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In building biological neural network models, it is crucial to efficiently convert diverse

anatomical and physiological data into parameters of neurons and synapses and to

systematically estimate unknown parameters in reference to experimental observations.

Web-based tools for systematic model building can improve the transparency and

reproducibility of computational models and can facilitate collaborative model building,

validation, and evolution. Here, we present a framework to support collaborative

data-driven development of spiking neural network (SNN) models based on the

Entity-Relationship (ER) data description commonly used in large-scale business

software development. We organize all data attributes, including species, brain regions,

neuron types, projections, neuron models, and references as tables and relations within

a database management system (DBMS) and provide GUI interfaces for data registration

and visualization. This allows a robust “business-oriented” data representation that

supports collaborative model building and traceability of source information for every

detail of a model. We tested this data-to-model framework in cortical and striatal

network models by successfully combining data from papers with existing neuron and

synapse models and by generating NEST simulation codes for various network sizes.

Our framework also helps to check data integrity and consistency and data comparisons

across species. The framework enables the modeling of any region of the brain and is

being deployed to support the integration of anatomical and physiological datasets from

the brain/MINDS project for systematic SNN modeling of the marmoset brain.

Keywords: spiking neural networks, computational brain modeling, neural simulation, web application, data-to-

model workflow, collective intelligence

1. INTRODUCTION

Large amounts of diverse brain data are being generated from multiple brain science projects
around the world (Markram et al., 2011; Okano et al., 2016; Abbott, 2021). However, to understand
the functions of the brain, it is necessary to integrate such diverse experimental data as neural
networkmodels and to analyze dynamics and information transfer through systematic simulations.
As an approach to effectively utilize experimental data, projects are promoting development of
tools for brain modeling, such as the virtual brain (Sanz Leon et al., 2013), NetPyNE (Dura-Bernal
et al., 2019), the Brain modeling toolKit (Dai et al., 2020), NEST Desktop (Spreizer et al., 2021),
or PhysioDesigner (Asai et al., 2012). Besides that, a range of tools has been proposed as well
for facilitating model description and supporting workflow-related processes, such as NeuroML
(Gleeson et al., 2010), Mozaik (http://neuralensemble.org/docs/mozaik), SNNtoolbox (Rueckauer
et al., 2017), Nengo (Bekolay et al., 2014), pypet (Meyer and Obermayer, 2016), NeuroManager
(Stockton and Santamaria, 2015), and others.
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In building realistic brain models, it is necessary to
systematically incorporate experimental data, published
data in the literature, parameters from prior models, and
theoretical or mechanistic assumptions (Figure 1). Because most
models have uncertain parameters, tuning them by comparing
simulated model behaviors and experimental observations
and/or functional assumptions is also an essential process
in modeling. Performing such model building and systematic
verification bymaintaining traceability of the bases for parameter
settings is essential for accountability, reproducibility, and future
revision (evolvability) of the model.

SNNbuilder (https://snnbuilder.riken.jp) is a web-based
collaborative tool for data-driven modeling by spiking neural
networks (SNN). It allows the collection and management of
model parameters of any region of the brain for any species, by
virtue of its generic data representation using tables, attributes,
and relations in a common database.

SNNbuilder uses neuron and synapse models following the
state-of-the-art neural network simulator NEST (Hahne et al.,
2021) and manages the data-to-model passage using a set of
transfer functions to generate neural parameters and connection
rules. Partial data are completed automatically with default
values, while alternative and multiple data items from different
sources and users are combined as a collective estimation. Model
parameters can be specified as “fixed” or “to-optimize” values,
as well as assumptions or prior values. Every value is linked to
references for traceability.

SNNbuilder creates a model description as a JSON (JavaScript
Object Notation) file with full specifications and data modalities,
including desired behaviors labeled as “objectives.” The

FIGURE 1 | SNNbuilder conceptualization. Different data modalities are loaded through web GUI. The model builder manages the data-to-model process, generating

files for systematic simulation (optimization is not included in the current release). This agile process allows the evolution of models.

framework also generates simulation code in PyNEST (the
python bindings of the NEST simulator) for building and
simulating SNN models.

SNNbuilder allows an agile modeling workflow, with a
primary focus on model specifications. Starting with the main
parameters, a model can be created, systematically tested,
and can gradually evolve with further data and collaborative
contributions. The framework is designed as a web-based,
multi-user application with an intuitive graphical user interface
(GUI). Considering other tools, as far as we know, SNNbuilder
constitutes the first attempt in offering a shared place wheremany
users get together for building collaboratively common models.
This is a straightforward way to organize users toward one of
the most challenging and important tasks: modeling the complex
network of the brain in a thoroughly sustainable manner.

Japan’s Brain/MINDS project (Brain Mapping by Integrated
Neurotechnologies for Disease Studies, https://brainminds.jp/
en/; Okano et al., 2016) is building a multi-scale marmoset
brain map with structural and functional imaging. Images are
obtained from diffusionMRI, systematic tracer injections (Skibbe
et al., 2019; Gutierrez et al., 2020; Watakabe et al., 2021), and
many types of fluorescent calcium imaging. SNNbuilder seeks
to integrate such diverse, large-scale data into computational
modeling, and open data and tools from other brain projects.

2. DESIGN

SNNbuilder is designed as a “web-app,” developed using .NET
and C#, an open-source developer platform. Its database runs on
MySQL, an open-source relational database management system
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FIGURE 2 | The generic ER (entities and relations) data model (A) is able to capture specifications of any region of the brain for any species. Closely related entities

are shown as linked groups (color code). The modeling workflow (B) runs on GUI. Inputs correspond to research publications, modeler expertise, connectomic data,

and models from NEST simulator. Specifications are stored in the database. A builder function performs data mapping as NEST parameters using either transfer

functions or direct assignment, creates a model description file, and generates code for simulation.

(DBMS). The selection of a web environment for brain modeling,
responds to the importance of the internet as a common shared
space that enables users to access from remote locations, perform
modeling tasks transparently, and share up-to-date models. For
straightforward online collaboration, a login system manages
accesses and permissions (see section 3.10).

2.1. Design Principles
From its conceptualization, the framework takes into account
modeling principles, as follows:

Fairness and transparency: our framework allows linking
model parameters with experimental data, database entries,
or scientific publications. References as DOIs (digital object
identifier) or URLs can be recorded for every detail of a model.
Model descriptions and simulation codes are open to the research
community through the web app.

Reproducibility: the framework provides automatic
generation of simulation code. Models can be re-built with
different choices of source data, and results can be reproduced
by simulation of generated codes.

Sustainability: upon the emergence of new papers or
experimental data, SNNbuilder allows model updates, such as
parameter additions, modifications, and deletions. Rather than
building a model for just one point in time, our framework
facilitates sustained model evolution.

Collective action: similar experimental studies may produce
dissimilar data in different laboratories and at different times.
Our framework allows the loading of several values for the same
data attribute. In such a way, better parameter settings may be
selected by collective contributions from various modelers.

2.2. From Brain Biology to Database
Structure
Depending on the region of the brain, degrees of detail and
scale, SNN models can incorporate various types of neurons and
synapses, as thousands, millions, or billions of components. For
that reason, we designed a generic database to support a diversity
of models, species, scales, and growing data.

To set up a comprehensive database structure for any
model of the brain, we first identified, from brain biology,
the most important generic objects that “produce” data,
similar to specifying the main components and features on
software development projects. We described those “data
provider” objects and their relations as entities with multiple
data attributes and connections using Entity-Relationship (ER)
modeling (Chen, 1976, 2002). ER modeling is commonly used
in software engineering for the representation of business needs
and processes and provides a business-recognized framework to
define the information structure of a relational database.

From our analysis, six main entity groups were identified
(Figure 2A):

• SNN models: the description of a brain circuit or region to be
modeled for a certain species.

• Neuronal data: neuron types or neural populations, including
relevant anatomical, morphological, and physiological
characteristics.

• Connectomic data: projections between neural populations,
along with anatomical and morphological details of
network wiring.

• Citations and modeling notes: for reporting
origins of data (references), such as DOIs or
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FIGURE 3 | SNNbuilder GUI. (A) Left: front-end for species selection and model creation. Right: the modeling workflow is organized by option tabs. (B) Left: data

requirements for neurons include numbers, PSP, dendrite characteristics, firing rates, and NEST neuron parameters. Right: projection specifications incorporate

axonal properties, bouton counts, receptor locations, redundancy, synapses, and NEST synapse parameters.

other URLs, and recording memos over the
modeling workflow.

• Neural simulator models: a generic structure to manage data
attributes of neuron and synapse models of a neural simulator,
like NEST.

• Simulations: for specification of multiple simulations,
including stimuli and recordables.

Entities and relations were created in MySQL as tables with
primary and foreign keys to preserve data integrity and
consistency. The database design applies to any other relational
DBMS as well.

3. MODEL BUILDING WORKFLOW

The modeling workflow runs on the GUI (Figure 2B), allowing
database updates in real time. The process begins by selecting

a species, creating a new model instance by the option “Build
a new model” and adding a description of the targeted neural
circuit or brain region (Figure 3A left). At this initial step,
the system generates a “model id” for identifying uniquely
the model.

Model scale, in relation to biological size, is also specified.
Whereas, modelers indicate realistic anatomical data, such as
numbers of neurons, bouton counts, axonal domains, a scale
parameter adjusts all numbers at code generation time. The scale
is relevant for implementation purposes; however, limitations on
the reducibility of network sizes (Van Albada et al., 2015) indicate
the importance of realistic numbers of neurons and synapses.
Given the available computational resources, small scales may
run on laptops or desktop computers, while large scales run
on servers.

After the initial settings, model specifications (input
data) are required (Figure 3A right): details of neural
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populations, projections or connectivity data, and models
from NEST simulator.

3.1. Neural Populations
A neural population is created by an insert operation. This
records the population name (or cell type), its excitatory or
inhibitory regime, and if available, a related image. Further
data requirements are arranged in a tabbed document interface
(Figure 3B left), organized as Liénard and Girard (2014), as
below:

• Number: the number of neurons N within a nucleus at a real
scale, considering a single brain hemisphere.

• Signaling: this refers to the neurotransmitter receptor
type (AMPA and NMDA for excitatory/glutamate
neurotransmitter, GABA for inhibitory/gaba
neurotransmitter) of the neuron. Likewise, the PSP (post-
synaptic potential) amplitude or change Vn (mV) caused
by a single spike mediated by a neurotransmitter n to the
membrane potential at the location of the receptor (synapse),
and its rise time tVn (ms).

• Dendrite extent: the average maximal extent l (µm) of the
neuronal dendritic field.

• Dendrite diameter: the mean diameter d (µm) of neuronal
dendrites along their entire lengths.

• Firing rate: a biologically plausible range [φs
0,φ

s
1] of the neural

population mean firing rate (Hz) for different states s: resting
state, excitation (or functional) state, maximum activity, and
disease condition. Firing rate is considered a cost function (or
objective) and labeled accordingly (see data flags). The future
work will consider the integration of an optimization process
(see Current limitations).

• Other parameters: parameters of a selected NEST neuron
model. Every neural population is paired to a NEST model
by an “import from model” operation that selects the neuron
model and recalls NEST parameters with default values. After
the import, parameter values can be updated. See section 3.3
for more details.

• Objectives/Metrics: it corresponds to user defined objectives
and metrics. A configurable set of objectives is available in the
main menu (Figure 7.3), including, for example, coefficient
of variation, inter-spike interval, fano factor (Rajdl et al.,
2020), and other arbitrary targets. In this tab section, multiple
objectives can be selected and their target values or metrics
specified, including the related references. Objectives/metrics
are later generated as comments on the simulation script (see
Current limitations).

3.2. Projections
An insert operation facilitates data-entry for model connectivity.
Projections link the source and target neural populations created
in the previous step. Their connectivity is defined by connection
rules specified per source-target pair. Further data requirements
are organized in a tabbed document interface as well (Figure 3B
right), with a structure similar to Liénard and Girard (2014):

• Connection rule: it defines the connectivity modality based
on NEST connection rules for spatially-structured networks.

Indegree- and outdegree-based rules are made available and
probability-based, such as constant probability and distance-
depended Gaussian probability rules. Transfer functions (see
Appendix A) define the indegree and outdegree parameters,
whereas a constant probability or SD parameters can be
specified by GUI in the case of probability-based rules.

• Axon organization: source-target connection type can be
focused or diffused, so synapses are taken from (or made to)
neurons within narrow or wide spatial domains, respectively
(i.e., a circular or spherical mask). The domain refers to the
mean radius (mm or in units relative to the spatial organization
of neurons) of a circle (sphere) approximating the 2D shape
(3D-volume) of axonal arbors.

• Percentage of projection neurons: the proportion of neurons
P ∈ [0, 100]% in the source population with axons connecting
the target population.

• Bouton number: the mean number of axonal varicosities (or
boutons) α where synapses may occur. A biologically plausible
range is defined for the sake of exploration; thus, bouton
counts are considered as “to-optimize” parameters (see Data
flags and Current limitations).

• Receptor location to soma: the mean distance r to the
soma of synaptic receptors along dendrites, expressed as
a proportion of dendrite extent l. It takes values within
ranges for exploration: proximal r ∈ [0, 0.2), medial r ∈

[0.2, 0.6), and distal r ∈ [0.6, 1]. It is considered a “to-
optimize” parameter (see Current limitations). This parameter
is used to calculate an attenuation of the connection weights
(see Transfer functions). Specifying r as “None” removes
attenuation from connection weights.

• Redundancy (Girard et al., 2020): the mean number ρ of
contacts made by axons on each dendritic tree. It is a number
between [1, ν], with ν being the total number of synapses
converging on a single neuron. Redundancy can be used to
adjust the number of connections and their strength, especially
for scaled-down model simulations (see Appendix A: Transfer
functions).

• Synapse: records the communication delay (ms) (or axonal
delay) of a projection and the corresponding connection
weight. If defined, synapse data overwrite the default values
of the selected NEST synapse model (see Appendix A:
Connection weight).

• Other parameters: parameters of a selected NEST synapse
model. Similar to the case for neural populations, every
projection is paired to a NEST model by an “import from
model” operation that transfers parameters with default values
to the projection for further update. See the section “Models of
a neural simulator” for more details.

3.3. Models of a Neural Simulator
SNNbuilder uses neuron and synapse models following those
of NEST (Hahne et al., 2021), a state-of-the-art simulator for
SNN models that focuses on accurate dynamics, varieties of
network structure, and scalability for large-scale simulation.
NEST provides more than 50 neuron models, over 10 synapse
models, and an active support and global community.
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FIGURE 4 | Data load. (A) Left: NEST models are incorporated using JSON format data entry in the edit-box area. The required format is shown in the dark

background area. Right: after data loading, parameter default values can be updated. (B) Import function for connectomic data. Left: connectome nodes and edges

are mapped as neuronal populations and projections, respectively; thus, input data are prepared as two JSON files. Center: options for data loading include a file

upload or import-from-URL functions. The dark background area shows an example of the required format. Right: after loading to the database, neurons and

projections can be explored and updated.

Parameters from NEST neuron or synapse models can be
added using the insert or import functions. The latter reads
a JSON formatted NEST model from a web edit-box and
imports parameter names, descriptions, and default values to the
database. The GUI allows manual data-entry or “cut and paste”
commands (Figure 4A left). The data structure for neuron and
synapse models is generic at the database level (Figure 4A right),
so it can support several neural simulators.

3.4. Data Sources for Modeling
At the time of this report, paper surveys, identification, and
manual loading of parameter values are the main activities for
model specification at SNNbuilder. Nevertheless, its “online”
condition supports potential integration with resources available
over the internet, for example, knowledge graphs, public
databases, or web services that provide data on-demand, for
example, connectomic data (see section 5 and Supplementary
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Figure B.1). Connectomes are frequently generated as open
sources for the advancement of science. Tracer studies, DTI
(diffusion tensor image)-based fiber tracking, and functional
MRI (magnetic resonance image) data are frequently arranged as
region-level (mesoscale data) connectome matrices, where nodes
correspond to brain regions and edges to their connections.

To allow such data integration from external sources,
our system is prepared to import connectomic data from
remote URLs or file-upload. The connectomic data must
be provided in JSON format and separated into two files
(Figure 4B left) for mapping: (i) nodes as neural populations,
with specifications (if available) such as population name,
number, excitatory/inhibitory regime, and others; and (ii)
edges as projections, including available specifications for the
axonal delay, connection weight, and others. These functions
are available in the GUI (Figure 4B center). They provide a
straightforward way for incorporating connectomic data and
rapidmodel creation.Moreover, after importing, the user can add
additional specifications, implement modifications, assign NEST
neuron models, and other improvements (Figure 4B right). It is
also possible to integrate different data scales (micro, meso, and
macro). Data import reduces manual work considerably.

3.5. Data Flags
Flags label characteristics of the data. By default, high-confidence
and frequently reported data are considered “fixed parameters,”
such as neuron numbers, dendrite extent, and diameter, post-
synaptic potentials, etc. Parameters, such as axonal bouton
counts, and average location of synapses along dendritic trees
are considered “to-optimize parameters” and defined as ranges of
values for exploration. In the case of multiple entries for the same
parameter, a “deactivated” flag is available to “remove” outliers
and low-confidence values (Figure 8.11). Several activated
parameters are possible, a collective “contribution” is calculated
in such a case. For multiple numerical values, the average
is used (Supplementary Figure B.2); in the case of non-
numerical multiple values (categories), the appearance frequency
is computed as an important index, with the highest frequency
value as the collective outcome.

Electro-physiological constraints, such as mean firing rates,
are defined as intervals of plausible neural activity, and labeled
as “objective functions,” crucial for comparisons with simulated
neural activity (see Current limitations).

Flag assignment depends on modeler criteria. It is
recommended to distinguish between well-known data and
poorly documented or inconsistent data from different sources.

3.6. References and Notes
Paper survey-based data entry allows recording of relevant
parameter values and data providers and references for
traceability. SNNbuilder enables acknowledgment of every detail
attached to a model using DOIs or other URLs. Source
publications can be accessed and examined directly from the
framework GUI (Supplementary Figure B.2).

In addition, the GUI includes edit-boxes for digital notes,
memos, or comments at every web tab of the workflow. Thus,

free-text recording into the database facilitates the creation of a
“diary” or “logs,” a common practice among researchers.

3.7. Network Viewers
The GUI enables listing and navigating through model
specifications, such as neurons and projections; however, to
explore a model as a whole, viewers are also helpful (Figure 5).
A graph-viewer visualizes neuronal populations as boxes (nodes),
and projections as edges linking the boxes. The interactive nature
of the viewer enables graph exploration and content retrieval
from the database.

An additional viewer implements a 2D-matrix visualization
for the exploration of connectivity data, such as source
and target populations, axonal delays, spatial connection
domains, and other network-wiring details. This interface allows
straightforward modification of connection weights.

3.8. Simulation Settings
Model simulation criteria are specified by GUI. The main
specifications include a description of the simulation, the time
resolution (ms), the simulation time (ms), and the number
of computational threads. In addition, a common spatial
domain for neuron positioning is defined for the sake of
consistency and robust simulations in NEST. This version
of SNNbuilder supports spatial boundaries (minimum and
maximum coordinate values) for randomly and uniformly
organized neuron positions in 2D or 3D. Since multiple
simulations can be specified for a certain model, different spatial
arrangements can be tested.

Specifications of connection weight values might result
weak in relation to other parameter values, like membrane
resistances, for driving network dynamics during simulation;
or too strong, leading to extreme network activity. In those
cases, a multiplicative factor affecting the absolute value of all
synaptic weights can be defined by the user, called synaptic
scaling gain. In this way, simulations can be performed while
maintaining, relatively, the specified connection strengths of the
neural network model.

Besides simulation settings, details of the stimuli and
recordable are also defined. Several simulations can be specified;
however, only one should be activated by assigning the
corresponding data flag for code generation. Otherwise, the first
active simulation is considered at the PyNEST script.

3.8.1. Stimuli

Stimuli are designed as independent spike trains from NEST
Poisson generators (see Current limitations) and specified by
GUI (Figure 9.26). A Poisson generator is created per target
population with configurable firing rate (Hz), connection weight,
axonal delay (ms), and the start and stop times (ms) of the
stimulation, along with its scope. The scope refers to either
Poisson spikes trains are sent to all neurons in the target (global
scope) or to a spatially-bounded subset of neurons. The spatial
bounds are defined by a point (position coordinates) and a
radius parameter, which determines the neurons within a circle
or sphere under the stimuli.
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FIGURE 5 | Network viewers. Graph (left) and matrix (right) viewers for exploration of model specifications with interactive data retrieval (area enclosed by blue lines).

The latter enables selecting a connection within the matrix and upgrading its weight.

3.8.2. Recordables

There exist two NEST-based recordable options for spikes and
membrane potential that define what gets recorded during
simulation time. Multiple recordable can be specified, with
a single one targeting a single neural population. Spike-type
recordable stores the spike times of all neurons at the target
population; while membrane potential-type recordable selects,
at random, a single neuron for recording the evolution of its
membrane potential. Recordables generate, automatically, output
data files.

3.9. Model Description and Code
Generation
The workflow’s final step corresponds to procedures for
organizing SNNbuilder output. This includes the generation of
a comprehensive list of model specifications, parameter passage
to NEST models, and the generation of simulation code for
creating neural populations, recording devices, network wiring,
and stimuli.

Automatic generation of code is practical for immediate
testing, different model configurations, and versions. High-level
programming skills are not required and modeling time is used
mainly for definition of biological constraints.

Model description and simulation code files are made
available through 3 sequential processes (Figure 9.27)
implemented in Flask (Grinberg, 2018), a python-based
web development framework, and executable on GUI:

(1) Get parameters: for a particular model, this process runs
SQL (structured query language) queries on the database and
gathers the previously specified data for that model. Retrieved

data are converted to python dictionaries and arranged in
a single JSON file as the model description. In this step,
queries make use of the data-flag specifications to filter
parameters and compute collective contributions. Parameter
values labeled as “deactivated” are not considered. In the case
of multiple numerical values loaded for a specific parameter,
the average value is considered as the collective outcome
(Supplementary Figure B.2) and computed at query time. In
the case of multiple categorical data, category frequencies are
calculated as an “importance index.” The most weighted index
is selected for parameter initialization. Queries may retrieve
dictionaries with “None” records for parameters with no available
data. In such cases, default settings are assigned in the next step.

(2) Code build: a builder function takes the JSON file
generated at 1) applies transfer functions (see Appendix A) and
the specified scale and creates the simulation script in PyNEST
for NEST 3. For robust simulations, the builder generates
straightforward lines of code (LOC) in the following sequence:

• Initialization: includes LOC for importing the necessary
python packages. NEST kernel initialization, and the
definition of global variables.

• Creation of neural populations: the process takes parameter
values and creates LOC for initialization of neural populations.
Parameters from (1) are mapped to NEST neuron and synapse
models, updating default values. NEST defaults remain when
“None’s” are present at parameter specifications. Neuron
numbers are adjusted based on the defined scale parameter.
Signaling and PSP values set up neuron receptors and synaptic
delays. Neuron positions are created in 2D or 3D space, by
using a uniform random distribution, within spatial bounds
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defined at the simulation settings. Given the specified NEST
neuron model and its parameters, LOC for the creation of the
neural population is generated.

• Network building: this takes network-wiring details from
specifications at (1). For connected population pairs,
parameters are mapped to NEST synapse models and
connection dictionaries, and LOCs are created for connection
rules. For more details on connection weight definition and
connection rule parameters, see Transfer functions (Appendix
A).

• Stimuli, recordables, and simulation: given the specified
stimuli and targets, the process generates LOCs for the
creation of Poisson spike-train generators and initialization
of their firing rates, spatial scope, and other parameters.
Additional LOC for the creation of recording devices
of neuronal activity (spikes) or membrane potentials are
also included. Finally, the process creates LOC for NEST
simulation commands with a defined biological time.

The tool does not include on-line code execution or execution
management on its first release (see Current limitations and
Discussion).

(3) File download: this takes the results from 1 (model
description as JSON file) and 2 (simulation code as python script
file), packs them into a zip file, and delivers them. Although
the python script runs stand-alone, the specification file is
made available for future parameter optimization (see Current
limitations).

3.10. Collective Intelligence
The online and centralized database aspects of our approach
allow a modern form of collaboration called “collective
intelligence.” SNNbuilder is designed for multi-user access.
Another important feature is the assignment of multiple values
for the same parameter. Diverse input values for a single
parameter improve its reliability (Supplementary Figure B.2),
see Data flags and Model description and code generation
sections). Over time, settings evolve to better values through
different contributions of more users and new data, gradually
converging to the most realistic ones.

These characteristics promote “collective intelligence,” where
humans (and computers) working together act much more
intelligently in a collective way than individually (Malone,
2018). As demonstrated by crowd-sourcing experiences
(Brabham, 2013), a “bigger brain” works better than a small
one. By this collaboration scheme, better models of the
brain can be collectively built and shared online across the
scientific community. In addition, SNNbuilder includes
functions for maintaining digital notes or memos (see
Reference and notes section), available at every tab of the
GUI (Supplementary Figure B.2). In this way, users can record
and share comments, questions, and logs over the workflow.

To support this scheme, the application implements a login
system for user identification and automatic labeling (tags) of
user contributions. When a model is created (Figures 3A, 7.3),
the owner has the choice to “open” the model to the community;
in that case, multiple users can visualize, add or update records,

and generate simulation code. Otherwise, the model remains
close, and only the owner can access it to perform updates. Every
record is owned by a specific user. Security rules disable the
deletion of different user contributions; thus, only self-owned
records can be removed or disabled.

3.11. Current Limitations
The present release of our work reports some limitations not yet
solved or implemented.

Specifications are mainly fixed parameter values (numerical,
categorical, or descriptions). Detailed models may require
distribution-based values for some parameters, such as
connection weights, synapse locations, resting membrane
potentials, which are not yet included (see section 5). Complex
experimental settings or detailed models may require the
incorporation of functional-based metadata for setting up
neuronal parameters and connectivity features; however, our
application does not support that aspect.

The firing rate specifications can take numerical values and
description tags indicating the “state” related to the neural
activity, for example, resting, excitation, and disease states;
however, the state is not linked to a certain stimulation protocol
for its effective simulation. In the present release, states are
enabled only for the characterization of the targeted activity.

Specifications of a model cannot be re-used by other
models. SNNbuilder considers constantly evolving models; thus,
parameter history is not maintained and the latest specifications
are taken at code-generation time. Model versioning is not
implemented (see Discussion). Data modifications, additions
and deletions from multiple users are not tracked over the
building workflow; however, ownership records are maintained
for acknowledgment of the different contributions.

The current version of our tool provides a subset of the
available NEST connection rules. Stimuli are defined using
Poisson spike trains, there is no other stimulus modality
implemented. Optimization is also not yet included; nevertheless,
the database structure was designed to support an optimization
engine (see Discussion). The system allows the import of
connectomic data; however, the data require preparation in a
specific JSON format (see section 5). Furthermore, there is no
functionality for accessing HPC resources; therefore, simulation
code cannot be executed within SNNbuilder. Code execution
steps are managed by the user.

4. MODELING EXAMPLES

We tested SNNbuilder by building two models: a balanced
cortical network (Brunel, 2000) showing self-sustained
asynchronous-irregular (SSAI) activity (Kriener et al., 2014) and
a model of the mouse striatum (Hjorth et al., 2020) reproducing
resting state activity (Figure 6).

4.1. Self-Sustained Network
Networks of spiking neurons can show SSAI firing under a
certain balance of excitatory and inhibitory transmission, with no
need for random background input. We reproduced a cortical
network model with excitatory and inhibitory populations
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FIGURE 6 | Example models. (A) Cortical network simulations with different values of the coupling strength between excitatory and inhibitory populations. Strong

coupling allows self-sustained asynchronous irregular activity (SSAI) after stimulus offset (1,000 ms). A single change of the receptor location (synapse) to soma, from

proximal to distal (plot at bottom), reduces SSAI lifetime. (B) Striatal microcircuitry. Rasters correspond to baseline activity of the striatal nuclei (0–1,000 ms), as well as

activity triggered by a strong cortical input (1,000–1,500 ms). Single neuron voltage traces are shown for the same simulation (bottom).

(Brunel, 2000) and explored the generation and duration of SSAI
state based on examples from Kriener et al. (2014).

The model was built following the steps below:

• Login to SNNbuilder (https://snnbuilder.riken.jp)
(Figure 7.1).

• Select the target subject, for example, rodent (Figure 7.2).
• Create a model instance using “Build a new model” option

(Figure 7.3).
• Specify a model name, scale, and other descriptions

(Figure 7.4).
• Select the model name (Figure 7.5) to show tabs for model

details (Figure 7.6).

• Select “insert” in the “neurons” tab to load data for neural
populations (Figure 7.7).

• Create excitatory and inhibitory neural populations
(Figure 7.8).

• Input additional data required in several tabs (Figure 7.9).
• In “Number,” specify Nexc = 10, 000 and Ninh = 2, 500 for

excitatory and inhibitory neurons respectively (Figure 8.10).
• Specify post-synaptic potentials (PSPs) for excitatory (AMPA)

and inhibitory (GABA) receptors as alpha-functions with a
common value of tVn = 0.5ms (rise time of the synaptic
function), and PSP amplitudes Vexc = J and Vinh = gJ
(Figure 8.11). This allows exploration of relative inhibitory
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FIGURE 7 | Model creation at SNNbuilder. 1. Login system. 2. Selection of species (subject). 3. “Build a new model” option. 4. Initial specifications. 5. The created

model is listed at the front-end. 6. Tabs for modeling workflow. 7. “Insert” option at “Neurons” tab. 8,9. Required specification for neuronal populations.
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FIGURE 8 | Neuronal population specifications. 10. Number of neurons. 11. Receptors, PSP amplitudes, and rise times. 12,13. Dendrite characteristics. 14. “Import

from model” option. 15,16. Selection of a NEST model and migration of default parameters.

strength by activating a single pair (i.e., dotted square at
Figure 8.11) as a “fixed parameter” while “deactivating”
others.

• Set generic values for the neuronal dendritic extent lx =

600µm (Figure 8.12) and dendrite diameter dx = 1.6µm
(Figure 8.13).

• Implement neural populations as multi-synapse LIF (leaky
integrate-and-fire) neurons by the option “import from
model” at “Other parameter” tab (Figure 8.14). This enables
the selection of a NEST neuron model (Figure 8.15) and
transfer of parameters with default values to the neural
populations (Figure 8.16).
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FIGURE 9 | Projection and simulation specifications. 17. “Insert” option at “Projections” tab. 18. Data requirements for network wiring. 19. Axonal organization. 20.

Percentage of neurons at source projecting to target. 21. Bouton counts. 22. Synapse location to soma. 23. Redundancy parameter. 24. “Insert” option at

“Simulations” tab. 25. Simulation settings. 26. Stimuli to target populations. 27. Model description file and simulation script generation.
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• Specify connectivity details using the “Projections” tab, with
the “insert” function (Figure 9.17).

• Link source and target neural populations and add
connectivity specifications by navigating the additional
tabs (Figure 9.18).

• Set axonal organization as “diffuse” (Figure 9.19), with a wide
spatial domain, in order to emulate random networks in
which neurons are independently connected with an equal
probability ǫ.

• Define the percentage of source neurons projecting to the
target population as 100% (Figure 9.20).

• Assume ǫ = 0.1 to define bouton counts from projections
at excitatory neurons as α{exc,inh}→exc = ǫ × Nexc, and at
inhibitory neurons as α{exc,inh}→inh = ǫ × Ninh (Figure 9.21).

• Specify the synaptic location to soma rx as “proximal” for
establishing a minimal PSP attenuation, with a distance within
20% of a generic dendritic extent (Figure 9.22).

• Set a generic redundancy value ρ = 1 (Figure 9.23).
• Implement projections as NEST static synapse models, with

default parameter values, similar to the NEST neuron’s case
(Figure 8.15).

• Create a simulation using the “insert” function (Figure 9.24),
specify time resolution dt = 0.1ms, simulation time for
2, 000ms, and spatial organization of neurons in 2D-space with
coordinates (x, y) randomly generated between [0, 1] and other
features (Figure 9.25).

• Add stimuli for the first 1,000ms as independent Poisson spike
trains of constant rate (Figure 9.26).

• Generate model descriptions and simulation code in three
sequential steps: get parameters, code building, and files
download (Figure 9.27).

Simulations run with different values of J and g (Figure 6A), for
example, J = {1.1, 1.4} and g = 4 showed different network
activities after stimulus offset. While the lifetime for J = 1.1 was
almost zero, J = 1.4 sustained the firing rate, allowing a longer
lifetime. Thus, a stronger coupling strength drove the network
over the whole simulation time. As reported in Kriener et al.
(2014), the SSAI state showed highly irregular spiking activity,
with neurons switching between periods of silence or low firing
rate, and short bursts or elevated rates, while the average activity
of the neural population persisted over the simulation time. It is
worth noting that values of J and g are not directly comparable to
those reported by Brunel (2000) and Kriener et al. (2014), since
attenuation is applied on the PSP strengths based on dendrite
parameters (see Transfer functions in Appendix A).

As an additional test, for the latter parametrization, we
observed that the SSAI state is affected by a single change in
neuron’s morphology: a “distal” location rx of the receptors
in relation to the soma (Figure 9.22) shortened SSAI lifetime
(Figure 6A). SNNbuilder easily enabled model changes and code
generation for straightforward analyses.

4.2. Striatal Microcircuitry
Rodent local striatal microcircuitry has recently been modeled
(Hjorth et al., 2020) using the NEURON simulator (Carnevale
and Hines, 2006); however, such simulation involves heavy

computations due to detailed cell morphologies. We aimed to
replicate these results using point-process neurons, which are
computationally much less expensive for systematic analysis of
model dynamics.

A network was built following data from Hjorth et al. (2020),
comprised of 38,237 direct striatal projection neurons (dSPN),
38,237 indirect striatal projection neurons (iSPN), 1,047 fast-
spiking (FS) interneurons, 644 low-threshold spiking (LTS)
interneurons, and 886 cholinergic interneurons (ChIN). All
neuronal types were implemented as LIF with AMPA and GABA
receptors, with PSPs modeled as alpha-functions with specific
amplitude values for each connection. PSPs were specified
as connection weights at the projection synapse parameters,
rather than at the neuron receptor level. The axonal delay
was assumed generic for all the connections, equal to 0.2ms.
Neuron parameters, such as membrane time constant, threshold,
and resting membrane voltage were taken from Johansson and
Silberberg (2020).

Neurons were uniformly distributed in a 1mm3 volume,
matching the neuronal density in the striatum (Rosen and
Williams, 2001). Connections were created using a fixed in-
degree rule and a spherical mask with size based on axonal and
dendritic field diameters. Other connection-related parameters,
such as bouton number, the distance between soma and synapse,
and the number of synapses from a single source were also taken
and calculated by Hjorth et al. (2020).

Two levels of external input were modeled in the network: the
first 1,000 ms of simulation correspond to 2 Hz glutamatergic
baseline activity from the cortex and thalamus. In order to
simulate synaptic input, all neurons were assumed to have
150 AMPA synapses, all receiving independent inputs that
can be modeled as a 300 Hz Poisson spike train, similar to
what is described in Hjorth et al. (2009). The next 500 ms
correspond to higher-level cortical activity, defined as an 8Hz
glutamatergic input, and modeled as a 1,200 Hz Poisson spike
train superimposed on the baseline input train, after which
baseline activity is restored.

The workflow final step, the code generation, provided
a python script for simulations. An optimization step, not
implemented by the current SNNbuilder release, was performed
for this modeling example (see Current limitations). Both local
(inhibitory) and external input (excitatory) weights to each
population were optimized simultaneously, using grid search
and a custom multi-objective function: for each population
and for each stimulation regime, a target range of plausible
firing rates was defined, and error was defined as the
normalized distance to the center of that interval. The set
of weights that minimized this error was then selected, with
the firing rates of all populations matching those described in
Hjorth et al. (2020).

The optimization process, first, found weights that yielded
good behavior for the baseline activity (from 0 to 1,000 ms,
Figure 6B). Once optimized, these values were active during
the whole simulation (from 0 to 1,500 ms). Then, new Poisson
generators were introduced corresponding to a higher level of
cortical activity (from 1,000 to 1,500 ms) and whose weights were
optimized while keeping the baseline ones fixed.
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A raster plot of the network activity after optimization is
shown in Figure 6B and voltage traces (mV) of single neurons,
in which the two levels of activity are distinguishable.

5. DISCUSSION

Modeling the brain is a challenge that requires collective
effort. Large-scale cohesion of researcher knowledge, ideas,
publications, and experimental data can be realized on the
internet, where humans are hyper-connected, constituting a
convenient frame for brain modeling. We have designed
SNNbuilder as a web-application to support the collaborative
building of sustainable, renewable, and scaleable SNN models.

The introduced framework organizes specifications to model
any region of the brain through a straightforward GUI
(Figure 3). Anatomical, morphological, and physiological data
are systematically loaded and updated, and their passage as
neural and synaptic parameters is managed by transfer functions
(see Appendix A). A generic relational database (Figure 2A)
is designed to accommodate accumulating data and includes
references and notes to accurately acknowledge data sources and
to trace model details (Supplementary Figure B.2). SNNbuilder
workflow (Figures 3, 7, 8, 9) was tested on two model examples:
a self-sustained asynchronous irregular network and a model of
mouse striatal circuitry (Figure 6).

Major data sources are scientific publications. Paper surveys
require the identification of relevant parameters for modeling,
which is time-consuming for humans. Efforts are ongoing
to extract data from a large collection of literature and to
store the data in open databases. For example, Bjerke et al.
(2020) standardized and quantified information about cellular
parameters in the murine basal ganglia from public repositories,
and Tripathy et al. (2014) extracted electrophysiological
properties of diverse neuron types from existing literature. The
desired future extension is SNNbuilder compatibility with open
database sources, not only for consuming plain data but also for
incorporating automatic discovery of parameters by text-mining
algorithms and knowledge-graph building.

Compatibility with resources, such as EBRAINS,
Brain/MINDS, and NeuroML, are crucial for improving
the modeling process. We aim for SNNbuilder-to-application
and SNNbuilder-to-databases compatibility, so system input(s)
and output(s) can be shared and integrated. A preliminary
effort corresponds to the SNNbuilder capability to import NEST
models and connectomic data from JSON files, including
remotely located files for the latter case (Figure 4 and
Supplementary Figure B.1). By this functionality, upon the
opening of data, marmoset connectomic retrieval by a web
service at Brain/MINDS is possible in the short term. This will
provide full or partial data for loading, automatically, neurons
and projections in SNNbuilder. An architecture composed of
web-services or APIs for straightforward access to SNNbuilder
data and models, and web-services for data consumption from
open sources (Supplementary Figure B.1) is required and
considered as future challenge. Moreover, an important standard
supporting data sharing across brain projects is Neurodata

Without Borders (NWB, Teeters et al., 2015; Rübel et al., 2021).
SNNbuilder management of inputs/outputs in NWB format will
be considered as well in future releases.

New system functions and features are required as well
and included in future work, especially needed for building
complex experimental settings and detailed models. For example,
parameter definition based on distributions, stimuli protocols
associated with objectives or metrics, integration of functional-
related metadata, re-use of parameters from other models,
new transfer functions and more connection rules, model
versioning and history tracking, online simulation management,
and parameter optimization.

Our generic database structure supports the future
implementation of an optimization engine. Optimization
will preserve parameters labeled as “fixed” while exploring “to-
optimize” parameters within defined value intervals, assessing
model activity against data labeled as “objectives.” The generic
character of data-to-model conversion will allow comparisons
across species as well, since models for different subjects
along with their simulation results can be compared on the
same dimensions.

A further challenge is code generation for multiple simulators,
which may require the development of new mapping processes
(transfer functions). On this, compatibility with NeuroML, a
simulator-free approach for model description may provide
strong advantages. Currently, the SNNbuilder model description
in JSON format corresponds to dictionaries listing the
specifications. That output could be prepared in compatible XML
(Extensible Markup Language) format, following the standard
NeuroML. Model description in NeuroML enables simulations
on different tools, avoiding code generation/preparation for
multiple simulators. Having that advantage, model specifications
can be prepared to target biophysical neuron models and
complex networks; thus, SNNbuilder may support the state-of-
the-art NEURON simulator. Our database will be extended in
such a case, for the inclusion of new data entities like detailed
morphology and ion channels.

SNNbuilder plans to enable online simulation and result
analytics, by simulating models on the server and visualizing
results via the web-browser, as shown in Spreizer et al. (2021).
That will facilitate immediate building-testing iterations for
an intuitive understanding of model dynamics. Big spike data
could be loaded into the database and meticulously queried
and plotted for better interpretation of results. While small
simulations could be triggered instantly, large simulations can
be prepared and dispatched for high-performance computing, as
shown in Feldotto et al. (2022). SNNbuilder straightforward code
generation may include job scripts for the setup and simulation
of large-scale models on the Fugaku supercomputer (Sato et al.,
2020), as well on collaborative simulation infrastructures like
Fenix from EBRAINS (Alam et al., 2019). Compatibility
with distributed computational resources facilitates the
access and usage of services and is included in our future
challenges.

As an introductory video from the International Brain
Initiative observed, “It takes the world to understand the
brain. It is the most complex organ in the human body”
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(Adams et al., 2020). Understanding the brain requires not
only biological data but also tools to enable the engagement
of a diversity of researchers, with different backgrounds and
opinions, to support independent, free contribution of ideas.
Our framework supports that collaboration for modeling the
brain.
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