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Background: It is well known that the intervertebral disc is aggravated by a significant increase in the 
number of senescent cells, and oxidative stress (OS) is related to the deterioration of this tissue. Transcription 
factor EB (TFEB) can protect cells from OS. Accordingly, we investigated whether TFEB can prevent OS in 
human nucleus pulposus (NP) cells. 
Methods: First, TFEB expression was investigated in human NP tissue samples with different degrees 
of degeneration. NP cells were treated with different concentrations of hydrogen peroxide (H2O2). The 
expression of collagen 2, aggrecan, and P65 was detected by quantitative real-time polymerase chain reaction 
(PCR) and Western blotting. We overexpressed and knocked out the TFEB gene to detect the expression of 
collagen 2, aggrecan, and P65. 
Results: We found that the expression of TFEB decreased stepwise as the degree of intervertebral disc 
degeneration (IDD) increased. When the NP cells were treated with H2O2, the expression of TFEB, 
collagen 2, and aggrecan decreased gradually as H2O2 concentration increased. In addition, the expression 
of collagen2 and aggrecan increased following TFEB overexpression. However, nuclear factor-kappa B  
(NF-κB) decreased in NP cells after TFEB overexpression. We also found that the previously low cell 
viability increased and the high level of apoptosis decreased. 
Conclusions: This study suggests that OS is associated with the development of IDD. TFEB mediates 
OS-induced IDD via the NF-κB signaling pathway. The TFEB gene can potentially be used as a diagnostic 
biomarker and therapeutic target.
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Introduction

Low back pain (LBP) affects approximately 84% of the 
population worldwide, and is reported to disable as much 
as 11–12% of the population (1). The cost and health 
care associated with LBP can become burdensome (2). 

The burden of LBP is regarded as a difficult public health 
problem. It is widely accepted that the cause of LBP is 
intervertebral disc degeneration (IDD). However, its 
underlying mechanism is not yet completely clear.

Oxidative stress (OS) is the imbalance between the 
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oxidation system and the antioxidant system in the body, 
which leads to excessive or reduced free radical production, 
and ultimately, to damage in the body (3,4). Oxygen can 
form free radicals in the process of normal metabolism. 
Generally, these free radicals are designated reactive oxygen 
species (ROS) (5). ROS produced in the process of OS 
directly cause the lipid peroxidation of biomembranes, 
destroy nucleic acids and chromosomes, denature some 
proteins or enzymes in cells, and ultimately lead to 
apoptosis (6). An increasing number of studies have shown 
that OS, as a pathological mechanism, can induce many 
diseases, such as degenerative disc disease, arteriosclerosis, 
and diabetes (7). Chen et al. found that ginsenoside Rg3 
(Rg3) inhibits OS-induced disc degeneration by inhibiting 
the NF-κB signaling pathway (8).

Transcription factor EB (TFEB) is a member of the 
leucine zipper family (9). It regulates lysosomal production 
and autophagy by increasing coordinated lysosomal 
expression (10). Several studies have shown that TFEB-
activated autophagy is a protective process under OS in 
neurodegeneration (11,12). Further, it has been proven that 
enhancing autophagy by TFEB promotes the formation of 
the extracellular matrix (ECM) (13). However, the role of 
TFEB in IDD remains very unclear. 

Previous study focus on the inflammation, unbalance 
of mechanical force and nutrition deficiency. Only a small 
number of studies investigate the effect of oxidative stress 
in IDD and the mechanism of oxidative stress promotes 
IDD is still unclear. It is reported TFEB protects nucleus 
pulposus cells against apoptosis and promotes ECM 
synthesis. In this study, we investigate the role of TFEB in 
the oxidative stress-induced intervertebral disc degeneration 
and show TFEB mediates the NF-κB signaling pathway to 
protect nucleus pulposus cells from oxidative stress damage.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-3756).

Methods

Clinical study population/human specimens

Intervertebral disc tissues were obtained from patients 
undergoing posterior lumbar decompression and fusion 
surgery. All procedures performed in this study involving 
human participants were in accordance with the Declaration 
of Helsinki (as revised in 2013). Patients or relatives were 
informed of the study, and patient or guardian consent 

was obtained preoperatively. This study was approved by 
the Ethics Committee of Shanghai General Hospital of 
Nanjing Medical University (ID: 2018KY038). Magnetic 
resonance imaging (MRI) was performed on patients before 
the surgery, and the Pfirrmann scale was used to score the 
degeneration of the intervertebral disc based on the imaging 
results.

Real-time PCR

Following the manufacturer’s instructions, we extracted 
ribonucleic acid (RNA) from the nucleus pulposus (NP) 
cells with TRIzol (Invitrogen, USA). Total RNA was 
measured by an ultra-violet spectrophotometer, and 
complementary deoxyribonucleic acid (cDNA) was 
synthesized by real time (RT) Mix (Takara, Japan). Real-
time polymerase chain reaction (PCR) was performed using 
a 2-step real-time system (Takara), and the relative amount 
of transcripts was calculated by the cycle threshold (CT) 
method.

Western blotting

After sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis, the prepared protein samples were 
transferred to polyvinylidene fluoride membranes 
(Millipore, USA), and then sealed with a blocking 
solution containing 5% bull serum albumin (BSA) and 
kept  at room temperature for 2 h. The membranes were 
incubated with a rabbit anti-human primary antibody 
(1:1,000) overnight in a refrigerator at 4 ℃. The next day, 
membranes were washed 3 times for 10 min each time 
and then incubated with horseradish peroxidase (HRP) 
labeled anti-rabbit immunoglobulin G (IgG) secondary 
antibody at room temperature for 2 h. After being washed 
3 times, the membranes were visualized by western blotting 
substrate (Bio-Rad, USA). Glyceraldehyde-3-phosphate 
dehydrogenase was used as the control protein.

Annexin V-APC/7-AAD double-stain

Apoptosis was detected by an annexin V-APC/7-AAD  
double-stain procedure (BD Biosciences, USA). NP cells 
were digested by 0.25% trypsin and then centrifuged at 
1,000 r/min for 5 min. The supernatant was discarded, and 
the precipitate was washed with phosphate saline buffer 
twice. The cells were resuspended in a suitable amount of 
annexin V binding buffer. After annexin V-APC and 7-AAD 
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were added, the cells were incubated for 15 min at room 
temperature away from light. The cells were analyzed by 
flow cytometry.

Cell Counting Kit-8 (CCK-8)

A CCK-8 assay was used to detect NP cell viability. The 
NP cells were cultured in 96-well plates, and 10 µL CCK-8 
reagent (Dojindo, Japan) was added to each well. The cells 
were then incubated for 2 h at 37 ℃. The absorbance at 450 
nm was measured by a microplate reader.

Immunohistochemical staining

Decalcified intervertebral disc sections were boiled in 
10 mM of sodium citrate (pH 6.0) for 5 min to retrieve 
the antigens. Sections were quenched with 3% (volume 
per volume) hydrogen peroxide for 15 min to reduce 
endogenous peroxidase activity and blocked with 3% 
(weight per volume) normal goat serum in tris-buffered 
saline. Next, the sections were incubated with a rabbit 
anti-human primary antibody or a goat IgG as a control 
at 4 ℃ overnight and biotinylated secondary antibodies 
sequentially, and a peroxidase-labeled streptavidin-biotin 
staining technique (Invitrogen, USA) was then used. 
The nuclei were counterstained with hemalum (FARCO 
Chemical Supplies, Hong Kong). The slides were visualized 
with a microscope (Zeiss, Germany).

Overexpression and knockouts

Second-generation NP cells were selected for the 
overexpression experiments. The NP cells were inoculated 
into 6-well plates, and lentivirus transfection was performed 
when the fusion rate was 50%. The multiplicity of infection 
(MOI) was 50, and the NP cells were cultivated for 48 h 
after lentivirus transfection.

Second-generation NP cells were selected for the 
knockout experiments. Opti-Minimal Essential Medium 
(MEM ) containing small inhibitory RNA (siRNA) was 
slowly dropped into tubes containing Lipofectamine® 
RNAIMAX Reagent (Invitrogen, USA) and incubated at 
room temperature for 5 min. A 250 µL mixture was added 
to each well of a 6-well plate and cultured at 37 ℃ for 48 h.

IDD model

This study complied with the ARRIVE guidelines and 

was carried out in accordance with the United Kingdom 
Animals (Scientific Procedures) Act. Animal experiments 
were performed under a project license (No.: 2017KY043) 
granted by institutional board of Shanghai General 
Hospital of Nanjing Medical University, in compliance with 
Shanghai General Hospital of Nanjing Medical University 
institutional guidelines for the care and use of animals. A 
protocol was prepared before the study without registration. 
The New Zealand rabbits were all male and were aged  
8 years old. The rabbits were randomly divided into a 
control group, IDD group, IDD + TFEB knockout group, 
and IDD + TFEB overexpression group. The animals were 
anesthetized with 2% pentobarbital sodium by a marginal 
ear intravenous injection. Skin preparation was performed 
on the right side of the abdomen, on the portion near the 
12th rib to the ilium. The boundary of the abdominal 
oblique muscle and paravertebral muscle was exposed. Blunt 
dissection was performed along the boundary between the  
2 muscles and ultimately to the front of the vertebral body. 
A 16G needle was used to puncture the annulus fibrosus 
into the intervertebral disc. After the needle was withdrawn, 
a jellylike outflow of NP could be seen.

Statistical analysis

SPSS 13.0 software was used for the statistical analysis. 
The grades of Pfirrmann degeneration of the intervertebral 
discs were compared using a Pearson chi-square test, and 
the quantitative data are expressed as the mean ± standard 
deviation (SD). In addition, a one-way analysis of variance 
(ANOVA) was used for the intergroup data. For the above 
two analytical methods, a P<0.05 indicated a statistically 
significant difference.

Results

Expression of TFEB in human NP tissues with different 
Pfirrmann grades and in NP cells treated with H2O2

Based on their Pfirrmann grade, the human NP tissues 
were divided into two groups: the control group and the 
IDD group. The immunohistochemistry (IHC) results 
showed that TFEB was highly expressed in the IDD group 
(see Figure 1A). RT-PCR showed that TFEB was highly 
expressed in the IDD group and was lowly expressed in 
the control group (see Figure 1B). The relative mRNA 
expression of TFEB was found to be negatively correlated 
with the Pfirrmann grades of NP tissues (n=10, r=−0.9144) 
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Figure 1 Expression of TFEB in human NP tissues with different Pfirrmann grades; OS inhibited cell viability, apoptosis, and ECM 
synthesis, and promoted apoptosis in NP cells. (A) IHC results showed the expression of TFEB in human NP tissues. (B) RT-PCR analysis 
results showed that the mRNA expression level of TFEB decreased with the severity of IDD. (C) The mRNA expression of TFEB was 
negatively correlated with the Pfirrmann grades of 10 human NP tissues (n=10, r=−0.9144). (D) CCK-8 analysis results showed that the 
viability of the NP cells decreased gradually as H2O2 concentrations increased. (E) Annexin V-APC/7-AAD double-stain results showed the 
apoptosis of the NP cells. (F) Real-time RT-PCR analysis results showed the mRNA expression levels of aggrecan, collagen 2, and TFEB 
due to OS induced by H2O2. (G) Western blotting showed protein levels of aggrecan, collagen 2, and TFEB due to OS induced by H2O2. 
All data were obtained from 3 independent experiments and are shown as means ± SD. Significant differences between groups are indicated 
as **P<0.01. TFEB, transcription factor EB; NP, nucleus pulposus; ECM, extracellular matrix; IHC, immunohistochemistry; RT-PCR, real-
time polymerase chain reaction; IDD, intervertebral disc degeneration; OS, oxidative stress.

(see Figure 1C). 

High concentrations of H2O2 inhibit viability and promote 
the apoptosis of NP cells

OS inhibits cell viability, induces apoptosis, and finally 

promotes IDD (14). To evaluate the effects of OS induced 
by H2O2 in human NP cells, we examined the viability and 
apoptosis of NP cells that had been treated with several 
H2O2 concentrations using CCK-8 assays and a flow 
cytometry analysis. The CCK-8 assays showed that the 
viability of NP cells decreased gradually as concentrations 
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of H2O2 increased (see Figure 1D). The flow cytometry 
analysis demonstrated that the apoptosis of NP cells 
correspondingly increased (see Figure 1E).

High concentrations of H2O2 inhibit ECM synthesis

Maintaining ECM homeostasis is essential for keeping NP 
cells healthy, and an imbalance between anabolism and 
catabolism of the ECM promotes IDD (15). We cultured 
NP cells in H2O2 at 3 concentrations. The RT-PCR showed 
that collagen 2 and aggrecan was more decreased in the 
high H2O2 concentration group than the control group and 
the low H2O2 concentration group. However, NF-κB (P65) 
was highly expressed in the high H2O2 concentration group 
(see Figure 1F). The Western blot also revealed the same 
results (see Figure 1G).

Effects of TFEB on cell viability, apoptosis, and ECM 
synthesis in NP cells

TFEB is a master regulator of cell viability and apoptosis 
(16,17). In this study, the effects of TFEB on the viability 
and apoptosis of NP cells under OS was assessed and 
measured by CCK-8 and flow cytometry. SiRNA TFEB-
816 and lentivirus had excellent transfection efficiency (see 
Figure 2A-2C). OS resulted in a decrease in cell viability and 
an increase in apoptosis (see Figure 2D,2E). The knockout 
of TFEB made the process correspondingly worse, while 
the overexpression of TFEB produced the opposite results 
(see Figure 2D,2E) by promoting cell viability and inhibiting 
the apoptosis of NP cells.

TFEB also plays a role in the synthesis of ECM (18). 
To determine whether TFEB had the same effects on 
NP cells, we performed PCR and Western blotting. The 
results showed that OS inhibited collagen 2 and aggrecan 
expression, and TFEB knockout resulted in a stronger 
inhibition. Conversely, TFEB overexpression enhanced 
the synthesis of collagen 2 and aggrecan (see Figure 2F,2G). 
These results suggest that TFEB alleviated H2O2-mediated 
OS in NP cells.

Effects of the TFEB/NF-κB pathway on H2O2-mediated 
OS in NP cells

The NF-κB pathway is known to modulate the OS 
response (19). Thus, immunofluorescent staining was 
performed to determine whether the NF-κB pathway was 
associated with H2O2-mediated OS in NP cells. When 

the NF-κB pathway is activated, P65 translocates into 
the nucleus (20). Our experiment showed that OS led to 
P65 nuclear translocation, and TFEB knockout enhanced 
P65 translocation (see Figure 3). Conversely, TFEB 
overexpression inhibited this process. These results revealed 
that TFEB inhibited H2O2-mediated OS in NP cells by 
NF-κB pathway activation.

TFEB alleviates IDD in a rabbit degeneration model 
in vivo

The annular puncture model is a classical method for 
studying IDD (21). In this study, a retroperitoneal approach 
was adopted to build the model (see Figure 4A). MRI, 
hematoxylin and eosin (HE) staining, and safranin O-fast 
green (SO-FG) staining were performed to assess the 
degeneration of NP cells. In both the puncture model 
group that received TFEB knockout treatment and the 
group that did not receive TFEB treatment, the MRI 
images showed hypointense signals in the intervertebral 
discs and a decrease in the height of the intervertebral space 
(see Figure 4B). The results of the HE staining and SOFG 
staining showed that the expression of ECM was reduced 
and that the annulus fibrosus became disorganized (see 
Figure 4B). Conversely, in the puncture model that received 
TFEB overexpression treatment, the MRI images showed 
a hyperintense signal, and the height of the intervertebral 
space remained unchanged (see Figure 4B). The results 
of the HE staining and SOFG staining also showed that 
expression of ECM was adequate, and the annulus fibrosus 
was maintained (see Figure 4B).

Discussion

IDD can place burdens on people’s lives or even lead to 
disability. Thus, solutions to cure IDD need to be found 
urgently. However, the etiology and molecular mechanism 
of IDD remain unclear. Recent studies have focused on 
OS. Notably, Patil et al. found that OS-induced senescence 
significantly aggravates IDD (4). Zhuang et al. reported that 
TFEB alleviates cell death under OS (11). Interestingly, 
we found that TFEB functioned to effectively inhibit the 
process of IDD. In this study, we detected the expression of 
TFEB in patients with different degrees of IDD and found 
that the IDD group had a higher expression of TFEB than 
the control group. These results implied that TFEB level 
may be negatively correlated with the degree of IDD and 
that an increase in TFEB may alleviate the degree of IDD.
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Figure 2 Effects of TFEB on cell viability, apoptosis, and ECM synthesis in NP cells. (A) RT-PCR results validated the TFEB siRNA 
transfection efficiency. (B) RT-PCR was used to assess lentiviral transfection efficiency in NP cells. (C) Fluorescence of the transfected NP 
cells 72 h after transfection. (D) CCK-8 was used to assess the viability of the NP cells. (E) Annexin V-APC/7-AAD double-stain results 
showed the apoptosis of the NP cells. (F) RT-PCR results showed the mRNA expression levels of aggrecan, collagen 2, and TFEB in the 
TFEB knockout and TFEB overexpression cells. (G) Western blotting showed the protein levels of aggrecan, collagen 2, and TFEB in the 
TFEB knockout and TFEB overexpression cells. All data were obtained from 3 independent experiments and are shown as the means ± 
SD. Significant differences between the groups are indicated as **P<0.01 and ***P<0.001. OE, TFEB overexpression; KO, TFEB knockout; 
TFEB, transcription factor EB; ECM, extracellular matrix; NP, nucleus pulposus; RT-PCR, real-time polymerase chain reaction; CCK-8, 
Cell Counting Kit-8.
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Figure 3 The NF-κB signaling pathway was active under OS. Immunofluorescence showed that P65 was expressed in the cytoplasm in the 
blank group and the TFEB overexpression group, while P65 was expressed in the nucleus under H2O2-induced OS and in the TFEB group. 
All data were obtained from 3 independent experiments. OE, TFEB overexpression; KO, TFEB knockout; OS, oxidative stress; TFEB, 
transcription factor EB.

Blank                                                 H2O2                                       H2O2+ TFEB KO                                H2O2+ TFEB OE
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20 μm20 μm20 μm20 μm
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Some studies have found that H2O2-induced OS leads 
to cellular senescence and inhibits proliferation (6,22). In 
the present study, this effect was also proven in NP cells 
under H2O2-induced OS. Notably, we also discovered 
that the expression of collagen 2, aggrecan, and TFEB 
decreased gradually as H2O2 concentration increased. ECM 
exhaustion is one of the mechanisms of disc degeneration. 
The low expression of aggrecan and collagen 2 results in 
ECM exhaustion, which in turn aggravates IDD. Thus, it 
can be concluded that OS suppresses the proliferation and 
ECM expression of NP cells and ultimately promotes IDD.

A recent study revealed that TFEB alleviates neuronal 
death under OS (11). In our study, we also found that TFEB 
confers OS resistance. TFEB overexpression reversed the 

trend of ECM exhaustion and cell apoptosis. Research has 
shown that the NF-κB pathway is involved in OS induced 
by cell injury (23). In this study, we also found the expression 
of P65 in NP cells following H2O2 treatment was high. 
Interestingly, TFEB overexpression inhibited P65 expression 
and suppressed P65 nuclear translocation. These results 
revealed that the TFEB/NF-κB pathway modulated IDD 
caused by OS. Thus, TFEB plays an important role in the 
occurrence and development of IDD, and represents a new 
therapeutic target in the prevention and treatment of IDD.

Conclusions

To conclude, we found that the expression of TFEB 
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Figure 4 TFEB alleviated IDD in a rabbit degeneration model in vivo. (A) An annular puncture IDD model was generated using a 
retroperitoneal approach. Red arrows stand for the intervertebral disc. (B) MRI showed the degeneration of the intervertebral disc 8 weeks 
after the annular puncture. Red arrows stand for the intervertebral disc. HE staining showed the NP tissue structure and integrity. SOFG 
staining showed degenerative and fibrotic changes in the intervertebral discs. All data were obtained from 3 independent experiments. 
OE, TFEB overexpression; KO, TFEB knock out; TFEB, transcription factor EB; IDD, intervertebral disc degeneration; MRI, magnetic 
resonance imaging.
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Blank                                                IDD model                              IDD model + TFEB KO                           IDD model + TFEB OE

1000 μm 1000 μm 1000 μm 1000 μm

1000 μm1000 μm1000 μm1000 μm

decreases in human NP cells and that a TFEB deficiency 
leads to IDD under OS. TFEB overexpression also 
aggravates IDD. In summary, our results suggest that 
excessive OS aggravates IDD through the TFEB/NF-κB 
pathway.
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