed using a Fourier-transform
infrared (FTIR; FTS 7000, Varian, Australia) spectroscope in the scanning range of 500–4000
nm. All characterizations were performed using standard operating procedures.

2.5. Evaluation of Peroxidase Mimetic Activity

The peroxidase mimetic activity of the SnO2-Cu nanocomposites was evaluated by
the catalytic oxidation of the peroxidase chromogenic substrate TMB. The working concen-
tration solution of H2O2 (20 mM) was prepared by diluting the purchased solution with
deionized water. Dimethyl sulfoxide (DMSO) was used to prepare the TMB solution. The
reaction mixture consisted of 0.525 mM TMB, 20 mM H2O2, and 0.001 mg/mL SnO2-Cu
nanocomposites. The reaction was performed in an acetate buffer at pH 4 and incubated at
25 ◦C. The colorless TMB solution was converted into a dark-blue oxTMB solution, and the
intensity of this color was measured by considering the absorption peak at 650 nm.

2.6. Effect of Buffer pH

The effect of buffer pH was determined in the range 2 to 6. Acetate buffer was used
for pH 3.5, 4, and 5, whereas glycine buffer was used for pH 2, and phosphate buffer for
pH 6. All buffer systems were prepared at a concentration of 0.4 M. In the reaction (total
volume: 1 mL), 0.525 mM TMB (5 µL from the stock solution prepared in DMSO), 20 mM
H2O2 (50 µL from stock), and 40 µL (0.001 mg/mL) of SnO2-Cu nanocomposites were
combined, and the final volume was reached by adding acetate buffer. The reaction mixture
was incubated for 10 min. The impact of buffer salt concentrations in the range of 0.1 M to
0.5 M was also evaluated.

2.7. Effect of Temperature

The total assay volume (1 mL) consisted of 0.525 mM TMB (5 µL from a stock so-
lution prepared in DMSO), 20 mM H2O2 (50 µL from stock), and 40 µL (0.001 mg/mL)
of SnO2-Cu nanocomposites, and the remaining volume was 0.1 M acetate buffer (pH 5).
Temperatures from 5 ◦C to 80 ◦C were applied to determine the effect of temperature on
the oxidation of TMB.

2.8. Effect of Assay Incubation Time

In a typical reaction (total volume of 1 mL), 0.525 mM TMB (5 µL from a stock solution
prepared in DMSO), 20 mM H2O2 (50 µL from stock), and 40 µL (0.001 mg/mL) of SnO2-
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Cu nanocomposites were combined, and the final volume was maintained by adding
0.1 M acetate buffer (pH 5). The samples were scanned at 500–800 nm in the UV–vis
spectrophotometer at intervals of 5 min from the incubation times of 0 min to 30 min.

3. Results and Discussion
3.1. Ultraviolet–Visible (UV–vis) Spectroscopic Analysis

The UV–vis spectroscopy was used to determine the biosynthesis of SnO2-Cu nanocom-
posites. The SnCl2•2H2O was taken to synthesized SnO2 nanoparticles after interaction
with pod extract at 65 ◦C and 360 rpm. After the interaction with leaf extract the solution
color was changed and nanoparticles were precipitated. The precipitated nanoparticles
were re-dispersed into 50 mL deionized water and 5 mM copper sulfate pentahydrate
was added. After the addition of 5 mL of pod extract at 85 ◦C, maintaining pH at 9 ± 1,
the color of the solution changed (Figure 1). Figure 1a shows that the P. orientalis plants
having premature seeds pod and inset showing pod extract. Figure 1b inset shows colloidal
solution of biosynthesized SnO2-Cu nanocomposites. The UV–vis absorption spectrum
of leaf extract showed a peak at 333 nm (Figure 1b). The peak at 450 nm indicated the
presence of SnO2-Cu nanocomposites.
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Figure 1. Biosynthesis of SnO2-Cu nanocomposites. (a) Platycladus orientalis plants with prema-
ture seed pod; the inset shows the pod extract; (b) ultraviolet–visible (UV–vis) spectrum of the
biosynthesized nanocomposites; the inset shows a colloidal solution of the nanocomposites.

The optical band gap (Eg) values determined were using the Tauc method [29,30]. The
direct Eg for bulk SnO2 occurs at 3.60 eV [29].

αhν = A
(
hν− Eg

)γ (1)

where A is a material-dependent constant, h is Planck’s constant, and ν is the light frequency.
The power coefficient γ is characteristic of the type of transition considered, with a value
of 1/2 or 2 depending on whether the transition is directly or indirectly allowed.

α is the absorption coefficient and it is calculated by the equation given below;

α =
4πk

λ
(2)

Here, k is the extinction coefficient [30].
From the plot (Figure 2) it is found that the synthesized SnO2-Cu nanocomposites

have a band gap of 3.75 eV [29,31].
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Figure 2. Band gap determination of biosynthesized SnO2-Cu nanocomposite.

3.2. Dynamic Light Scattering (DLS) Analysis

The zeta potential and size distribution profile of the biosynthesis of the SnO2-Cu
nanocomposites were analyzed by DLS. The as-synthesized nanocomposites had an aver-
age diameter of 738.9 nm with a polydispersity index of 0.221 (Figure S1a). The surface
charge on the nanocomposites determined by DLS was −30.5 mV zeta potential, which
clearly showed that the nanocomposites had a negative charge (Figure S1b). The zeta
potential was obtained at 11.1 mV z-deviation and 2.26 mS/cm conductivity. The negative
potential revealed the presence of biological moieties on the surface of nanocomposites [24].

3.3. Field-Emission Scanning Electron Microscopy (FESEM) Analysis

The biosynthesized SnO2-Cu nanocomposites were analyzed by field-emission scan-
ning electron microscopy (FESEM) to determine their morphology and size. SnO2-Cu
nanocomposites were freeze-dried, and the powder obtained was used to prepare sam-
ples for FESEM. The synthesized nanocomposites showed irregular structures at 50,000×
magnification (Figure 3a,b). A mixture of shapes was found: rods of 25 nm (red circle in
Figure 3c), sheets of 300 nm (red circle in Figure 3c), and spheres of 10 nm (red circle in
Figure 3d). The synthesized nanocomposites were also scanned at 100,000×magnification,
which revealed a large number of small particles with a variety of sizes, but all in the nano-
dimension (Figure 3c). The nanocomposites were further scanned at high magnification
(200,000×), showing some bunches less than 25 nm in size (Figure 3d).
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Figure 3. Field emission scanning electron microscope micrographs of the biosynthesized SnO2-Cu
nanocomposites. (a,b) Overall view of samples. (c) Micrograph of nanocomposites. (d) Micrograph
at high magnification. (e) Energy-dispersive X-ray spectrum of SnO2-Cu nanocomposites.

3.4. Energy-Dispersive X-ray Spectroscopy (EDX) Analysis

The biosynthesized SnO2-Cu nanocomposites were analyzed by EDX to determine
their elemental composition and purity. The EDX device was attached to the SEM in-
strument, which was used to obtain the EDX spectrum. The elemental profile of the
biosynthesized SnO2-Cu nanocomposites showed strong signals for Sn, O and Cu. The
spectrum did not show any other elemental signal, except for Cu, due to the Cu grid
(Figure 3e). Hence, the synthesized SnO2-Cu nanocomposites contained pure elemental Sn,
O, and Cu.

Further, EDX mapping was performed to determine the distribution of Sn, O, and
Cu in the nanocomposites (Figure 4a–d). An area was selected in the SEM micrograph
for the EDX mapping (Figure 4a). A uniform distribution of Cu was observed in the
nanocomposite (Figure 3c). The distribution of Sn and O was broader than that of Cu
(Figure 4b,d), which clearly showed that Cu was densely captured in the SnO2 lattice. No
other elements existed in the nanocomposites, confirming that no other impurities existed
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in the sheets. Hence, the EDX pointer and mapping confirmed the hybrid nature of the
SnO2-Cu nanocomposites.
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(green); (c) Cu-Ka1 map (magenta); (d) Sn–La1 map (blue).

3.5. X-ray Diffraction (XRD) Analysis

The powder sample of SnO2-Cu nanocomposites was developed by freeze drying
the colloidal solution. The XRD pattern of SnO2-Cu nanocomposites shows diffraction
angle 26.7◦, 33.9◦, 51.8◦ and 66.1◦, which corresponded to (110), (101), (211), and (301),
respectively (Figure 5). These reflections are characteristic of cassiterite crystal phase
with tetragonal rutile structure (Joint Committee on Powder Diffraction Standards data
card No. 41-1445). The highest intense peak observed at diffraction angle 26.7◦ (110),
which reveals the preferred direction for the growth of nanocrystals. The broadness in
the XRD pattern clearly indicates the presence of secondary metal in the synthesized
nanostructure [32]. The diffraction peaks at 50.5◦ and 74.1◦, which corresponded to the
(200) and (220) planes of fcc structure of pure Cu (Joint Committee on Powder Diffraction
Standards data card No. 71-4610). The SnO2 and copper have peaks at 51.8◦ and 50.5◦

which merge and create broadness. The earlier investigates have been found peaks in
XRD for both phases in nanocomposites [33,34]. We also observed peaks for SnO2 and
copper in the nanocomposite. Hence, the XRD diffraction peaks confirm the synthesized
nanocomposites are hybrids of SnO2 and copper.
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3.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

Fourier transform infrared spectroscopy was performed to analyze the participation
of biological molecules in the stabilization of the nanocomposites. The biosynthesized
SnO2-Cu nanocomposites were scanned from 650 to 4000 cm−1 (Figure S2). The FTIR
spectrum showed a strong and broad peak at 3330 cm−1, corresponding to the –OH
stretching vibrations of the OH units and water [24]. A strong peak was observed at 1640
cm−1, indicating the bond for (N–H) bending, which corresponds to primary amines [18].
Another peak was observed at 665 cm−1, corresponding to the Sn–O stretching vibrations.
Therefore, the FTIR spectrum confirmed that the biological molecules present in the pod
extract contributed to the synthesis of the nanocomposites.

3.7. Enzyme Mimetic Activity

The peroxidase chromogenic substrate TMB has been used in various clinical diagnos-
tic laboratories. TMB is a colorless substrate, but in the presence of H2O2, the peroxidase
enzyme oxidises it in the blue diamine form. Therefore, peroxidase enzymes are extensively
used for detection purposes, but they do not work in harsh pH and temperature conditions.
Moreover, production and purification are time-consuming and costly. Hence, SnO2-Cu
nanocomposites have been developed to evaluate peroxidase mimetic activity. An acetate
buffer with a pH of 4 was used to perform the reaction, and after 20 min of incubation
at room temperature, the solution turned blue in the presence of H2O2 and the SnO2-Cu
nanocomposites. Figure S3 shows the UV–vis spectrum of the blue solution; the strong
peak at 650 nm clearly demonstrates the characteristics of the oxidized TMB.

The colorimetric method for the detection of H2O2 using biologically synthesized
SnO2-Cu nanocomposites proposed here is based on the premise that the peroxidase
mimetic activity of SnO2-Cu nanocomposites originates from the abundance of Cu, which
enables electron transfer through the disintegration of H2O2 to form •OH radicals and
catalyzes the oxidation of TMB.
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3.8. Effects of Buffer pH and Concentration

pH plays an important role in the sensitivity of the detection assay because chro-
mogenic detection methods work most efficiently at a specific pH. Thus, the assay was
performed at pH 2–6 to determine the level of color development at each tested pH. High
color intensity was observed at pH 5 (Figure 6a). Sufficient color was obtained at pH 3.5,
4, 5 and 6; however, no blue color was present at pH 2 (Figure 6a). This indicated that all
pH levels, except for pH 2, are favorable for the oxidation of TMB. The highest absorption
was found at pH 5 (Figure 6b,c). We further determined the impact of the buffer salt
concentration on the oxidation of TMB and the development of color. As pH 5 was found to
be the optimal pH for the development of the strongest color, we prepared a buffer of pH 5
with different concentrations of salt ranging from 0.1 to 0.5 M. The strongest color intensity
was found for the buffer prepared with 0.1 M salt (Figure 6d). The resulting UV–vis spectra
indicated that the buffer prepared with 0.1 M salt was suitable for the oxidation of TMB
(Figure 6e,f). Therefore, a buffer with pH 5 and a salt concentration of 0.1 M is optimal for
obtaining the strongest color intensity.
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standard deviations; (d) the effect of buffer salt concentration on the assay color; (e) absorbance spectra at various buffer
salt concentrations; (f) absorbance at 650 nm showing the effect of buffer concentrations.
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3.9. Effect of Incubation Temperature

Previous studies have reported that temperature plays a key role in the oxidation of
TMB. Molybdenum disulfide and copper sulfide nanostructures have been used to oxidize
TMB at optimal temperatures of 50 ◦C and 45 ◦C, respectively [35,36]. This indicates that
each catalyst works most effectively at a specific temperature. Therefore, we determined
the optimal temperature for the synthesized SnO2-Cu nanocomposites. Temperatures from
5 ◦C to 80 ◦C were evaluated, and it was observed that temperatures of 22 ◦C to 40 ◦C
resulted in a strong color intensity (Figure 7a,b). The UV–vis spectra showed that the
absorbance increased with increasing temperature; however, above 40 ◦C, the absorbance
decreased drastically, and the lowest absorbance was observed at 80 ◦C (Figure 7b). Strong
absorbance signals were observed at 22 ◦C and 40 ◦C and the highest absorbance value was
obtained at 22 ◦C (Figure 7c). Hence, the synthesized SnO2-Cu nanocomposites are efficient
catalysts for peroxidase mimetic activity because their highest activity was observed at
room temperature, i.e., 22 ◦C.
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3.10. Effect of Incubation Time

The incubation time is dependent on the type of catalyst used for the oxidation of
the chromogenic peroxidase substrate TMB. In the present study, we also evaluated the
optimal incubation time in the range of 0–30 min. Figure 8a shows that with increasing
incubation time, the color intensity also increased; however, after 20 min, no further
increase in the color intensity was observed. The samples were scanned with a UV–vis
spectrophotometer in the range of 500–800 nm at intervals of 5 min for incubation times
from 0 min to 30 min. The spectra showed that the absorbance did not increase after 20 min
of incubation (Figure 8b). In fact, for incubation times greater than 20 min, the absorbance
decreased (Figure 8c). Therefore, the experimental results support an incubation time of 20
min. Pan et al. [37] reported that the enzyme ficin and a zinc(II)-2-methylimidazole metal
organic framework exhibited enhanced peroxidase activity; however, their method required
an incubation time of 180 min. Therefore, the biosynthesized SnO2-Cu nanocomposites are
efficient for the rapid oxidation of TMB.
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4. Conclusions

In the present study, we developed a green method for the synthesis of SnO2-Cu
nanocomposites using P. orientalis seed pods. To the best of our knowledge, this is the
first report on the green synthesis of SnO2-Cu nanocomposites. Furthermore, this is the
first study to evaluate the peroxidase mimetic activity of SnO2-Cu nanocomposites. The
XRD pattern of the SnO2-Cu nanocomposites showed diffraction angles of 26.7◦, 33.9◦,
51.8◦ and 66.1◦, corresponding to the (110), (101), (211) and (301) peaks, respectively. The
diffraction peaks at 50.5◦ and 74.1◦ corresponded to the (200) and (220) planes of the fcc
structure of pure Cu. The EDX spectrum of the biosynthesized SnO2-Cu nanocomposites
showed strong signals for Sn, O and Cu. The synthesized nanocomposites showed excellent
peroxidase activity at pH 5 in acetate buffer at room temperature (22 ◦C). Furthermore,
a 20 min incubation time was found to improve the yield of oxTMB. Thus, the present
study establishes that biosynthesized SnO2-Cu nanocomposites show excellent peroxidase
activity, which can be used to develop an easy-to-use platform for clinical purposes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11071798/s1, Figure S1: Dynamic light scattering of biosynthesized SnO2-Cu nanocom-
posites: (a) size distribution profile and (b) zeta potential of nanocomposites, Figure S2: Fourier trans-
form infrared (FTIR) spectrum of biosynthesized SnO2-Cu nanocomposites, Figure S3: Ultraviolet–
visible (UV–vis) spectrum of oxidized TMB after 20 min of incubation at room temperature.

Author Contributions: S.J.C. established the study concept and contributed to the study design. The
experiments related to the synthesis of SnO2-Cu nanocomposites and the sample characterization
were performed by R.M.T. The results obtained by XRD, TEM, EDX, and FESEM were analyzed by
S.J.C. and R.M.T. The peroxidase mimetic activity of the SnO2-Cu nanocomposites was evaluated by
R.M.T. S.J.C. and R.M.T. analyzed and discussed the results comprehensively and contributed to the
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