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Hemolysis is a pathological feature of several diseases of diverse etiology such as
hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the
release of large quantities of hemoglobin into the blood circulation and the subsequent
generation of harmful metabolites like labile heme. Protective mechanisms like
haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1
enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules.
The capacity of these protective systems is exceeded in hemolytic diseases, resulting in
high residual levels of hemolysis products in the circulation, which pose a great oxidative
and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia
which impacts the phenotypic variability and disease severity. Not only is circulating heme
a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular
pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle
complications such as vaso-occlusion and acute lung injury. Exposure to extracellular
heme in SCD can also augment the expression of placental growth factor (PlGF) and
interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and
pulmonary hypertension, and potentially the development of renal and cardiac
dysfunction. This review focuses on heme-induced mechanisms that are implicated in
disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and
IL-6 related mechanisms and their role in SCD disease progression.
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INTRODUCTION

Sickle Cell Disease (SCD) is an inherited hematological disorders,
with a multi-organ complication affecting millions of people
worldwide, especially in sub-Saharan Africa (1). In the United
States, there are about 100,000 people with SCD. There are
variability and often concurrent complications related to the
disease, which may differ in frequency and severity. Accumulating
evidence suggests that intravascular hemolysis and hemolysis
byproducts including hemoglobin and heme instigate a series of
events leading to vascular damage. While hemolysis is a prominent
feature of SCD, it is certainly not unique to this disease. Red cell
destruction may occur as a result of a hereditary hemolytic disorder,
an infection, a medication, cancer, an autoimmune disorder, a
cardiomyopathy, a hemorrhagic stroke, trauma or even a blood
transfusion, to mention a few (2). The current review focuses on
the heme-induced mechanisms that are implicated in disease
pathways, mainly in SCD and downstream effects of non-bound
(free) heme as a result of intravascular hemolysis caused by sickle cell
anemia and other hemolytic disorders (Figure 1).

Heme as a Signaling Molecule in
Normal Physiology
Heme synthesis, transport and turnover occurs under normal
physiological conditions, and it exerts a physiological signal that
helps to control these pathways. For example, heme feeds back to
the first committed step in porphyrin synthesis, a-levulinic acid
synthase. Heme regulates the Ras-Mitogen Activated Protein
Kinase (MAPK) pathway, and it regulates the BACH1
transcriptional repressor, impacting expression of HMOX-1
and b-globin. Heme-regulated inhibitor (HRI) is a eukaryotic
initiation factor 2a kinase that coordinates protein synthesis
with heme availability in reticulocytes (3). Heme is a crucial
prosthetic group for activity of many hemoproteins, include
oxygen transport, electron transport, oxygen reduction, and
others (4). Heme modulates macrophage differentiation of
monocytes to tissue-resident macrophages and stimulates
macrophage inflammatory response (5). In sickle cell disease,
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heme from red cells is turned over via both intravascular and
extravascular hemolysis pathways that leads to extensive
pathology described in the remainder of this review.
OXIDATIVE STRESS AND HEMOLYSIS
IN SICKLE CELL DISEASE

Reactive Oxygen Species Production
in SCD Contributes to Hemolysis
Oxidative stress occurs due to dysregulation between production
of reactive oxygen species (ROS) and antioxidants. ROS are vital
for cell signaling and homeostasis and are produced as a natural
by-product of the normal metabolism of oxygen or exogenously
by ionizing radiation and xenobiotic compounds (6–8).
Oxidative stress contributes to pathophysiological pathways
that underlie inflammation in many hemolytic disorders
including SCD (8), b-thalassemia (9, 10), paroxysmal
nocturnal hemoglobinuria (11, 12), hereditary spherocytosis
(13), and glucose-6-phosphate dehydrogenase deficiency (14–
16). RBCs are constantly subjected to oxidative stress due to their
role as an oxygen transporter and continuous exposure to both
endogenous and exogenous sources of ROS that can damage the
RBC and alter blood rheology in SCD patients (17, 18). ROS is
generated in SCD through several pathways. Sickle hemoglobin
(HbS) produces ROS such as superoxide anion (O2-), hydrogen
peroxide (H2O2), peroxynitrite (OONO-) and hydroxyl radical
(OH.) following auto-oxidation (19). Auto-oxidation is a normal
physiological process that generates methemoglobin (metHb, Hb
oxidized to Fe3+ state with no ability to bind O2) and O

−
2 in about

3% of the total Hb every day (19). A small rate of auto-oxidation
can produce substantial levels of ROS due to the high
concentration of oxygenated Hb (about 5 mM), which can
cause enormous damage to the RBC itself, because RBCs make
up 40% of the blood volume (20). Moreover, O2- is
spontaneously converted to H2O2 by superoxide dismutase,
thereby increasing ROS in the system (19). Excessive amounts
of reactive oxygen metabolites is produced due to the unstable
FIGURE 1 | Graphical overview of sickle cell hemolysis-associated topics addressed in the current review manuscript.
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nature of HbS resulting in conformational change in the Hb in
low O2 environment and the continuous auto-oxidation of iron
in heme released from Hb (6–8). This heme can oxidize membrane
lipids and proteins (21), as evidenced by elevated levels of products
of lipid peroxidation including malondialdehyde (MDA) in the
plasma of SCD patients (22). Other Hb oxidation products such as
ferryl Hb which is also formed in RBCs under conditions of
oxidative stress also occurs in HbS (23–25), causing actin
remodeling, thereby compromising membrane integrity and
transport (26, 27).

Mitochondrial Dysfunction
The major source of intracellular ROS is the mitochondria in
most cells (28) but mature red blood cells (RBCs) from healthy
individuals extrude their mitochondria and other organelles
during the terminal process of erythropoiesis (29–32). In
contrast, a higher percentage of mature RBCs from SCD
patients and mice retain their mitochondria leading to
excessive ROS accumulation and oxidative stress (25, 33, 34).
It has been shown that treatment with products of hemolysis
including ferric Hb, ferryl Hb or heme causes bioenergetics
changes, abnormal membrane permeability and ROS-induced
lipid peroxidation in endothelial and alveolar cells mitochondria
(35, 36), which may contribute to inflammatory process and lung
injury (37, 38). Additionally, platelets from SCD patients have
abnormal mitochondrial activity resulting in oxidant generation
and increased activation during vaso-occlusive crisis (VOC) (39).
Exposure to cell-free hemoglobin exacerbates this aberrant
platelet mitochondrial activity and correlates with markers of
hemolysis, NO scavenging and severity of pulmonary arterial
hypertension (40).

Microparticles
Another source of oxidative stress in SCD is erythrocyte-derived
submicron membrane vesicles called microparticles (eMPs) (41–
44). Plasma eMPs are elevated in sickle cell mice (25), in SCD
patients at steady state (41, 44) and during vaso occlusive crisis
(45, 46). These eMPs are generated during reoxygenation of
sickled erythrocyte (42, 43) or during hemolysis (41, 47).
Additionally, thrombospondin-1 (TSP1) may trigger shedding
of phosphatidylserine positive eMPs and injection of these eMPs
into SCD mice caused vaso occlusion in the kidney (48). These
hemoglobin-laden eMPs can transfer heme to endothelial cells,
adhere to vascular endothelium and scavenge NO thereby
mediating oxidative stress (49–51). Staining of human renal
biopsies has been shown to contain hemoglobin-laden eMPs
adherent to the capillary endothelium in kidney tissue samples
from hyperalbuminuric SCD patients, suggesting that eMPs may
contribute to renal injury in SCD (51). Finally, other blood cells
such as neutrophils and macrophages also release ROS into the
plasma which are neutralized by anti-oxidants such as
superoxide dismutase before they can be taken up by RBCs (52).

Nicotinamide Adenine Dinucleotide
Phosphate Oxidases
Vascular smooth muscle and phagocytic cells express
nicotinamide adenine dinucleotide phosphate (NADPH)
Frontiers in Immunology | www.frontiersin.org 3
oxidases, which can generate endogenous ROS (53). NADPH
oxidase activity is mediated by activation of the small Ras-like
GTPase Rac via protein kinase C (PKC) stimulation (53). Some
plasma factors such as transforming growth factor b1 (TGFb1)
and endothelin-1 (ET-1) have also been shown to stimulate
NADPH oxidase activity in neutrophils, monocytes and
endothelial cells and many of these factors are present at
higher levels in the plasma of SCD patients as a result of
persistent inflammatory state associated with SCD (54). RBCs
from SCD patients also contain NADPH oxidases, which can
generate endogenous ROS, thereby contributing to RBC rigidity
and fragility (55).

Oxidant–Antioxidant Balance
Accumulation of oxidative injury to the erythrocyte distorts
membrane integrity, alters blood flow rheology, membrane
transport abnormalities, exposure of phosphatidylserine, and
cell death (56–58). Despite the numerous pathways by which
ROS is generated in SCD, oxidative stress in patients appears to
be compensated at steady state, and only becomes deleterious
when the balance between ROS production and antioxidants is
perturbed due to excessive ROS generation, low antioxidant
levels or during crisis (59). Likewise, ROS production becomes
markedly amplified in low antioxidant microenvironments, as
found in SCD, resulting in damage of macromolecules including
lipids (60, 61), DNA (62, 63), and proteins (64, 65).

However, studies of antioxidant levels in SCD patients have
yielded variable results, with several studies reporting low (66–
69) and others reporting high levels (70, 71) of activity of
antioxidant enzymes including glutathione peroxidase (66, 67),
superoxide dismutase (67, 70, 72), and catalase (68, 72). These
differences may be due to variations in level of disease severity
including hemolysis, lipid peroxidation, VOC, acute splenic
sequestration and pulmonary hypertension reported in these
patients (73–78). Irrespective of the levels detected, the total
antioxidant capacity in SCD patients is insufficient to neutralize
excess ROS, resulting in oxidative stress (79). Other non-
enzymatic antioxidants such as vitamin C and E (80, 81), zinc
(76), and selenium (69, 77, 80) are also decreased in
SCD patients.

Several approaches to mitigate the harmful effects of oxidative
stress in SCD have been proposed such as use of antioxidants
(82), neutralization of products of hemolysis with haptoglobin
(Hp) and hemopexin (Hpx) (83) and moderate strength and
endurance exercise therapy (84). Recent studies showed that
increase in physical activity improves blood rheology, increases
NO bioavailability and reduction in oxidative stress and
hemolysis in mice (85–87) and SCD patients (88).

Intravascular Hemolysis, Free Hemoglobin,
and NO Deficiency
Intravascular and extravascular hemolysis, due in large part to
recurrent sickling and unsickling and oxidative stress discussed
above, causes premature destruction of RBCs, and contributes to
anemia in SCD (56, 89). Rapid production of RBCs ensues to
compensate for anemia, resulting in an increased proportion of
January 2021 | Volume 11 | Article 561917
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reticulocytes and younger RBCsin the circulation. Younger RBCs
have a higher content of arginase, and with lysis of these younger
cells, arginase is released into the plasma during hemolysis (90).
This ectopic plasma arginase consumes plasma L-arginine
(substrate needed for NO production), and together with
consumption of endothelial NO by cell-free plasma Hb
contributes to decreased NO bioavailability (91–93). Although
consequences of hemolysis in SCD are multifactorial, induction of
NO deficiency and oxidative stress by acute and chronic release
of products of hemolysis into circulation are major sequelae of
hemolysis (94). Depletion of NO promotes a chronic vasculopathy
endophenotype that predisposes to pre-capillary pulmonary
hypertension, leg ulceration, cerebrovascular arteriopathy, chronic
kidney disease and priapism. Details of nitric oxide deficiency and
pulmonaryhypertensionarebeyondthe scopeof this reviewandhave
been reviewed in detail elsewhere (94–96).

Compensatory Mechanisms
Several distinct and overlapping mechanisms have evolved to
mitigate the cytotoxic effect of products of hemolysis. Hb dimers
are avidly bound by the serum glycoprotein haptoglobin (Hp),
in the plasma to form Hb-Hp complex, which protects against
oxidative damage (97–100). The Hb-Hp complex is recognized
and internalized via its receptor, CD163, and subsequently
cleared by the phagocytic cells in the reticuloendothelial system
(97–99). Continuous formation of Hb-Hp complexes in diseases
with severe intravascular hemolysis including SCD and
paroxysmal nocturnal hemoglobinuria results in depletion of
Hp to undetectable levels, leading to some accumulation in
plasma of cell-free Hb (101, 102).

Heme Scavenging Proteins
Cell-free Hb that becomes oxidized or denatured prior to
clearance is prone to release free heme. Plasma free heme
becomes elevated in SCD patients (103, 104). About 80% of
total heme initially binds to plasma lipoproteins including low-
density lipoproteins (LDLs) (105, 106) and high-density
lipoproteins (HDLs) (107, 108), before being transferred to
albumin and Hpx (107, 109). Low levels of these lipoproteins
are reported in SCD patients which may be due to increased
catabolism or decreased synthesis (110, 111), as low plasma levels
also negatively correlated with markers of hemolysis in SCD
patients (112–114). Free heme reversibly binds to albumin to
formmetalbumin (115–117), or with high affinity to hemopexin
(Hpx) (118, 119), and a1-microglobulin (120–122).

Hemopexin
Of all these plasma proteins, Hpx, a plasma glycoprotein produced
in the liver has the highest affinity for binding free heme (118, 119,
123), resulting in the formation of Hpx-heme complexes that are
removed by endocytosis via the Hpx receptor (CD91) in
hepatocytes and macrophages (124, 125). After delivering heme
to CD91-expressing cells for internalization and degradation by
heme oxygenase 1 (HMOX-1), at least some of the Hpxmolecules
can be recycled back into plasma. Elevated eMPs also correlated
with increase in hemolysis markers and low Hpx in SCD patients
(126). In the same patients cohort, high eMPs positively correlated
Frontiers in Immunology | www.frontiersin.org 4
with elevated TRV, linking Hpx depletion to increased eMPs and
hemolysis, which may predispose patients to pulmonary
hypertension (126). In another study, low Hpx negatively
correlated with lipid oxidation in human and mice with SCD,
with postmortem analysis in SCD patients showing oxidized LDL
deposits in the pulmonary artery (127). These reports showed that
delayed clearance of heme in circulation due to low plasma Hpx
may activate deleterious downstream pathological pathways that
may contribute to morbidity and mortality in SCD patients.

Heme Oxygenase-1
HMOX-1 is an evolutionarily conserved and rate limiting enzyme
that degrades heme into equimolar amount of iron, biliverdin
and carbon monoxide (108, 128, 129). HMOX-1 is highly
expressed in human and mice with SCD and further upregulated
on exposure to heme (130, 131). Heme-induced oxidative stress
exceeds the capacity of HMOX-1 to prevent cellular and
organ injury in transgenic murine model of SCD. Augmentation
of HMOX-1 level and activity via gene transfer approaches,
or pharmacological activation through NRF2 (132), the
transcription factor that regulates HMOX-1 expression,
conferred protection from heme-induced lung injury (133),
vaso-occlusion (134), liver injury (135), kidney injury (136),
erythrocyte membrane damage (137), endothelium activation
and adherence (135), activation of immune cells and production
of inflammatory cytokines (138). Still, the effect ofNRF2 activation
on hemolysis, g-globin levels or stress erythropoiesis in mouse
model of SCD is controversial (136–138). Not all heme andHb are
bound to proteins or other macromolecules. Unbound heme or
hemoglobin in circulation causes erythrocyte membrane damage
and injury, activates proinflammatory signaling pathways inRBCs,
immune and endothelial cells, hepatocytes, macrophages and
neutrophils (105, 139).

Antioxidant Enzymes
Heme induces a program of antioxidant enzymes that
compensate for its intrinsic oxidant stress. These include
glutathione S-transferase pi (GSTpi) and NAD(P)H
dehydrogenase [quinone] 1 (NQO1) (140).
HEME AND STERILE INFLAMMATION
IN SICKLE CELL DISEASE

Hemolysis is a major driver of sterile inflammation in
pathological conditions including SCD (94, 103, 141), malaria
(142, 143), sepsis (144, 145), and also a marker of severity and
survival in these patients (146–149). Following hemolysis, Hb is
oxidized to unstable methemoglobin resulting in release of free
heme (139), which can intercalate into cell membrane and alter
cellular structures or taken up by cells (150, 151).

Intravascular Hemolysis Releases
Cell-Free Heme
Free heme accumulates in the plasma in both acute and chronic
hemolysis when the rate of intravascular hemolysis exceeds the
January 2021 | Volume 11 | Article 561917
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capacity of circulating heme-binding proteins (152), including
Hp and Hpx, which are depleted in human and mice with SCD
patients (59, 104, 114, 126, 127, 153–156). There is an emerging
concept of small molecular weight scavenging protein such as
a1-microglobulin, becoming the predominant heme scavenger
when plasma Hpx is low (59). Binding of free heme to different
scavenger impacts clinical manifestation of excess heme in
circulation as heme-Hpx is trafficked to and recycled primarily
in the liver while heme-bound a1-microglobulin are taken to the
kidney (59). This phenomenon was demonstrated in a recent
publication from Ofori-Acquah and colleagues. They showed
that hemopexin deficiency correlates with a compensatory
increase in a1-microglobulin in both human and mice with
SCD (155). Elevated a1-microglobulin and low hemopexin was
also associated with increase in acute kidney injury biomarkers
urinary KIM-1 and serum NGAL in SCD patients. The authors
showed that this heme-bound a1-microglobulin is directed to
the kidney for clearance resulting in acute kidney injury in sickle
cell mice (155). Also, acute kidney injury may occur via
complement deposition in the kidney during intravascular
hemolysis and in Hpx deficient condition in SCD mice (157).
Patients with SCD with higher plasma levels of free heme also
have greater frequency of VOC and acute chest syndrome (158).
Accumulation of free heme in plasma is not only cytotoxic, but
also mediates generation of free radicals via the Fenton pathway
(159–161).

Detection of Heme and Hemoglobin
Assay of cell-free heme and Hb may be an important tool for
diagnosis in disease conditions characterized by hemolysis (152,
162). Accurate quantification of heme species may result in early
therapeutic intervention before irreversible damage to organs
occurs. Currently, most commercially available assays measure
total heme (free heme and heme bound to proteins) and are not
specific for measuring cell-free heme or Hb. There is a possibility
of overestimating or underestimating these heme species.
Moreover, free heme is likely a more potent mediator of organ
injury and signal transductions, its accurate quantification as a
biomarker in disease conditions may be vital. Researchers have
developed detection methods using the spectral deconvolution
method, antibody capture ELISA or western blotting, reversed‐
high‐performance liquid chromatography, and fluorescence-
based assays to measure Hb and CFH (103, 152, 162–165).
Although these are not commercially available currently, they
present an opportunity to quantify different heme species in
relation to pathogenesis and therapeutic efficacy in
hemolytic conditions.

Cell-Free Heme in Inflammation
Free heme can induce inflammation via direct activation of RBCs
(166, 167), macrophages (168–170), neutrophils (171), and
endothelial cells (139, 172–174) to secret proinflammatory
cytokines including toll-like receptors (TLRs), tumor necrosis
factor (TNF), interleukin-6 (IL-6), placenta growth factor
(PlGF), interleukin 1 beta (IL-1b) (105, 139, 169, 175, 176) and
release of erythroid damage-associated molecular patterns
(eDAMPs) that potentiates inflammation (177, 178). Heme has
Frontiers in Immunology | www.frontiersin.org 5
been shown to induce production of IL-1b by activated
monocytes/macrophages, endothelial and smooth muscle cells
through a nucleotide-binding domain and leucine-rich repeat-
containing protein 3 (NLRP3) inflammasome dependent
mechanism (139, 169, 172). High mobility group box 1
(HMGB1), a nuclear protein released during systemic
inflammatory response, has also been shown to mediate ROS-
dependent activation of endothelial cells to secrete IL-1b via
NLRP3 activation (179, 180). Elevated circulating HMGB1 is
associated with inflammation in hemolytic disorders including
SCD and sepsis (181–184), suggesting a shared inflammatory
signaling pathway through TLR4/Bruton tyrosine kinase for both
heme and HMGB1 in SCD (185, 186). Heme can also directly
affect the vasculature in mice, as recently shown with loss of
heme exporter, feline leukemia virus subgroup C receptor 1a
(FLVCR1a) in endothelial cells resulted in disruption of
microvessel architecture (187).

Cell Adhesion Pathways
Cell-free heme also contributes to inflammation by activating cell
adhesion pathways. This includes activation of adhesion
molecules such as vascular cell adhesion molecule-1 (VCAM-
1), intercellular adhesion molecule 1 (ICAM-1), selectins (L, P
and E), all involved in mediating cell adhesion to the vascular
endothelium via activation of integrin aMb2 on neutrophils
(188–192). Besides, several studies in the last decade have
associated hemolysis and selectins expression with RBCs
adhesion to endothelial cells (193–195), acute lung injury
(196), vaso occlusion (197), pain (198, 199), liver injury (200–
202), and kidney injury in SCD (83).

P-selectin is associated with platelet-neutrophil aggregate
formation that contributes to inflammation, pulmonary
dysfunction and lung vaso occlusion in SCD (200, 203). In
addition, a recent study by Merle and colleagues, showed a
direct link between heme-induced TLR4 and complement
system activation on liver endothelium mediated by P-selectin,
with genetic or pharmacological blockade of P-selectin or
complement system ameliorating liver injury in mice (202).
This expansive body of works culminated in clinical trial and
eventual FDA approval of P-selectin blockade therapy for the
prevention of pain crises in SCD (198, 199). Furthermore,
persistent inducibility of endothelium-derived adhesion
molecules by proinflammatory cytokines such as TNF-a and
IL-6 coupled with chronic hemolysis in SCD patients ultimately
results in VOC, organ dysfunction and early mortality (101, 204–
208). There are several ongoing clinical trials in SCD looking at
mediating the effect of inflammation-induced organ damage via
some of the mechanisms discussed above.

Hemolysis, Inflammation, and microRNAs
Recent evidence supports a potential role of microRNAs
(miRNAs) in complications of SCD (209, 210) and malaria
(211, 212), both pathological conditions with hemolysis,
suggesting a role for heme modulation of miRNAs. miRNAs
are noncoding RNAs of 22 nucleotides in length that regulate the
expression of their target genes post-transcriptionally (213).
miRNAs are involved in important biological processes
January 2021 | Volume 11 | Article 561917
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including apoptosis (214), hematopoietic differentiation (215)
and cell proliferation (216). miRNAs are important regulatory
molecules and activation of immune response during initiation
and progression of many diseases inflammatory diseases such as
cancer, Crohn’s disease, rheumatoid arthritis, systemic lupus
erythematosus, and asthma, via expression of proinflammatory
cytokines including TNF-a and TLRs (217–222). There are
studies linking heme and miRNAs processing in mammalian
cells. Heme binds directly to the RNA-binding protein DiGeorge
critical region-8 (DGCR8), which is essential for the first miRNA
processing step (213, 223–225). Hemolysis elevates the
expression of several miRNAs found in RBCs including miR-
16, miR-92a, miR-451, and miR-486 (226, 227). There is
upregulation of some miRNAs including miR-16, miR-451 and
miR-144 in reticulocytes from SCD patients (228, 229).
Conversely, elevated levels of these miRNAs also correlated
with severe anemia, increased sensitivity to oxidative stress,
downregulation of NRF2 and decreased intracellular
glutathione levels (230, 231). On the other hand, members of
the miR-154, the miR-329 and miR-376 family, involved in TGF-
b signaling pathway are downregulated in platelets of SCD
patients (210). Although few numbers of studies have reported
the involvement of miRNAs in complications of SCD (232),
however, there is a gap in knowledge of how stress or heme
regulation of these miRNAs and exposure of immune cells to
proinflammatory cytokines that are elevated in SCDmight play a
role in organ dysfunction. Targeting these miRNAs in SCD
might offer novel therapeutic strategy in preventing hemolysis-
induced inflammation and end organ damage, especially in the
heart, lung, liver, and kidney where miRNAs are abundant (222,
233–240).
HEMOLYSIS AND ORGAN DAMAGE IN
SICKLE CELL DISEASE

SCD patients on average live longer today than 50 years ago. This
is due to progress in understanding the mechanisms and risk
factors of several complications of the disease, associated clinical
findings and mouse models, approval of new treatment
therapies, multi-disciplinary approach to care, penicillin
prophylaxis and high-tech diagnostic tools (241). However,
this reduction in childhood mortality gives rise to an older
population of patients that develop age-related chronic organ
damage, driven in part by hemolysis (94). Hemolysis-induced
extensive and sometimes irreversible organ damage continues to
be a major source of morbidity and mortality in SCD. Even
transplanted organs are also at risk of failure in SCD patients due
to hemolysis and sickling (242). Therefore, there is a need for
research to understand the fundamental mechanisms involved in
heme-mediated organ damage in SCD patients. Over the years,
several studies in the general population as well as in SCD
suggest that hemolysis causes injury to the kidney (243–245),
lung (246), heart, and liver. We have summarized some of the
impacts of hemolysis on different organs in Table 1.
Frontiers in Immunology | www.frontiersin.org 6
PLACENTA GROWTH FACTOR

In addition to its role as a DAMP, heme promotes the expression
and secretion of placenta growth factor (PlGF), a pleiotropic
growth factor already known to influence multiple pathways
contributing to the pathophysiology of SCD (167, 176, 280).
PlGF is a member of the Vascular Endothelial Growth Factor
(VEGF) family. It was originally cloned from a human placenta
cDNA library in 1991 (281), hence the name, but since then it
has been detected in a wide variety of tissues (282). PlGF has a
partial sequence similarity to VEGF-A but the two molecules
share a remarkable topological identity (283). There are four
human isoforms (PlGF 1–4), which are generated by alternative
splicing and are slightly different in size. PlGF-1 (131 aa) and
PlGF-2 (152 aa) are the predominant isoforms in humans. On
the contrary, mice carry a single isoform, PlGF-2 (140 aa).

PlGF exists as a homodimer or as a heterodimer with VEGF.
PlGF is a ligand for the transmembrane and soluble form of the
vascular endothelial growth factor receptor 1 (VEGFR-1, Flt-1)
(284), which can also bind VEGF. Distinct from VEGF, PlGF
does not bind vascular endothelial growth factor receptor 2
(VEGFR-2, Flk-1) but it can affect VEGFR-2 signaling in an
indirect manner (285–287). PlGF-2 can also bind heparin and
the transmembrane neuropilin receptors 1 and 2 (NRP1 and
NRP2) (288, 289). In addition to its role as a receptor binding
competitor of VEGF (284), PlGF can exert its own biological
effect upon binding to VEGFR-1. Depending on the cell type,
PlGF binding upregulates VEGF, fibroblast growth factor 2
(FGF2), platelet derived growth factor beta (PDGFB) and
matrix metalloproteases (MMPs) (290, 291). Furthermore,
PlGF receptor binding is shown to activate an intermolecular
crosstalk regulator between VEGFR-1 and VEGFR-2, often
resulting in enhancing VEGF/VEGFR-2 signaling (287). It is
important to emphasize here that PlGF or VEGF binding to
FLT1 results in discernible receptor phosphorylation patterns
and induction of distinct signaling pathways (287, 292, 293).
PlGF expression is induced by hypoxia, probably in a cell specific
manner, but the exact mechanism remains elusive in the absence
of hypoxia responsive elements (HRE) at the gene’s promoter
region (294, 295). So far, the association of only a few
transcription factors has been verified for the PlGF promoter:
metal transcription factor 1 (MTF-1) (295), NF-kB (296),
forkhead box D1 (FoxD) (297), erythroid Kruppel-like factor
(EKLF) (167), nuclear factor erythroid 2 like 2 (NRF2) (176),
glial cell missing 1 (GCM1) (298). Posttrascriptional regulation
of PlGF has also been reported through the regulation of the
protein kinase C (PKC), p38 mitogen activated protein kinases
(p38 MAPK), c-jun N-terminal kinase (JNK) and Ras-dependent
extracellular signal-regulated kinase 1/2 (ERK1/2) signaling
pathways (299, 300).

Surprisingly, PlGF seems to have a redundant role under
normal conditions (285) but becomes very important in disease
situations, where fluctuations of its levels cause a variety of issues
in multiple biological processes. Because of that reason, PlGF-
based therapeutic approaches have been proposed as disease
specific with minimal impact for healthy cells (301). The most
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well established role of PlGF is in angiogenesis and more
specifically in neo-angiogenesis in pathological conditions such
as ischemia or cancer (285, 302, 303). PlGF’s pleiotropic nature
in evident in its angiogenic role where it exerts a paracrine or
autocrine effect on endothelial cells, smooth-muscle cells,
fibroblasts, bone marrow progenitor cells and monocytes, to
orchestrate vessel growth and maturation (304). The description
of the full spectrum of PlGF’s biological role is beyond the scope
of this review but to mention a few, PlGF plays a role in
inflammatory response (305, 306), promotes bone repair (307),
sustains the proangiogenic M2 phenotype of tumor associated
macrophages (308), affects dendritic cell differentiation and
maturation (309), supports the generation of an inflammatory
status driving adaptive cardiac remodeling (310). To summarize,
all the evidence to date supports a role for PlGF in pathogenic
angiogenesis and inflammation well outside the realm of
pregnancy. Through mitogen and migratory effects on
endothelial cells as well as macrophage activation and
chemoattraction, PlGF emerges as a driver and marker of a
plethora of seemingly diverse pathologies, especially
angiogenesis and inflammation.
HEMOLYSIS, PLGF, AND
COMPLICATIONS OF SICKLE CELL
DISEASE

One of the least appreciated roles of PlGF is the one that it has in
hematopoiesis (311, 312) and in hemoglobinopathies (313)
(Figure 2). Plasma PlGF is elevated in SCD patients and the
increase correlates with the severity of hemolysis, endothelin 1
(ET-1) expression, the occurrence of pulmonary hypertension
(167, 280, 314, 315) and VOC (316, 317).
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Pulmonary Hypertension
PH is a serious complication in sickle cell patients, which is
associated with high mortality (318). A variety of biological
pathways and disease related pathologies contribute to the
development of PH and many of them involve free heme and
upregulation of PlGF. Along with PlGF, ET-1, a potent
vasoconstrictor, is significantly higher in the blood of sickle
patients (167, 316, 319, 320) suggesting a mechanistic link
between the two factors. In support of this connection, the
overexpression of PlGF in healthy mice using lentiviral gene
transfer results in increased ET-1, increased right ventricle
pressure and right ventricle hypertrophy as early as 8 weeks
after PlGF gene transfer (280). In vitro PlGF stimulation of
cultured human pulmonary microvascular endothelial cells
(HPMVEC) revealed that ET-1 induction was mediated by PI-
3 Kinase, NADPH-oxidase, and HIF-1a (314). Interestingly,
HIF-1a stimulation of the ET-1 promoter is hypoxia
independent and occurs upon the direct binding of HIF-1a on
the HRE elements of the ET-1 promoter. In a similar manner,
PlGF upregulates endothelin-B receptor (ET-BR) in monocytes,
priming them to be over-stimulated by ET-1 and produce higher
levels of chemokines MCP-1 and IL-8 (314). Both MCP-1 and
IL-8 are elevated in SCD patients (321) supporting the PlGF-ET-
1 synergy as another contributing factor to the development of
PH in SCD.

Regulation of miRNAs
On a post-transcriptional level, PlGF attenuates miR-648 and
miR-454, which recognize and bind the 3’ UTR of ET-1 mRNA.
The association of low miR-648/miR-454 with high ET-1 and
PlGF levels is supported in both in vivo and in vitro studies (322,
323). Furthermore, PlGF attenuates miR-199-5p, which binds
the 3’UTR of HIF-1a mRNA, creating another level of control
over ET-1 expression (324). The molecular repression of miR-
TABLE 1 | Summary of current literature supporting a damaging role of hemolysis in different organs.

Organ Impact of heme damage References Disease/model

Kidney Proximal tubule dysfunction and impaired vitamin D metabolism (247, 248) Cell culture/mice
Proteinuria, acute and chronic injury, and iron deposition (244, 245, 249–253) Human
Acute renal failure, oxidative stress, inflammation, and toxicity (254–257) Human/mice
Acute renal vasoconstriction via TLR4 signaling (258, 259) Cell culture/Mice
Apoptosis in proximal tubular epithelial cells via caspase-dependent/-independent pathways (260, 261) Cell culture
Endothelial apoptosis and vaso occlusion (262) Human/cell culture/mice

Lung Acute chest syndrome via TLR4, NRF2 and p-selectin signaling (133, 196, 263) Cell culture/mice
Oxidative injury and progression of pulmonary hypertension (PH) (262) Cell culture/mice
Angioproliferative PH via accelerated purine metabolism (264) Rats
Acute lung injury via increased alveolar capillary barrier dysfunction (265, 266) Human/cell culture/mice
Oxidation and mitochondrial dysfunction in epithelial lung cells (36) Cell culture

Liver Increased vascular ICAM-1 expression on blood vessels and vaso occlusion (267) Cell culture/mice
Advanced fibrosis and iron overload (268)
Oxidative stress, neutrophil infiltration, and extravasation through NF-kB activation (269)

Heart Impaired nitric oxide bioavailability and pulmonary hypertension (270, 271) Mice
Smooth muscle proliferation via NADPH oxidase activity, atherosclerosis, and hypertension (101, 272) Cell culture
Increased risk of cardiovascular disease (273, 274) Human
Endothelial activation and altered cardiac function (275, 276) Mice
Mitochondria dysfunction (277) Human/cell line
Ischemic injury (278) Human/cell culture/mice
Contractile dysfunction due to altered contractile proteins (279) Human primary cardiomyocytes
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199-5p by PlGF is mediated by the upregulation of the activating
transcription factor 3 (ATF3) which upon binding causes
deacetylation and chromatin condensation at the miR-199-5p
locus (325). Similar to miR-648, the association of low miR-199-
5p levels with high PlGF and ET-1 levels is supported by in vivo
and in vitro studies (324).

Plasminogen Activator Inhibitor 1
PlGF is also linked to the increase in PAI-1 levels in the plasma
and lungs of sickle cell patients and humanized sickle mice
respectively (326). PAI-1 is increased during steady state SCD
but its expression is exacerbated during VOC. Elevation of PAI-1
levels is associated with decreased fibrinolytic capacity (327) and
is believed to contribute to the SCD prothrombotic state and the
development of PH (328). In vitro PlGF stimulation induced
PAI-1 expression in pulmonary microvascular endothelial cells
and monocytes through the activation of c-jun N-terminal kinase
(JNK), hypoxia inducible factor 1a (HIF-1a) and nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (326). In
addition, PlGF expression affects the stability of PAI-1 mRNA
by downregulating microRNAs miR-454, miR-301a, and miR-
30c which recognize and bind the PAI-1 3’-UTR. PlGF
regulation of miR-454 and miR-301 is mediated by PPARa and
HIF-1a (323). All of these microRNAs are detected in
significantly lower levels in SCD patients compared to healthy
controls (323, 329). In vivo experiments using PlGF null and SS
sickle mice as well as adenoviral overexpression of PlGF, have
Frontiers in Immunology | www.frontiersin.org 8
confirmed that PlGF plays a significant role in PAI-1
regulation (326).

Inflammation and Airway Hyper-Reactivity
Airway hyper-reactivity is a common complication in SCD,
especially in younger patients (330), and correlates with
biomarkers of hemolysis (331). Patients show elevated levels of
circulating leukotrienes (332) and their monocytes express
higher levels of 5-lipoxygenase (5-LO) and 5-lipoxygenase
activating protein (FLAP), both involved in leukotriene
synthesis (333). Consistent to its proinflammatory nature,
PlGF induces leukotriene production which in turn increases
inflammation and airway hyper-reactivity, both key features of
SCD. As in the case of PAI-1, the induction is mediated by HIF-
1a and NADPH oxidase (333). Further studies have confirmed
PlGF as an important regulator of leukotriene production and
airway hyperactivity in SCD and asthma (332).

Vaso-Occlusion
Activated leukocytes in sickle cell patients are considered a
significant promoting factor for VOC (334). Activated
mononuclear cells from SCD patients express high levels of the
cytochemokines VEGF, IL-1b, monocyte chemotactic protein 1
(MCP-1), IL-8 and macrophage inflammatory protein-1 beta
(MIP-1b). In vitro studies have shown that monocytes from
healthy individuals can be activated by PlGF to increase the
expression of proinflammatory cytokines and chemokines such
FIGURE 2 | In SCD, repeating sickling cycles result in increased hemolysis. Hemolysis byproducts such as heme induce PlGF expression in multiple cell types (for
simplicity purposes only erythroblasts are depicted). Secreted PlGF is a ligand for FLT-1 receptor and triggers the expression of ET-1, PAI-1, leukotrienes and
cytochemokines, affecting the physiology of multiple organs. AH, Airway hyperreactivity; PH, Pulmonary hypertension; FLT1/VEGFR1, Fms related receptor tyrosine
kinase 1; PlGF, placenta growth factor; ET-1, endothelin 1; PAI-1/Serpine1, plasminogen activator inhibitor 1.
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as TNF-a, IL-1b, MCP-1, IL-8, and MIP-1b (316, 335). This
activation is achieved by the PlGF-VEGFR-1 interaction and
involves the PI-3 kinase/AKT and ERK-1/2 signaling pathways
(335). Because VOC in SCD is promoted by inflammation and
leukocyte adhesion stimulated by cytokines (197, 336, 337),
antibody neutralization of PlGF was tried successfully for
reduction of inflammation and vaso-occlusive complications in
murine SCD models (317). Regulation of PlGF levels could also
be achieved by manipulating factors that control its
transcriptional or translational expression. Per instance,
pharmacological upregulation of miR-214 which is known to
bind PlGF 3’-UTR, could be engaged to reduce PlGF levels (338).

Renal Dysfunction
PlGF is significantly upregulated in the serum of patients with
chronic kidney disease and decreased renal function, supporting
a potential mechanistic link between PlGF and kidney function
(339, 340). Sickle cell nephropathy (SCN) is an complex
phenotype which encompasses almost every physiological
process in the kidney, leading to complications that may range
from common and relatively mild to rare and life-limiting (243).
In SCD patients markers of renal dysfunction are associated with
elevated ET-1 serum levels (341) and studies in sickle cell mice
have shown that ET-1 can cause renal injury, likely mediated by
ROS (342). Although it has not been shown experimentally,
sickle cell-related elevated PlGF levels could possibly contribute
to higher ET-1 levels (167, 314) driving renal dysfunction.
However, administration of exogenous heme in control and
sickle cell mice has been shown to result in the upregulation of
PlGF in the murine kidneys in agreement with heme uptake from
renal cells and HMOX-1induction (343). In addition to ET-1,
PAI-1 has also been shown to play a role in nephropathies (344)
but its role in SCD or its potential regulation by PlGF
remains unexplored.

Cardiac Dysfunction
Cardiac complications are common in SCD patients and along
with the pulmonary complications raise their morbidity and
mortality risk (94, 345). There has been accumulating evidence
that PlGF dysregulation is present in multiple heart conditions
although it is often unclear if it is only a disease biomarker or it
actively promotes disease pathogenesis. In patients with chronic
kidney disease, PlGF levels are associated with higher incidence
of cardiovascular events and mortality (340). In the same disease,
PlGF is an independent risk predictor for left ventricular diastolic
dysfunction (346). In human atherosclerotic plaques, the
expression of PlGF is associated with plaque destabilization
and disease manifestation (347). The pro-atherosclerotic role
of PlGF is corroborated in rabbits where PlGF adenoviral
expression promotes atherogenic intimal thickening and
macrophage accumulation in the carotid artery (348). PlGF is
also elevated in the plasma of patients with acute coronary
syndromes where it can be used as a risk predicting biomarker
(349). PlGF promotes cardiac hypertrophy via endothelial cell
release of NO which induces cardiomyocyte growth (350) and by
inducing the secretion of paracrine factors (IL-6, IL-1b, Cxcl1)
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from endothelia and fibroblasts that promote cardiac adaptation
and hypertrophy (351–353). In the case of ischemic
cardiomyopathy, PlGF has been reported both as promoting
the disease (354) and as a potential therapeutic (355). The
apparent controversy could be due to differences between a
local and acute administration of an angiogenic factor (355)
compared to a more systemic and chronic upregulation (354).
Our research has shown that PlGF is elevated in the hearts of
sickle mice and it is further induced after administering
exogenous heme (343). Surprisingly, the level of PlGF
induction is comparable to that of the liver which is
considered the major heme detoxifying organ (343). An
interesting finding of this study is that mouse hearts have high
levels of HMOX-1, which are further increased by heme
induction, and that they show no heme accumulation unless
NRF2 is depleted. These data suggest that cardiac tissue has the
abil ity to detoxify heme via the NRF2 antioxidant
response pathway.
HEMOLYSIS, INTERLEUKIN-6, AND
CARDIOVASCULAR DYSFUNCTION

IL-6 is a ubiquitous and pleiotropic proinflammatory cytokine
produced by many cells including macrophages (356, 357),
neutrophils (358, 359), endothelial and smooth muscle cells
(360, 361), cardiomyocytes (362) and fibroblasts (363), when
stimulated by ligands for toll-like receptors or other pattern
recognition receptors. IL-6 is a glycoprotein composed of 184
amino acids and of 26 kDa in molecular weight (364). Currently,
there are ten cytokines belonging to the IL-6 family; IL-6, IL-11,
ciliary neurotrophic factor (CNTF), leukemia inhibitory factor
(LIF), oncostatin M (OSM), cardiotropin-1 (CT-1),
cardiotrophin-like cytokine (CLC), IL-27, neuropoietin (NP),
and IL-31 (365). IL-6 regulates many biological functions
including hematopoiesis (366), oncogenesis (367) and
differentiation of B cells (368), induction of acute phase
proteins and immune regulation (369). Additionally, IL-6 plays
a vital role in chronic inflammatory processes in various cells and
disease conditions (364). IL-6 signaling is through two pathways;
classic/cis-mediated signaling via membrane-bound IL-6
receptor (mIL-6R) or trans-mediated signaling via the soluble
form of IL-6R (sIL-6R) (364, 369). Classic/cis-signaling occurs in
cells that express IL-6R such as hepatocytes, neutrophils and
monocytes (365, 369). Conversely, trans-mediated signaling
occurs after secretion of sIL-6R by RNA alternative splicing,
ectodomain shedding or proteolytic cleavage of mIL-6R (370),
which in turn stimulate cells (365, 369). Once IL-6 binds to mIL-
6R or sIL-6R, the cytokine forms a complex with the ubiquitously
expressed membrane protein gp130, a shared signal-transducing
receptor of all IL-6 type cytokines (370). Dimerization of the
receptor complex activates Janus kinases (JAKs) resulting in
phosphorylation of the tyrosine residues in the cytoplasmic
domain of gp130 (364, 371). Activation of JAKs triggers the
extracellular-signal-regulated kinase (ERK), mitogen-activated
protein kinase (MAPK) and signal transducer and activator of
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transcription (STAT) signaling pathways (370, 371). However,
IL-6 role in pathophysiology of chronic inflammation and
diseases is driven via IL-6 trans-signaling because classic/cis-
signaling via the mIL-6R is limited to few cells that express IL-6R
(372). Blockade of IL-6 trans-signaling is effective in attenuating
proinflammatory activities of IL-6 in several disease
conditions (365).

Several studies in human and rodents found hemolysis and
elevated IL-6 occurring concurrently. Hemolysis and elevated
IL-6 are associated with disease severity in malaria (373, 374),
sepsis (375) and pre-eclampsia (376), with cardiac dysfunction
as an additional comorbidity in these diseases. Besides, elevated
cardiac IL-6 is also associated with cardiac hypertrophy and
fibrosis in the general population (362, 377) and in rodents
(378, 379). In malaria, elevated IL-6 is found in patients with
severe Plasmodium falciparum/vivax malaria and associated
with development of cardiac complications (373, 374). Sepsis
patients with elevated IL-6 are at a higher risk of developing
cardiac dysfunction which may be due to direct negative
inotropic effect of IL-6 mediated via altered production of
myocardial nitric oxide (375), altered calcium homeostasis
(380, 381) and impaired b-adrenergic signaling (382–384).
Elevated IL-6 in pre-eclampsia patients result in reduced anti-
inflammatory protection in the maternal vascular system (385)
and stimulation of vasoactive substances including angiotensin
II type 1 receptor and endothelin-1 (386). Although, elevated
plasma IL-6 have been reported in human and mice with SCD
(168, 387, 388), and hemolysis is a major comorbidity of SCD
(94), however, there has been no direct link between these two
processes. Conversely, left ventricular hypertrophy (LVH) is
found in over 60% of children and 37% in adults with SCD (389,
390), with cardiopulmonary complications accounting for
about 26% of deaths in adults with SCD (391). In this current
issue and for the first time, our group investigated the
expression of plasma and cardiac IL-6 and its inducibility by
heme in Townes sickle cell (SS) mouse model (392). We
observed significantly elevated cardiac IL-6 and direct heme
induction of circulating and cardiac IL-6 transcripts and protein
in SS mice compared to controls. We showed that this heme-
induced IL-6 is NRF2-independent in the heart. Our results of
heme-induced IL-6 is in agreement with elevated levels of IL-6
reported in cardiac cells treated with Hpx and in heart isolated
from Hpx deficient mice (393). Because our data showed
upregulation of cardiac hypertrophy genes following heme
treatment in SS mice, there is a possibility that heme is
inducing IL-6 in the heart and prolonged activation and
exposure to IL-6 could contribute to LVH in SCD patients.
We are currently investigating potential mechanism(s) and
specific cell-types secreting IL-6 in the heart of SS mice.
There are several pathways through which heme may induce
IL-6 expression. It is possible that parallel heme-induced
pathways are activating IL-6 indirectly and with continuous
hemolysis forming a feedback loop. With elevated cardiac PlGF
at baseline in SCD mice and further inducibility by heme (343),
cardiac hypertrophy may develop via IL-6 signaling (350).
Therefore, it can be envisaged that prolonged hemolysis
induced PlGF and IL-6 in SCD feeds the vicious cycle of
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inflammation via an autocrine feedback system resulting in
reactivation of genetic cardiac hypertrophy program.
THERAPEUTIC INTERVENTION
IN HEMOLYSIS AND INFLAMMATION

The role of hemolysis and its attendant oxidant stress and
inflammatory activation in SCD has been supported by the
success of therapies that normalize these pathways. Hydroxyurea
has pleiotropic effects that reduce hemolysis and offset its
pathobiological consequences. The approval of hydroxyurea by
the FDA in 1998 provided a watershed moment in the history of
SCD (394, 395). Hydroxyurea treatment yielded an improved
quality of life for SCD patients attributable to induction of fetal
hemoglobin, slowing of chronic damage to several organs,
including the brain (394–400). More than twenty years later,
three new drugs; L-glutamine (Endari; reduction of pain-related
hospital visit and length of stay) and crizanlizumab-tmca
(Adakveo; reduction of frequency of VOC) and voxelotor
(Oxbryta; inhibition of deoxygenated sickle hemoglobin
polymerization), have been approved by the FDA for treatment
of SCD (401). L-glutamine is thought to reverse the redox
imbalance imposed by hemolysis and other sources of oxidative
stress. Crizanlizumab blocks the inflammation-activated P-
selection adhesive pathway. Voxelotor inhibits polymerization of
sickle hemoglobin, with the most apparent effect of reduced
hemolysis. Curative intent therapies have also shown evidence of
reduced hemolysis. Although permanent cure afforded to patients
through bonemarrow transplant and gene therapy would be ideal,
it would be quite expensive and the majority of patients with SCD
live in areas lackingboth economic andhuman resources needed to
make these curative therapies broadly accessible (402).
Importantly, the global majority of SCD patients live in resource-
poor countries, with minimal access to these newer therapies and
limited capacity for hematological monitoring requirements and
other diagnostic equipment (1, 403).High childhoodmortality rate
ranging from 50–90% still prevail in these areas and acceptance of
hydroxyurea as therapy is very low compared to developed
countries (403–405).

Encouragingly, recent studies show the efficacy, safety and
feasibility of using hydroxyurea treatment in children and adults
with sickle cell anemia living in sub-Saharan Africa (406–408).

Clinical trials areunderway to assess thepotential of hemopexin
intravenous infusion in the treatment of SCD (Clinicaltrials.gov
identifier NCT04285827). In the Townes SCD mouse model,
infusion of hemopexin reduced microvascular occlusion induced
by hemoglobin infusion, hypoxia-reoxygenation, or
lipopolysaccharide (83). Hemopexin mitigated induction of
ICAM-1 and VCAM-1 via inhibition of NF-kB activation (83).
In another study, treatment with Hpx attenuated free heme
activation of complement pathways and kidney injury caused by
complement deposition and inflammation in mice during
hemolysis (157). Hemopexin also significantly decreased plasma
heme concentration, pulmonary neutrophil extracellular trap
(NET) formation, plasma DNA, neutrophil activation and NET-
associated hypothermia in SCD mice (171).
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CONCLUSION

Hemolysis is a feature of many diseases, and in most cases
occurring with acute and chronic inflammation that contributes
to organ injury. Products of hemolysis activate several
inflammatory pathways in many cell types, including cells in
the innate immune system. Hemolysis appears to serve as a
priming stimulus that combines with TLR4 signaling to a cascade
of production of inflammatory cytokines which activate
downstream pathophysiology. Therapeutic intervention targeting
the upstream effects of hemolysis has potential to mitigate
downstream innate immune system response and inflammation
in treating patients with intravascular hemolytic disease.
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