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Background: Alzheimer’s disease (AD) is a serious neurodegenerative disease

associated with thememory and cognitive impairment. The occurrence of AD is

due to the accumulation of amyloid β-protein (Aβ) plaques and neurofibrillary

tangles (NFTs) in the brain tissue as well as the hyperphosphorylation of Tau

protein in neurons, doing harm to the human health and even leading people to

death. The development of neuroprotective drugs with small side effects and

good efficacy is focused by scientists all over the world. Natural drugs extracted

from herbs or plants have become the preferred resources for new candidate

drugs. Lignans were reported to effectively protect nerve cells and alleviate

memory impairment, suggesting that they might be a prosperous class of

compounds in treating AD.

Objective: To explore the roles and mechanisms of lignans in the treatment of

neurological diseases, providing proofs for the development of lignans as novel

anti-AD drugs.

Methods: Relevant literature was extracted and retrieved from the databases

including China National Knowledge Infrastructure (CNKI), Elsevier, Science

Direct, PubMed, SpringerLink, and Web of Science, taking lignan, anti-

inflammatory, antioxidant, apoptosis, nerve regeneration, nerve protection as

keywords. The functions andmechanisms of lignans against ADwere summerized.

Results: Lignans were found to have the effects of regulating vascular disorders,

anti-infection, anti-inflammation, anti-oxidation, anti-apoptosis, antagonizing

NMDA receptor, suppressing AChE activity, improving gut microbiota, so as to

strengthening nerve protection. Among them, dibenzocyclooctene lignans

were most widely reported and might be the most prosperous category in

the develpment of anti-AD drugs.

Conclusion: Lignans displayed versatile roles andmechanisms in preventing the

progression of AD in in vitro and in vivo models, supplying potential candidates

for the treatment of nerrodegenerative diseases.
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1 Introduction

Over the past 200 years, the development in public health and

medical interventions had led to longer life expectancy, and

population ageing has gradually become a challenge that

couldn’t be ignored in the social and economic development.

The global burden of pathological diseases related to aging is

steadily increasing. Alzheimer’s disease (AD) was considered to

be the most common age-related neurodegenerative disease and

one of the most serious problems facing the world’s aging

population (Ermogenous et al., 2020). The World Health

Organization estimated that more than 55 million people

worldwide suffered from dementia, with nearly 10 million

new cases each year. The global patients of dementia were

expected to reach 82 million by 2030 and 152 million by 2050

(Organization, 2021).

At present, it is generally accepted that typical histopathological

traits of AD are the aggregation of amyloid β-protein (Aβ) in senile

plaques and neurofibrillary tangles (NFTs) of tau protein. However,

the perception of AD are far from enough and the treatments are still

limited. Untill now, there weren’t a drug completely curing AD or

reversing the progression. Donepezil, rivastigmine, galanthamine

andmemantine were four medicines approved by FDA in which the

first three were acetylcholinesterase inhibitors (AChEI) (Ali et al.,

2015; Behl et al., 2022) and memantine was an antagonist of

N-methyl-D-aspartate receptor (NMDAR) (Sonkusare et al.,

2005). They were usually used in alone or combination in the

clinic according to the conditions of patients, and some were

reported to cause hepatotoxicity, gastrointestinal-related adverse

reactions and muscle-related adverse reactions, which might lead

to acute renal failure secondary to rhabdomyolysis in severe cases

(Ali et al., 2015; Weller and Budson, 2018). Adduhelm

(Aducanumab) is a monoclonal antibody that could selectively

combine with the amyloid protein in brain and reduce the

deposition of Aβ plaques in neurons (Sevigny et al., 2016). It is

the first drug targeting the deposition of Aβ plaques approved by

FDA in 2021 and used in treating early Alzheimer’s disease.

However, clinical trials revealed that about 30%–40% of the

patients taking adduhelm appeared brain microbleeds and edema

(Torre and Lima., 2021). SodiumOligomannate Capsules (GV-971)

was a medicine affecting the neurological function by targeting the

brain-gut axis. It was approved to treat mild and moderate

Alzheimer’s disease in China in 2019. The side effects were rare

due to its natural character (oligosaccharide from Alge), but more

clinical observations were needed to evaluate its long-term effects

(Luo, 2020). The demand of anti-AD drugs with better effects or

lower side effects are still in increasing, however, the success rate of

drug development against AD was very low, 99% of the candidate

drugs were in failure (Tatulian, 2022).

Plant chemicals might constitute important resources in the

development of anti-AD due to their neuroprotective activities

(Vaiserman et al., 2020). In the past, lignan and its extract were

reported to effectively protect neuronal cell and improve

cognitive ability (Zhou et al., 2021), however, their roles and

mechanisms had never been summerized before. In this review,

we referred the researches on the functions and mechanisms of

lignans as well as the pathogenesis of AD, and analyze the

potentiality of lignans in treating neurodegenerative diseases,

aiming to supplying more candidates for anti-AD agents in the

future. The pathogenesis of AD and structures of lignans in this

paper are shown in Figure 1 and Figure 2.

2 Pathogenesis of Alzheimer’s disease

2.1 Vascular regulation disorder

Increasing evidences suggested that the vascular dysregulation

made the risk of AD increased (Lee et al., 2020). Elderly patients with

AD are usually accompanied by cerebrovascular diseases, such as

cerebral ischemia, hypoxia and hypoperfusion (Cipollini et al.,

2020). Aβ deposition was reported to be observed in cerebral

parenchyma and cerebral vessels in AD (Guo et al., 2020). And

β-secretase protein level and enzyme activity in cerebrospinal fluid

were increased, which is the key rate-limiting protease to produce

Aβ (Hardy and Selkoe, 2002). According to the two-hit vascular

hypothesis of AD (Nelson et al., 2016), cerebrovascular damage (hit

1) is an initial insult that directly initiates neuronal injury and neuro

degeneration as well as promotes accumulation of Aβ toxin in the

brain (hit 2). It was reported that a large number of inflammatory

mediators were released to induce neuronal apoptosis and other

neurological diseases during cerebral ischemia reperfusion (Cao

et al., 2015). Vascular dysfunction would also induce the

dimishment of Aβ clearance and increase of its production by

influencing the amyloidogenic pathway in the brain (Zlokovic,

2011; Nelson et al., 2016).

2.2 Infection

Microbial infection is considered as an important cause in the

occurence of AD. Sureda et al. detected gingipain (an enzyme

secreted by Porphyromonas gingivalis) in the brain of mild to late

AD patients (Sureda et al., 2020). Another example is the bacterial

functional amyloid known as curli secreted by Escherichia coli

migrate in the brain and triggers AD (Zhan et al., 2016). Bacteria

could infect or colonize different cells in the brain, such asmicroglia,

inducing AD (Bu et al., 2015). Besides, the bacteria and their

components (capsular proteins, flagellin, fimbrillin, peptidoglycan,

proteases) were considered as the pathogen-associated molecular

patterns (PAMPs) and could activate immune cells and interact with

pattern recognition receptors (PRRs) such as TLR-2 and TLR-4,

resulting in the pro-inflammatory cytokine secretion. This could

result in a neuroinflammatory state leading to neuronal destruction

and the disruption of the blood-brain barrier (BBB), promoting Aβ
deposition (Zlokovic, 2011; Keaney and Campbell, 2015).
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2.3 Type 2 diabetes

Type 2 diabetes is the most common endocrine and

metabolic disease, which is caused by insulin deficiency or

insulin resistance. It has been reported to induce significant

cognitive decline, leading to AD, especially in elderly patients

(Ding et al., 2010). Insulin could cross the blood-brain barrier,

and combine with insulin receptors of many brain cells (Banks

et al., 2012). However, impaired insulin signaling and insulin

resistance made the expression of insulin degrading enzyme

(IDE) reduced in brain (Mullins et al., 2017), which is a

significant contributor to Aβ degradation (Jayaraman and

Pike, 2014). The downregulation of IDE could lead to the

decrease of Aβ clearance and subsequently increase of Aβ
accumulation in the brain as well as tau phosphorylation

(Jolivalt et al., 2010).

2.4 Inflammatory reaction theory

Neuroinflammation is an immune response activated by glial

cells in the central nervous system, which is considered to be one of

the reasons causing kinds of neurodegenerative diseases including

AD.Microglia are the brain’s innate immune cells, making up about

10% of all cells in the central nervous system. In AD patients,

amyloid β-protein could combine with the receptors of microglia

cells and then induce the release of inflammatory cytokines or

chemokines such as COX-2, TNF-α, ILs, iNOS and so on, further

impair the cognitive function. Therefore, the inhibition against

activation of microglia cells, inflammatory factors, or

downregulation the inflammation signaling pathways would all

excert neroprotection functions. There are many signaling

pathways involving in the regulation of neuroinflammation, in

which P38/MAPK pathway, JNK/MAPK pathway, PI3K/AKT/

GSK-3β/NRF2 pathway, MyD88 pathway, NF-κB pathway are all

widely reported (Munoz and Ammit, 2010; Cuadrado et al., 2018;

Fao et al., 2019; Ju Hwang et al., 2019).

2.5 Oxidative stress theory

Oxidation stress is closely related to the early occurcence of AD

and its progression. Overproduced reactive oxygen species (ROS)

could promote the secretion of inflammatory factors, form a cascade

reaction to expand inflammation, and promote the pathological

process of AD (Christov et al., 2004). Besides, extra ROS would also

lead to mitochondrial damage (Sorce et al., 2017), which in turn

activated NADPH oxidase to generate ROS again, aggravated the

occurrence of oxidative stress (Sorce et al., 2017; Zott et al., 2018),

causing protein and DNA dysfunction, and finally nerve cells

FIGURE 1
Pathogenesis of AD (The pathogenesis of AD include vascular regulation disorder, infection, diabetes, inflammatory, oxidative stress, the
cholinergic hypothesis, glutamic acid pathway and gut microbiology.).
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FIGURE 2
Structure of compounds 1–31.
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apoptosis (Eckert et al., 2008; Yaribeygi et al., 2018). They could also

bind to lipids and proteins of nerve cells to induce lipid peroxidation

reaction, destroying the stability and fluidity of the membrane,

leading to cell apoptosis (Morris, 2012). Thus, antioxidants or

those with abilities to stimulate the oxidation defense system

including enzymatic and nonenzymatic groups such as

superoxide dismutase (SOD), malondialdehyde catalase (CAT),

glutathione (GSH) etc. might be useful in blocking the

occurcence or progression of AD.

2.6 The cholinergic hypothesis

Early in the 1970s, Deutsch et al. have found that

cholinergic systems were associated with memory

formation and storage (Deutsch, 1971). Acetylcholine (Ding

et al., 2010; Whitmer et al., 2021) is an important central

excitatory neurotransmitter responsible for cognitive function

and learning (Wang and Zhang, 2019). The function of

cholinergic system in AD patients was defective (Lannfelt

et al., 1993). Nucleus basalis of meynert (NBM) is the main

distribution area of cholinergic neurons, which were reported

to lost and degenerated in AD patients according to

morphological studies (Briggs et al., 1997). Further study

found that the concentration of Ach was significantly

reduced in the brain of patients, which accelerated Aβ
deposition, and induced a variety of pathological

phenomena such as abnormal phosphorylation of Tau

protein, neuronal inflammation, apoptosis, imbalance of

neurotransmitter and neurohormone systems (Murray

et al., 2013; Stepanichev et al., 2014). Acetylcholinesterase

(AchE) is the decomposition enzymes of Ach, which could

catabolize Ach into inactive choline and acetic acid

metabolites and often used to evaluate the activity of

cholinergic nervous system (Khan et al., 2018). In addition,

AchE also participated in the formation of amyloid protein in

brain cells (Houghton et al., 2006). Due to the role in the

development of amyloid protein and the hydrolysis of Ach, the

inhibition of AchE is regarded as a promising strategy for the

treatment of AD.

2.7 Glutamatergic hypothesis

Impairment of the glutamatergic system is widely

considered to be associated with pathomechanisms of AD

(Danysz and Parsons, 2012). Many studies have shown that

glutamate signaling pathway played an important role in

synaptic plasticity and is dysregulated in AD (Taniguchi

et al., 2022). Functional n-methyl-d-aspartate (NMDA)

channels are heteromeric tetramers of GLUN1 and

GLUN2A-D subunits. GluN2B containing NMDA receptors

account for about 50% of all NMDA receptors (Chazot and

Stephenson, 1997). In the different subtypes of NMDA

receptors, GLUN2B types are the most prominent in the

forebrain, which provided superior treatment target for AD

(Yashiro and Philpot, 2008). When soluble Aβ oligomers

(AβOs) binds to these receptors such as NMDA receptors on

the cell membrane, it will cause neurotoxicity and AD (Cline

et al., 2018).

2.8 Gut microbiota

Recent studies have shown that the pathogenesis of many

neurodegenerative diseases may be related to intestinal flora.

Symbiotic flora in the gastrointestinal tract regulate the

neuroinflammation and central nervous system

autoimmunity through gut-brain axis (La Rosa et al.,

2018). Researchers found that the most distinctive

changes of gut microflora in AD patients were the

decreasing of Bifidobacterium breve strain A1 and the

increasing of Firmicutes and Bacteroidetes, which could

lead to the enhancement of the inflammation levels in the

plasma and brain (Bostanciklioglu, 2019). Clinical studies

have shown that Bifidobacterium breve strain A1 is benificial

to improve cognitive and mental health in patients with mild

cognitive impairment (Okubo et al., 2021). The increasing of

Firmicutes and Bacteroidetes would lead to the decrease of

cognitive function in AD patients (Wu et al., 2020).

3 Lignans as candidate
phytochemicals

3.1 Dibenzocyclooctene lignans

3.1.1 Schisandrin
Hu et al. reported that eleven dibenzocyclooctene lignans (1–11)

from the fruits of Schisandra chinensis had inhibitory effects on LPS-

induced NO release in mouse BV2 microglial cells. It was worth

noting that schisandrin (10) had the best activity (Hu et al., 2014),

supplying a very prosperous candidates in treating AD. Besides,

S-biphenyl as well as methylenedioxy were found to be the active

groups according to structure-activity relationship studies, however,

the presence of acetyl group on cyclooctadiene or hydroxyl group on

C-7 would reduce the inhibitory activity on NO release (Hu et al.,

2014).

In the in vivo model, Hu et al. also found that schisandrin

(10) could significantly improve the short-term and spatial

reference memory impairment of mice induced by Aβ.
Glutathione peroxidase (GSH-Px) activity, GSH content in the

cerebral cortex and hippocampus of rats increased, while MDA

and GSSG contents decreased (Hu et al., 2012), suggesting

schisandrin (10) might improve cognitive impairment through

antioxidation.
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3.1.2 Gomisin A
Gomisin A (11) in the fruits of Schisandra chinensis was

reported not only to inhibit the production of NO, PGE2, but

also suppress the expressions of iNOS andCOX-2 in LPS-stimulated

N9 microglia. TLR-4 is one of the main receptors in microglia and

gomisin A (11) was reported to attenuate microglia-mediated

neuroinflammation by inhibiting TLR-4-mediated NF-κB and

MAPKs signaling pathways. Moreover, it also significantly

inhibited LPS-induced ROS, NADPH oxidase activation, and

GP91phox expression in microglia (Wang et al., 2014). At the

same time, it reduced mRNA expression and pro-inflammatory

cytokines TNF-α, IL-1β and IL-6 production (Dong et al., 2006).

3.1.3 Schisantherin A
Schisantherin A (12) is a major bioactive lignan isolated

from the fruits of Schisandra chinensis, which has potential

therapeutic value for neurodegenerative diseases related to

abnormal oxidative stress. In the in vivo studies, schisantherin

A (12) increased the activities of SOD and GSH-Px, decreased

the contents of Aβ and activities of MDA in hippocampus and

cerebral cortex. It also significantly decreased the

histopathological changes in the hippocampus (Li et al.,

2014). Zhang et al. found that schisantherin A (12) could

down-regulate the expression of iNOS, the accumulation of

ROS, and inhibit the excessive production of NO in SH-SY5Y

cells induced by 6-OHDA (Zhang et al., 2015). Results showed

that schisantherin A (12) might exert neroprotection effects

by both anti-inflamation and anti-oxidation.

3.1.4 Schisandrin B
In the in vivo study, Schisandrin B (SchB) (13) could

significantly suppress the AChE activity and increase the level of

Ach in scopolamine-induced dementia mice model (Giridharan

et al., 2011). In differentiated neuronal PC12 cells of rats exposed to

3-nitropropionic acid (3-NP), SchB showed the ability to resist

apoptosis and necrosis by blocking the JNK-mediated pyruvate

dehydrogenase (PDH) inhibition (Lam and Ko, 2012). It also

displayed antiapoptotic effect on rat cortical neurons induced by

Aβ in in vitro (Wang and Wang, 2009). In neuron-microglia

cocultures, SchB exerted anti-neuroinflammatory activity by

inhibiting MyD88/IKK/NF-κB signaling pathway, and the release

of pro-inflammatory cytokines including NO, TNF-α, PGE2, IL-1β
and IL-6 were all reduced. Moreover, SchB significantly inhibited

ROS production and NADPH oxidase activity in microglia, thus

playing a protective role in neurons (Zeng et al., 2012).

In the rat model, SchB might alleviate the damage of

inflammatory response to nerve cells during cerebral

ischemia-reperfusion via regulating the HSPA12B/PI3K/Akt

signaling pathway (Jiang et al., 2016), indicating that SchB

could inhibit the secondary inflammatory response after

cerebral ischemia-reperfusion. This indicates that SchB might

have a potential therapeutic effect on AD complicated with

cerebral ischemia.

3.1.5 Dibenzocyclooctene lignan-riched extract
Dibenzocyclooctene lignans are the characteristic

compounds widely existed in Schisandra. It was shown that

the extract from the fruits of Schisandra chinensis, which was

enriched in dibenzocyclooctene lignans could alleviate the

memory impairment in AD mice by inhibiting the activity of

β-secretase in the cerebral cortex and hippocampus (Jeong

et al., 2013). Wei et al. reported that the extract of Schisandra

chinensis alleviated the inflammation caused by prostaglandins

(PGs) metabolic disorders by regulating the metabolic

disorders of polyunsaturated fatty acids in AD patients

(Wei et al., 2019). These findings further suggest that

dibenzocyclooctene lignans might be potential in

preventing the occurrence or progression of AD.

3.2 Tetrahydrofuran lignans

Tetrahydrofuran lignans mainly exist in Camphoraceae,

Magnoliaceae, Piperaceae, Cucurbitaceae, Nutmegaceae,

Rehmanaceae, Compositae, Luteaceae, Lonicerae, Aristolaceae

and other plants, which showed strong biological activities,

including antitumor, antioxidant, anti-inflammatory,

neuroprotective, insecticidal and estrogen-like effects as reported

before (Briggs et al., 1997).

(−)-Talaumidin (14), isolated from the root of Aristolochia

arcuata, has been shown to promote axon growth and displayed

neuroprotection activity in primary rat cortical neurons and

PC12 cells (Harada et al., 2015).

(−)-O-methylcubebin (16) and (−)-O-benzylcubebin (17),

synthesized based on (−)-cubebin (15) from Piper cubeba L. f. in

Piperaceae, showed the inhibitory effect on P. gingivalis (Rezende

et al., 2016). Since the infection of bacteria would induce AD and the

products of P. gingivalis could be detected in the brains, 15might be

useful in curing AD caused by infection.

3.3 Furofuranoid lignans

The structure of furofuranoid lignans was formed by condensation

of hydroxyl groups on aliphatic hydrocarbon chains in tetrahydrofuran

lignans. Some furofuranoid lignans including Syringaresinol (18),

Pinoresinol (19), Sesamolin (20), Medioresinol (21) and so on were

metabolized by intestinal flora to form enterolactone metabolites,

which played a neuroprotective role after crossing the blood-brain

barrier and reaching the brain. This provides evidence for lignans as

potential modulators of the gut-brain axis (Senizza et al., 2020). (−)-7-

epi-pinoresinol mr1 (22), (+)-medioresinol (23), and

(+)-diapinoresinol (24) isolated from the leaves of Eucommiae

ulmoides could protect the damage of PC-12 cells induced by H2O2

through PI3K/Akt/GSK-3β/NRF2 signaling pathway, which is one of

the most important pathways in the regulation of Tau protein

phosphorylation (Han et al., 2022).
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TABLE 1 The action mechanisms of major lignans.

Category Compound Name Origin In vitro/In vivo
models

Mechanism Ref

Dibenzocyclooctene
lignans

Schisanchinin A (1) The fruits of
Schisandra chinensis

LPS-induced
BV2 microglia in mouse

Anti-inflammation Hu et al. (2014)

Schisanchinin B (2)

Deoxyschizandrin (3)

(±)-γ-schizandrin (4)

Gomisin G (5)

(-)-gomisin M1 (6)

(-)-gomisin L1 (7)

(+)-gomisin M2 (8)

(+)-gomisin K3 (9)

Schisandrin (10)

Gomisin A (11)

Schisandrin (10) The fruits of
Schisandra chinensis

Mice Anti-oxidation Cao et al. (2015)

Gomisin A (11) The fruits of
Schisandra chinensis

LPS-stimulated
N9 microglia

Anti-inflammation Dong, Hung et al.
(2006)

LPS-stimulated
N9 microglia

Anti-oxidation Wang, Hu et al.
(2014)

Schisantherin A (12) The fruits of
Schisandra chinensis

Aβ induced AD rat Anti-oxidation Li, Zhao et al. (2014)

SH-SY5Y cells induced by
6—OHDA

Anti-inflammation Zhang, Lun et al.
(2015)

Schisandrin B (13) The fruits of
Schisandra chinensis

Scopolamine-induced
dementia mice

Suppressing AChE
activity

Giridharan,
Thandavarayan et al.
(2011)

PC12 cells exposed to
3-NP

Anti-apoptotic Lam and Ko (2012)

Rat cortical neurons
induced by Aβ in vitro

Anti-apoptotic Wang and Wang
(2009)

Neuron–microglia co-
cultures

Anti-oxidation Zeng, Zhang et al.
(2012)Anti-inflammation

Rat model of cerebral
ischemia-reperfusion
injury

Regulation of
vascular disorders

Liu et al. (2019)

Tetrahydrofuran
lignans

(−)-Talaumidin (14) The roots of
Aristolochia contorta

PC12 cells Promoting neuronal
growth

Harada, Kenichi et al.
(2015)

(−)-cubebin (15) The synthesized
compounds

Porphyromonas gingivalis
suspension

Anti-infection (Karen, C. et al., 2016)

(−)-O-methylcubebin (16)

(−) -O-benzylcubebin (17)

Furofuranoid lignans Medioresinol (18) Sesame seeds,
Cloudberry

Intestinal flora Modulation of gut
microbiota

Senizza, Rocchetti
et al. (2020)

Syringaresinol (19) Rye, whole Grain flour

Pinoresinol (20) Olive oil

Sesamolin (21) Sesame seeds

(–)-7-epi-Pinoresinol mr1 (22) The leaves of
Eucommiae ulmoides

H2O2-treated PC12 cells Anti-Tau protein
phosphorylation

Han, Yu et al. (2022)

(+)-Medioresinol (23) Antioxidant

(+)-Diapinoresinol (24)

Sesamin (25) Sesame seeds and oil LPS-treated mice Promoting neuronal
growth

Yamada, Maeda et al.
(2022)

Rat model of diabetes Anti-diabetics Ghaderi, Rashno et al.
(2021)

Anti-inflammation

(−)-Sesamin (26) The roots of
Asiasarum sieboldi

Mice induced by chronic
electric footshock

Antagonizing
NMDA receptor

Zhao, Shin et al.
(2016)

Sauchinone (27) Anti- inflammation

(Continued on following page)
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Sesamin (SES) (25), a major lignan that is mainly obtained

from sesame seeds and oil (Andargie et al., 2021), which could

cross the blood-brain barrier (BBB) and accumulate in the brain

(Umeda-Sawada et al., 1999). Chondroitin sulfate proteoglycans

(CSPGs) are an important component of glial scar, which usually

formed after central nervous system (CNS) injury (Burda and

Sofroniew, 2014). Increased CSPGs are mainly used as a chemical

barrier to protects the CNS (Davies et al., 1997; Silver and Miller,

2004). SES was reported to increase the expression of CSPGs

biosynthesis and decrease degradation-related genes in the

hippocampus of LPS-treated mice (Yamada et al., 2022). The

effects of SES on adult neurogenesis were more obvious in the

dorsal hippocampus (cognitive center) than in the

ventral hippocampus (emotional center) (Yamada et al.,

2018). It was also found that SES could play

a neuroprotective role in in streptozotocin

(STZ)-induced diabetic rats. SES reduced anxiety/depression

like behaviors, increased exercise/exploration activities, and

improved passive avoidance learning and memory. It was

suggested that SES could reduce blood glucose, inhibit

TABLE 1 (Continued) The action mechanisms of major lignans.

Category Compound Name Origin In vitro/In vivo
models

Mechanism Ref

Benzoxanthene
lignans

The roots of Saururus
chinensis

Mice injected with 4%
Brewer thioglycollate

Jeong, Choi et al.
(2014)

Norlignans (R)-1-(3-methoxy-4-hydroxyphenyl)-2-
(3-methoxy-1-hydroxypropylphenoxy)-3-
hydroxypropan (28)

The seeds of Prunus
tomentosa

ThT method Inhibition of Aβ
aggregation

Liu et al. (2019)

(S)-1-(3-methoxy-4-hydroxyphenyl)-2-(3-
methoxy-1-hydroxypropylphenoxy)-3-
hydroxypropan (29)

Benzofuran lignans (7S, 8S)-pithecellobiumin A (30) The twigs and leaves of
Pithecellobium
clypearia

ThT method Inhibition of Aβ
aggregation

Wang, Zhou et al.
(2018)(7R, 8R)-pithecellobiumin A (31)

FIGURE 3
The main mechanisms of dibenzocyclooctene lignans against AD. (Dibenzocyclooctene lignans play a protective role in the nervous system
through anti-inflammation, antioxidation and inhibition of neuronal apoptosis. Compounds 1–13 inhibited the activity of NO, compounds 11 and 13
inhibited the release of downstream inflammatory factors by regulating TLR-4-mediated NF-κB and MAPKs signaling pathways, MyD88/IKK/NF-κB
andHSPA12B/PI3K/Akt signaling pathways. In addition, Compounds 10 and 12 up-regulated the expression of SOD andGSH, and inhibitedMDA
in brain tissue, while compounds 11 and 13 reduced the content of ROS to resist oxidative stress. Compound 13 also inhibited apoptosis by inhibiting
JNK-mediated PDH inhibition.).
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neuroinflammation and enhance neurotrophic factors to

against AD caused by diabetes (Ghaderi et al., 2021).

(−)-Sesamin (26) is a major lignan constituent in the roots of

Asiasarum sieboldi, which ameliorated spatial and habit learning

memory deficits by modulating both NMDA receptor and

dopaminergic neuronl systems. After exposure to chronic electric

footshock (EF)-induced stress, the levels of NMDA receptor

phosphorylation were reduced by treatment with (−)-sesamin at

both doses (25 and 50 mg/kg). The retention latency in passive

avoidance test and dopamine levels in substantia nigra striatumwere

decreased by chronic EF stress, and increased after (−)-sesame

treatment (Zhao et al., 2016).

3.4 Benzoxanthene lignans

Sauchinone (27), isolated from the roots of Saururus

chinensis, supplied a useful adjunctive treatment for the

treatmeng of AD cased by bacterial infection, since

It enhanced phagocytosis of macrophages to Escherichia coli

through p38/MAPK signaling pathway in rats macrophages in

a concentration dependent manner (Jeong et al., 2014).

3.5 Norlignans

(R)-1-(3-methoxy-4-hydroxyphenyl)-2-(3-methoxy-1-

hydroxypropylphenoxy)-3-hydroxypropan (28) and

(S)-1-(3-methoxy-4-hydroxyphenyl)-2-(3-methoxy-1 -

hydroxypropylphenoxy)-3-hydroxypropan (29) are a pair of

enantiomers isolated from the seeds of Prunus tomentosa by

Liu et al. (Liu et al., 2019). They were reported to exhibit

hydrogen bonding interactions with Aβ in molecular docking

studies, sharing the similar binding site at residue Gln15 with the

positive compound curcumin, and their activities on anti-Aβ
aggregation were further verified by thioflavin T (ThT) method

with the inhibitory rate 63.25 ± 2.68% (28) and 67.13 ± 0.90%

(29), higher than positive drug.

3.6 Neolignans

Wang et al. isolated two rare 8′, 9′-dinor-3′, 7-epoxy-8, 4′-
oxyneolignanes from the twigs and leaves of Pithecellobium clypearia

named as (7S, 8S)- and (7R, 8R)-pithecellobiumin A (30, 31)

respectively, which are a pair of enantiomers of neolignans (Wang

et al., 2018). Enantiomers compounds 30 (62.1%) and 31 (81.6%)

showed different degrees of anti-Aβ aggregation activity by ThT

method. However, they showed different interaction mode with Aβ
according to molecular docking studies. Compound 30 interacted

with Leu34 of Aβ while compound 31 interacted with Gly9 and

Gln15. The results showed compounds 30 and 31 have potentials to

treat AD by inhibiting the formation of Aβ aggregation.

4 Conclusion and Foresight

In this paper, we focus on the neuroprotective and

cognitive enhancement effects of lignans and their

mechanisms, providing a basis for the development of

lignans as new anti-AD drugs. Lignans exerted

neuroprotective and cognitive enhancement effects through

regulating vascular disorders, anti-infection, anti-

inflammation, anti-oxidation, anti-apoptosis, antagonizing

NMDA receptor, suppressing AChE activity, improving gut

microbiota, and regulating different signaling pathways as

shown in Table 1. Among them, biphenyl cyclooctene lignans

are the most potential lignans, in which anti-inflamation, anti-

oxidation and antipoptosis effects on neurons, microglial or

brain tissue were widely reported (Figure 3).

In addition, since long-term use of existing commercially

available drugs will bring serious side effects, drugs with less

side effects would be more popular in the future. As natural

compounds, lignans are abundant in fruits, vegetables and

grains with low toxicity and good bioavailability (Jin et al.,

2013; Kumar et al., 2021)

One of the most challenging problems in the development of

therapeutic drugs for neurodegenerative diseases is that drugs

cannot cross the blood-brain barrier. However, the lignans such

as schisantherin A and schisandrin B were reported to be capable to

cross the BBB due to their lipid-soluble properties and small-

molecular mass (Hu et al., 2012; Wang et al., 2018), which

further improve the possibilities of lignans to be developed as

anti-AD drugs.
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