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ABSTRACT

DNA methylation plays critical roles in transcrip-
tional regulation and chromatin remodeling.
Differentially methylated regions (DMRs) have im-
portant implications for development, aging and
diseases. Therefore, genome-wide mapping of
DMRs across various temporal and spatial methyl-
omes is important in revealing the impact of epigen-
etic modifications on heritable phenotypic variation.
We present a quantitative approach, quantitative
differentially methylated regions (QDMRs), to quan-
tify methylation difference and identify DMRs from
genome-wide methylation profiles by adapting
Shannon entropy. QDMR was applied to synthetic
methylation patterns and methylation profiles
detected by methylated DNA immunoprecipitation
microarray (MeDIP-chip) in human tissues/cells.
This approach can give a reasonable quantitative
measure of methylation difference across multiple
samples. Then DMR threshold was determined
from methylation probability model. Using this
threshold, QDMR identified 10 651 tissue DMRs
which are related to the genes enriched for cell dif-
ferentiation, including 4740 DMRs not identified by
the method developed by Rakyan et al. QDMR can
also measure the sample specificity of each DMR.
Finally, the application to methylation profiles
detected by reduced representation bisulphite se-
quencing (RRBS) in mouse showed the platform-
free and species-free nature of QDMR. This
approach provides an effective tool for the high-
throughput identification of potential functional
regions involved in epigenetic regulation.

INTRODUCTION

DNA methylation, as a natural and inheritable epigenetic
event, affects biological phenotype by inhibiting gene ex-
pression without changing the DNA sequence (1). The
quantification of methylation difference across large
numbers of samples and the identification of sample-
specificity are important in genomic function analysis,
and may provide an important reference for identifying
specific drug targets. Differentially methylated regions
(DMRs), as genomic regions with different methylation
statuses among multiple samples (tissues, cells, individuals
or others), are regarded as possible functional regions
involved in gene transcriptional regulation. The identifica-
tion of DMRs among multiple tissues (T-DMRs) provides
a comprehensive survey of epigenetic differences among
human tissues (2). DMRs between cancer and normal
samples (C-DMRs) demonstrate the aberrant methylation
in cancers (3). It is well known that DNA methylation is
associated with cell differentiation and proliferation (4).
Many DMRs have been found in the development
stages (D-DMRs) (5) and in the reprogrammed progress
(R-DMRs) (6). In addition, there are intra-individual
DMRs (Intra-DMRs) with longitudinal changes in
global DNA methylation along with the increase of age
in a given individual (7). There are also inter-individual
DMRs (Inter-DMRs) with different methylation patterns
among multiple individuals (8).
With the progress of DNA sequencing technologies,

DNA methylation profiling techniques have undergone a
veritable revolution over the past decade (9). Several tech-
niques have been developed for profiling DNA methyla-
tion patterns across various cells or tissues. In the earliest
studies, tissue-specific DNA methylation in a few genes
was detected by restriction enzymes (10) or restriction
landmark genomic scanning (RLGS) method (11). But
these methods are subject to restriction enzyme sites and
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not suitable for complete whole-genome scan. The discov-
ery of pre-treatment with sodium bisulphite chemically
spurred a revolution in high sensitivity mapping of
methylated cytosines (12). This approach has been widely
applied in various methylation mapping projects including
human epigenome project (HEP) (13). However, it is
prohibitively expensive for genome-wide applications.
To circumvent these limitations, Weber et al. (14) de-
veloped methylated DNA immunoprecipitation (MeDIP),
which utilizes antibody against 5-methylcytosine to enrich
methylated DNA. MeDIP, in combination with oligo-
nucleotide arrays (MeDIP-chip) becomes a powerful
approach for DNA methylation profiling (2,15). With the
recent advances of next-generation sequencing techniques,
several sequencing-based techniques, including bisulphite-
based techniques MethylC-Seq (16) and reduced represen-
tation bisulphite sequencing (RRBS) (17), and enrichment-
based methods MeDIP sequencing (MeDIP-seq) (18) and
MBD-isolated Genome Sequencing (MiGS) (19) and
enzyme-based techniques methyl-sensitive cut counting
(MSCC) (20) and methylation mapping analysis by
paired-end sequencing (Methyl-MAPS) (21), have been
developed for the genome-wide study ofDNAmethylation.
In most of current methylation mapping techniques,
the original or pretreated DNA methylation status is rep-
resented by continuous values with measurement scale
from 0 to 1 (22). The unprecedented scale and precision
of data have enabled the quantitative analysis of differen-
tial DNAmethylation status in gene regulation across cells/
tissues (23).
With high throughput technologies over recent years,

there have been considerable efforts in identifying
DMRs from experimental profiles produced by specific
methylation profiling techniques. Bibikova et al.
compared the difference in mean methylation level
between two cells, and selected the regions with
P< 0.001 (t-test) as DMRs (24). In another study, the
statistical significance of DMRs was defined by permuta-
tion test and the empirical Bayes approach (3). In the case
of identifying DMRs from three or more samples, analysis
of variance (ANOVA) and Kruskall–Wallis test were used
respectively by Byun et al. (25) and Eckhardt et al. (13).
The use of ANOVA assumes that the data follows a
normal distribution, but this assumption is likely to be
invalid with methylation data which follows bimodal dis-
tribution (5,26). Kruskall–Wallis test, as a non-parameter
test, is more suitable for methylation data. However, since
this method utilizes the ranks of the data rather than their
original values to calculate the statistic, it may lose
numeric information of the original data such as relative
methylation degree among samples and the maximum
fluctuation range for all samples. In addition to these stat-
istic approaches, two non-statistical methods were
proposed. Fan et al. identified DMRs as the regions
with both hypermethylation (>50%) and hypomethyla-
tion (<50%) among various samples (27). It is obvious
that the cut-off value 50% may induce some false
DMRs in which the methylation levels are close to 50%
in all samples. Another method derived by Rakyan et al.
identifies a region as a hypermethylated T-DMR if the
methylation level of this region in a tissue is >60% and

methylation levels of this region in at least other three
somatic tissues are <40%. This method identifies a region
as a hypomethylated T-DMR if the methylation level
of this region in a tissue is <40% and methylation levels
of this region in at least other three somatic tissues are
>60%. (2). In principle, the determination of tissue-specific
DMRs by this mentioned method is supposed to be
influenced by sample number, that is, the threshold
should be redefined along with the sample number. In
brief, the development of DNA methylation measurement
proposes big challenges for the DMR calling methods.

Shannon entropy (28), as a quantitative measure of dif-
ference and uncertainty in a data set, has been widely
applied in quantitative biology, such as identification of
potential drug targets (29) and tissue-specific genes (30).
To quantify methylation difference and further identify
DMRs across multiple samples, we adapted the
Shannon entropy and developed an improved approach,
quantitative differentially methylated region (QDMR).
Based on the Shannon entropy, two optimizations, pre-
processing of methylation data and adjustment of
entropy, were performed to quantify methylation differ-
ence. The application of QDMR on synthetic and bio-
logical methylation data demonstrated that QDMR can
give a reasonable quantitative measure of methylation dif-
ference across multiple samples. In order to identify
DMRs, the threshold of DMRs was determined according
to a methylation probability model which was used to
control for a degree of the random biological variability
among samples. By the threshold, QDMR can identify
T-DMRs with better performance than pervious
methods. To further determine the sample-specificity of
DMR, the categorical sample-specificity was also pre-
defined according to entropy difference. To facilitate bio-
medical researchers, we developed a standalone and a
web-based version of QDMR software, which is available
at http://bioinfo.hrbmu.edu.cn/qdmr. In summary,
QDMR can be used as an effective tool for the quantifi-
cation of methylation difference and identification of
DMRs across multiple samples.

MATERIALS AND METHODS

Synthetic methylation data

We generated methylation levels, which are scaled from
0 to 1 (0=unmethylated, 1=100% methylation) across
10 samples in eight regions representing eight potential
methylation patterns (Supplementary Table S1).

Human methylation data

The genome-wide methylation data in human was down-
loaded from ftp://ftp.ebi.ac.uk/pub/software/ensembl/efg/
MeDIP-chip/ (2). This data set consists of human
genome-wide methylation profiles processed by Batman
(18) for 16 tissues/cells including 13 normal somatic
tissues, placenta, sperm and the GM06990 immortalized
cell line. Each region of interest (ROI) in this data set
contains 5� 50-mer probes typically. For each ROI, the
methylation level in a tissue was the mean methylation
level of the probes. We selected 40 437 ROIs whose
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methylation levels have been detected in all 16 tissues/
cells. These ROIs were used to examine the capability of
QDMR in quantification of methylation difference and
identification of DMRs across different tissues.

Genomic annotations

The 40 437 ROIs in human were classified into seven
categories (Up2kb, 50-UTR, CodingExon, Intron,
30-UTR, Down2kb and Intergenic regions) according to
their relative positions with six gene elements based on the
Refseq gene annotation in UCSC table browser (http://
genome.ucsc.edu/cgi-bin/hgTables) (31). Seven categories
were defined according to the following rules: (i) if the
centre of a ROI is located in a gene element, the ROI is
then classified into the category related to the gene
element; (ii) if the centre of a ROI is located in more
than one gene related categories, it is classified into a
category according to the following priority:
Up2kb!50-UTR!CodingExon!Intron!30-UTR!D-
own2kb and (iii) the ROIs that cannot be assigned into
any gene related category are classified into Intergenic
category. The distribution of ROIs in seven categories is
shown in Supplementary Table S2.

CpG islands in human (hg18) were predicted by
CpG_MI approach, which was developed by Su et al.
(32). CpG island shores were defined as the regions
located within 2 kb of CpG islands as described in
Irizarry et al.’s work (3). A total of 40 437 ROIs are clas-
sified into three categories (CGIsland, CGIshore and
Other) according to their relative position to CpG
islands. CGIsland category consists of the ROIs whose
centres are located within a CpG island. CGIshore
category refers to the ROIs whose centres are located in
the CpG island shores as defined above, and the remaining
regions are classified into the Other category.

Gene Ontology annotations

In order to analyse the potential roles of T-DMRs in seven
genomic categories, seven gene sets were obtained accord-
ing to the following rules: (i) the genes related to the
T-DMRs in the genomic category are classified into the
same gene set; (ii) if a gene is related to T-DMRs in dif-
ferent genomic categories, it is classified into a gene set
according to the following priority: Up2kb!50-UTR!
CodingExon!Intron!30-UTR!Down2kb and (iii) if a
gene can’t be assigned into any gene set above and there is
a Intergenic T-DMR whose centre is located within 5 kb
upstream or downstream of this gene, it is classified into
Intergenic gene set. we investigated the functional rele-
vance of each gene set using g:GOst in the g:profiler web
service (33) for the genes related to each of the seven
genome categories above. For the comparison of
T-DMRs identified by QDMR and Rakyan’s method,
we used another annotation tool to avoid preexisting
bias in the ontology terms in g:GOst. We obtained Gene
Ontology annotations for the category of ‘biological
process’ using functional annotation tools in the
DAVID Bioinformatics Resources 6.7 website (34). A
GO term is considered significantly enriched if the
Bonferroni corrected P< 0.05.

Gene expression data

Gene expression data used in this study was downloaded
from the Gene Expression Omnibus (GSE1133) (35,36).
There were only 11 tissues (B cells, CD4+ T cells, CD8+

T cells, liver, lung, pancreas, prostate, placenta, skeletal
muscle, uterus and whole blood) with gene expression
profiles that can be used for expression analysis.
Annotations of probes for hg18 were downloaded from
UCSC Genome Browser (http://genome.ucsc.edu/) (37),
and then assigned to human refseq genes (hg18). For
each probe, the expression value is the mean of
MAS5-condensed fluorescence intensities in three repli-
cates per tissue. The normalized expression data using
the GCRMA algorithm were also analysed to avoid the
bias of normalization algorithm. Mean expression value
was used when multiple probes were available for a single
gene. We used the linear expression values to quantify
expression difference and identify tissue-specific differen-
tially expressed genes (T-DEGs) by ROKU method which
works on the linear expression values (38).

Histone modification data

In this work, 20 histone methylations and 18 acetylation
modifications detected by ChIP-Seq experiments in
human CD4+ T cells were used. These data were
obtained from Human Histone Modification Database
(HHMD, http://bioinfo.hrbmu.edu.cn/hhmd) (39). The
histone modification tags were mapped to tissue-specific
DMRs. And the tag count was normalized by the total
number of bases in the region and the total read number
of the given library to obtain normalized tag density (40).

Mouse methylation data

DNA methylation data of mouse (mm8) was downloaded
from ftp://ftp.broad.mit.edu/pub/papers/rrbs/
Meissner2008/ (5). This data set consists of mouse
genome-wide methylation profiles on approximately 1
million distinct CpG dinucleotides detected by RRBS
(17) for 18 tissues/cells. Seven adult tissues/cells (Brain,
Liver, Lung, Spleen, B cells, CD4+ T cells and CD8+ T
cells) were selected for this study. CpG islands of mouse
(mm8) were also predicted by CpG_MI. The methylation
level of a CpG island was estimated as the mean methy-
lation level across all CpG dinucleotides with �5-fold
coverage overlapping the same CpG island, requiring at
least five such CpG dinucleotides. We selected 9636 CpG
islands with sufficient methylation data in all the seven
adult tissues/cells. The genomic categories of CpG
islands are the same as described in the human methyla-
tion data.

Quantifying methylation difference using entropy

In order to quantify methylation difference across
samples, we proposed a new method based on Shannon
entropy. Although entropy has been used previously to
identify tissue-specific genes from gene expression data
(30), we first apply entropy to quantify methylation differ-
ence. As far as we know, methylation data has two unique
characteristics. First, in most of methylation mapping
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techniques, DNA methylation status can be represented
by continuous values with measurement scale from 0 to
1, or 0 to 100%, where 0 represents that the particular
locus is unmethylated and 1 or 100% indicates that the
particular locus is fully methylated (22). Second, methyla-
tion data follows bimodal distribution, which is different
from other biological profiles such as gene expression
profiles (26). Thus, the original entropy used to quantify
gene expression difference from gene expression data
could not be directly used to quantify DNA methylation
difference from DNA methylation data. Therefore, we
used two steps of optimization in order to adapt the
original entropy.
The methylation vector mr of region r across N samples

was defined as mr ¼ ðmr,1,mr,2, � � � ,mr,s, � � � ,mr,NÞ, where
mr,s represents the methylation level in sample s. The
sum of methylation levels of region r in N samples

(
PN
s¼1

mr,s) was treated as a total methylation value. The

ratio of methylation level of region r in samples relative
to the total value was defined as the relative methylation

probability ps=r ¼ mr,s=
PN
s¼1

mr,s. The original Shannon

entropy HO of the region r can be calculated as

HO ¼ �
XN
s¼1

ps=r log2ðps=rÞ: ð1Þ

According to this formula, methylation levelsmr,s in vector
mr determine the distribution of ps=r which further deter-
mines the value of HO. The lower HO is the greater the
methylation difference is represented across samples. The
regions with consistent methylation among all samples
were assigned high entropy. The regions specific methyla-
tion in minor samples should be assigned lower entropy.
However, as described by Kadota et al. in the development
of ROKU method (38), the original Shannon entropy is
biased towards specific high values in minor samples.
Thus, the specific hypermethylation in minor samples can
bring about low entropy while specific hypomethylation
would not. Such situations could be observed frequently
in a number of promoters that were hypomethylated only
in minor tissues, cancers or development stages. In order to
equally quantify the methylation difference of the regions
with hyper- or hypomethylation in minor samples, we
calculated a one-step Tukey biweight (Tbr) for region r as
Kadota et al. did in the development of ROKU method
(38). One-step Tukey biweight provides a robust weighted
mean that is relatively insensitive to outliers (41). The
median Mr for methylation levels in N samples of region
r was first computed. Then, the absolute distance for each
mr,s from the median was calculated as mr,s �Mr

�� ��. Third,
the median of the absolute distance (Sr) from Mr was
determined. For each sample s, a uniform measure of
distance from the centre was defined as

ur,s ¼
mr,s �Mr

cSr+e
, ð2Þ

where c is a tuning constant (default c=5) and e is a very
small value used to avoid zero values from happening in

the denominator (default e=0.0001). A weight in each
sample was then calculated by the bisquare function:

wður,sÞ ¼
ð1� u2r,sÞ

2, jur,sj � 1
0, jur,sj > 1

�
: ð3Þ

For each sample s, the weight was reduced by a function
of its distance from the median Mr. Thus outliers can be
effectively discounted by a smooth function. When methy-
lation levels are very far from the median, their weights
are reduced to zero. Finally, the one-step Tukey biweight
(Tbr) for region r was calculated as

Tbr ¼

PN
s¼1

wður,sÞ �mr,s

� �
PN
s¼1

wður,sÞ

: ð4Þ

The processed methylation level m0r,s for sample s then can
be calculated by using Tbr (a weighted mean)

m0r,s ¼ mr,s � Tbr

�� ��: ð5Þ

The processed methylation vector m0r ¼ ðm
0
r,1,m

0
r, 2, � � � ,

m0r, s, � � � ,m
0
r,NÞ of region r was then used to calculate

the region’s entropy as

HP ¼ �
XN
s¼1

p0s=r log2ðp
0
s=rÞ, ð6Þ

where p0s=r ¼ m0r, s=
PN
s¼1

m0r, s:

However, the range of variation was considered in neither
the original Shannon entropy nor ROKU method when
they were designed for expression arrays. Therefore, these
two methods may not be appropriate for the analysis of
the methylation arrays in which methylation level ranges
from 0 to 1 (or from 0 to 100%). For example, if two
genome regions A and B exhibit the same relative methy-
lation ps/r for each mr, s, these two regions will be assigned
to the same entropy whether they have the same methyla-
tion range or not. It is possible that region A and B have
different function in affecting biological process as they
are very different in terms of methylation status. To
overcome the shortcoming of these two methods, the
entropy for each region was adjusted by a methylation
weight which was defined as

wr ¼ j log2ð
maxðmr, sÞ �minðmr, sÞ

MAX-MIN
+eÞj, ð7Þ

where maxðmr, sÞ and minðmr, sÞ are the max and min
methylation level of region r in all samples respectively,
and the MAX and MIN are defined as the highest methy-
lation level 1 (or 100%, while the methylation level ranges
from 0 to 100%) and the lowest methylation level 0, re-
spectively, and e is a small value used to avoid zero values
in the logarithm (default e=0.0001). Then the entropy
calculated by processed methylation vector was adjusted
by weight wr as

HQ ¼ HP � wr, ð8Þ
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where HQ represents the extent of methylation difference
across multiple samples. It ranges from zero for regions
differentially methylated in a single sample with the
biggest range to log2 N� log2

1
e for regions with uni-

form methylation level in all samples considered. The
maximum value of HQ depends on the number of
samples and value e.

Determination of threshold for identification of DMRs

Since the methylation difference of a region can be repre-
sented by HQ, this region can be defined as a DMR if HQ

is lower than an appropriate threshold, otherwise, this
regions can be defined as the N-DMR. In this study, we
determined the threshold for DMRs from the methylation
probability model as Schug et al. did in selecting
tissue-specifically expressed genes from gene expression
profiles (30). To model the effect of experimental variabil-
ity, we simulated distribution of entropy from uniformly
methylated regions. We computed the fold change
between replicate-dependent difference from the average
level across replicates and the theoretical maximum range
of methylation. The fold change follows a normal distri-
bution with mean equal to zero and some unknown,
but ‘small’, standard deviation (SD) (Supplementary
Figure S1). Therefore, the experimental variability will
be estimated by appropriate methylation levels. To
model a uniformly methylated region, we assumed that a
region exhibits an average methylation level across all
samples and then allow the methylation levels in individ-
ual samples to follow a narrow distribution of random
fold changes from the mean level. Compared with
Schug’s method, there were two major differences in
this method. First, the entropy in current work is inde-
pendent of the average methylation across all samples
because it is derived from the methylation value processed
by Tbr. Therefore, the biological variability modeled in
this approach exhibited the average methylation level
Mean ¼ 1

2 ðMAX-MINÞ across all samples. Second, the
fold change between sample-dependent difference from
the average level and the theoretical maximum range of

methylation was defined as
mr, s�Mean
MAX-MIN. It was assumed

in this study that the fold change follows a normal distri-
bution with mean equal to zero and some unknown, but
‘small’ SD. Thus, SD can be used to indicate the degree of
the biological variation. If SD equals to zero, the methy-
lation levels in all samples will be the same, and equal to
the Mean. The larger the SD is, the greater the methylation
difference across multiple samples is. Setting SD=0.07
means a relatively small amount of variation with methy-
lation levels between 43 and 57 in 68% of the samples,
between 36 and 64 in 95% of the samples, between 29 and
71 in 99% of the samples.

Take the determination of DMR threshold for 16
samples as an example. In total 80 000 (5000� 16)
random values were generated from the normal distribu-
tion model with mean=0 and SD=0.07. And 5000 uni-
formly methylated regions across 16 samples were
modeled. Then entropy HQ for each of these regions was

calculated. The entropy value at P=0.05 (one-sided)
from the distribution of 5000 entropies, which was
normal, was determined as a threshold. This process
was repeated 10 times, and therefore 10 thresholds with
mean (SD) equals to 5.326 (0.022) were produced. This
mean was determined as the threshold HDMR for DMR
identification. Regions with entropy that is lower than
HDMR are defined as DMRs while remaining regions
are not differentially methylated regions (N-DMRs).
With this method, the HDMR thresholds were produced
for samples that vary in number from 2 to 100
(Supplementary Table S3).

Measurement of sample specificity for DMRs

Based on Shannon entropy theory, the increase of variable
number would reduce uncertainty, while significant
changes in the individual variables would result in a sub-
stantial increase of uncertainty. The sample-specific
methylation levels were considered as the main individual
factors that determine the methylation differences across
samples. For the region r, the entropy HQ represents the
methylation difference across all samples. For each sample
s, the entropy HQ=�s for the methylation difference across
the samples that do not include sample s can also be
calculated. Thus, the contribution of sample s to the
whole methylation difference can be reflected by the
entropy difference �Hr=s between HQ and HQ=�s which
was defined as

�Hr=s ¼ HQ=�s �HQ: ð9Þ

When region r is specifically methylated in sample s, �Hr=s

is greater than 0. To further identify hypermethylation or
hypomethylation in a region, the categorical
sample-specificity (CSr=s) was presented as

CSr=s ¼
�Hr=s � signr, s, �Hr=s > 0

0, �Hr=s � 0

�
, ð10Þ

where signr, s was the sign of the difference between methy-
lation level mr, s in sample s and the median methyla-
tion level of vector mr in region r. Thus, the absolute
value of CSr=s is then associated with �Hr=s, and the
sign of CSr=s is the same as signr, s. When value in the
sample s is very close to the median, CSr=s equals to
zero. Specific hyper-methylation in sample s will have
�Hr=s > 0, and since signr, s > 0, so CSr=s > 0. CSr=s

reaches its maximum when a region is relatively
high-methylated in the sample s, and decreases as either
the number of samples high-methylated in the region
r increases, or as the relative contribution of sample s to
the region’s overall pattern decreases. Similarly specific
hypo-methylation in sample s will have �Hr=s > 0, and
since signr, s < 0, so CSr=s < 0. CSr=s reaches its
minimum when a region is relatively low-methylated in
the sample s, and increases as either the number of
samples low-methylated in the region r increases, or as
the relative contribution of sample s to the region’s
overall pattern decreases.

PAGE 5 OF 16 Nucleic Acids Research, 2011, Vol. 39, No. 9 e58



RESULTS

QDMR overview

We have developed QDMR, a bioinformatic tool for
genome-wide quantitative comparisons of DNA methyla-
tion among multiple samples based on Shannon entropy
(28) (details in methods). QDMR starts from the imported
methylation data across a number of samples. It then
performs the following steps, including quantification
of methylation difference, identification of DMRs and
measurement of sample-specificity (Figure 1 and
Supplementary Figure S2). In the following sections, we
applied QDMR to synthetic data and experimental data
respectively to evaluate the performance of QDMR in
quantification of methylation difference, identification of
DMRs and measurement of sample-specificity for DMRs.

Evaluation of QDMR in quantification of methylation
difference by synthetic data

To evaluate the performance of QDMR, we generated
eight possible synthetic methylation patterns across ten
samples which are represented by red points in Figure 2
(Supplementary Table S1). For each pattern, the methy-
lation difference was quantified by the entropy derived
from three different entropy methods, the original
entropy (HO), the entropy calculated from processed
methylation vector (HP) and the entropy derived by
QDMR (HQ). For each of the three calculation
methods, the entropy ranges from zero to the maximum
[Max(HO)=Max(HP)= log2(10)=3.32 and Max(HQ)
= log2(10)� log2(1/0.0001)=44.1]. The lower the
entropy is, the greater the methylation difference across
samples is. Thus the fold change between entropy to the

maximum was used to compare the performance of three
entropy methods in quantification of methylation
difference.

The comparative analysis demonstrated that QDMR
can provide a reasonable quantitative measure of methy-
lation difference, which is intuitive, for each of the eight
methylation difference patterns. For the pattern with con-
sistent methylation levels across samples in Figure 2A, the
entropy by each of these three methods reaches its max-
imum indicating no methylation difference. This pattern
was identified as an N-DMR by QDMR. For the pattern
with specific high methylation level in one sample and low
levels in others (Figure 2B), the fold change by QDMR
was close to 0 while those by the other two methods were
close to 0.5 and 0.3, respectively. This observation
indicated that QDMR was superior to other methods in
quantifying methylation difference for the region with
most specific methylation pattern. The similar result is
shown in the third pattern (Figure 2C). When the
number of specific samples increases, QDMR can also
quantify methylation difference for regions with large
methylation fluctuation across samples (Figure 2D
and E). QDMR identified the four patterns in
Figure 2B–E as DMRs. Moreover, hypermethylation or
hypomethylation in a small fluctuation range across
samples, as shown in Figures 2F and G, are considered
as N-DMRs in most methylation studies. High entropy
was obtained from all three methods. QDMR identified
this pattern as an N-DMR. However, the fold change by
QDMR was near to 0.1 while those by other two methods
reached 1 and 0.9, respectively, indicating QDMR may be
more appropriate for the regions with small but potential-
ly functional methylation difference. Furthermore, for the
pattern with consistently high methylation in half of the
samples and low methylation in the other half as shown in
Figure 2H, the fold change by QDMR was close to 0,
while those by other two methods were close to 0.8
and 1, respectively. This methylation pattern becomes
more frequent when the number of samples decreases.
The regions with this methylation pattern would be
identified as DMRs by QDMR. These results indicated
the importance of two-step optimization and the usability
of QDMR in quantifying the difference from various
methylation patterns across two or more samples.

Quantification of methylation difference from methylation
profiles in 16 human tissues

The QDMR method was then applied to the human
genome-wide methylation profile including 40 437
regions of interesting (ROIs) with methylation value in
all 16 tissues (2). Each region was assigned an entropy
value by QDMR based on the methylation levels for all
the tissues. Then these regions were ranked by the entropy
from low to high as shown in Figure 3A. ROIs with larger
methylation difference were in the upper region while the
consistently methylated or unmethylated regions were in
the lower region. The top 100 and bottom 100 regions
were selected for a clearer visualization and comparison
(Supplementary Tables S4 and S5). All the top 100 regions
exhibited different methylation status across all tissues

Figure 1. Overview of QDMR. In step 1, the methylation data of the
regions to be analysed should be detected in the lab or processed by
bioinformatics methods. In step 2, methylation difference across
multiple samples for each region is quantified by the adapted
entropy. In step 3, based on the quantified methylation difference,
DMRs are identified by the threshold for the corresponding sample
number. In step 4, for each DMR identified above, the
sample-specificity is measured by the categorical sample-specificity
defined according to entropy difference. Finally, all results in QDMR
can be exported for further analysis.
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or tissue specificity (Figure 3B). Most of them were differ-
entially hypomethylated specifically in sperm. In contrast, all
the bottom 100 regions showed relatively invariant methyla-
tion state, especially consistent hypomethylation across
tissues (Figure 3C). In addition, entropy scores differed
significantly among different genomic categories
(Supplementary Figure S3A). Especially, CpG islands
showed higher entropy than that of CpG island shores
and other genome regions (Supplementary Figure S3B
and C). And there is a significant positive correlation
between entropy and ObsCpG/ExpCpG ratio

(Supplementary Figure S3D). The entropy of a genome
region can reflect the methylation difference across
multiple tissues, while ObsCpG/ExpCpG ratio can reflect
the enrichment of CpG dinucleotides in the same region. It
is indicated that the genome regions with higher CpG
density may possess more stable methylation status among
tissues, which is consistent with the results from the other
studies in DNA methylation and CpG density (2,5,15).
Overall, QDMR can provide a precise approach to
quantify methylation difference in genome regions among
different tissues.

Figure 2. Quantification of methylation difference for various synthetic methylation patterns. Eight subgraphs (A–H) represent eight synthetic
methylation patterns, respectively. In each subgraph, original methylation data are shown as connected red dots, and the processed data by
Tukey biweight as green dots, respectively. Two blue lines represent the highest and the lowest methylation values of each region across samples,
and the distance between them represents the methylation range. HO, HP and HQ represent the original entropy, the entropy calculated from
processed methylation vector and the entropy derived by QDMR, respectively. The pattern identified as DMR by QDMR is tagged as ‘DMR’,
while that identified as N-DMR is tagged as ‘N-DMR’, above the corresponding subgraph.
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Figure 3. Methylation heat map across 16 human tissues of regions ranked by entropy derived from QDMR. (A). Methylation heat map of all
40 437 regions ranked from top to bottom by ascending entropy. The methylation levels range from 0 (green) to 100 (red). (B) Clearer methylation
heat map of the top 100 regions with the lowest entropy. The number in the last column is the entropy derived from QDMR for the region in the
same row. (C) Clearer methylation heat map of the bottom 100 regions with highest entropy.
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Identification of T-DMRs from genome-wide methylation
profiles by QDMR

To identify T-DMRs based on the quantified methylation
difference across 16 tissues/cells mentioned above, the
threshold HDMR =5.326 for identification of DMRs
for the 16 samples was obtained based on methylation
probability profiles (details in ‘Materials and Methods’
section). Among 40 437 regions, 10 651 (26%) with lower
entropy value than HDMR were classified as T-DMRs
(Supplementary Table S6), while the remaining
29 786 (74%) regions were defined as N-DMRs. The dis-
tribution of T-DMRs and N-DMRs in seven genome
categories showed that T-DMRs were present in all
genome categories although they were less frequent than
N-DMRs (Figure 4). There were a smaller proportion of
T-DMRs in promoter than other categories, which was
consistent with the previous findings (13). Interestingly,
T-DMRs had a preference for certain chromosomes or
regions (Supplementary Figure S4). In addition, the
number of T-DMRs overlapping with CpG island shores
was 1.6-fold as that with CpG islands (36 versus
22%, P< 0.0001), which was consistent with a previous
finding that most tissue-specific DNA methylation occurs
at CpG island shores rather than CpG islands (3).

Previous studies found that promoter T-DMRs are
associated with genes that are thought to function in a
tissue-specific manner (2,42). However, the role of
intragenic and intergenic T-DMRs is still not clear. We
analysed the functions of the genes related to the T-DMRs
identified by QDMR in seven genome categories. To this
end, seven non-overlapping gene sets, each of which
consists of the genes related to T-DMRs in the same
categories, was obtained (details in ‘Materials and
Methods’ section). Then the functional relevance of each
gene set was investigated using g:GOst in the g:profiler
web service (33) (Table 1 and Supplementary Table S7).
In addition to the genes related to promoter T-DMRs, the
genes related to intragenic T-DMRs also exhibited enrich-
ment for multicellular organismal process and cell differ-
entiation functions. The possible interpretation for this
observation could be that methylation difference in
gene-body may be related to alternative splicing (43)
which involves in transcription regulation in the develop-
ment of multicellular organisms (44). The genes related to

T-DMRs in coding exons also tend to be targeted by
miRNAs. It is well known that miRNAs also show
tissue specificity (45) and participate in determination of
cell fate (46). This unexpected finding hinted at an epigen-
etic control of gene function involving miRNAs and DNA
methylation for which supporting evidence has been
obtained by the latest study (47). Moreover, the genes
close to Intergenic T-DMRs also showed enrichment in
tissue-specific functions, for example cell fate specification,
organ morphogenesis, and cell differentiation. It has been
verified by previous finding that methylation in Intergenic
T-DMRs regulates gene functions in association with mul-
tiple distal regulatory elements (48), such as enhancer (49),
silencer (50). It suggests that T-DMRs identified by
QDMR may have influence on those genes that partici-
pate in multicellular organismal development and cell
differentiation.

Comparison with Rakyan’s method in identification
of DMRs

In order to evaluate the performance of QDMR in iden-
tification of DMRs, we compared it with a counting
method developed for 16 samples by Rakyan et al. For
the same regions used in this work, Rakyan’s method
identified 6541 T-DMRs and 33 896 N-DMRs
(Figure 5A). Thus, these two methods classed all ROIs
into four groups (I, II, III and IV) as shown in
Figure 5A. It was shown that the two methods were
common in identification of most of T-DMRs and
N-DMRs for the 16 tissues. More than half (5911/
10 651) of T-DMRs identified by QDMR were also
defined as T-DMRs by Rakyan’s method (Figure 5A-II),
while nearly 98% (29 156/29 786) of the N-DMRs
identified by QDMR were also assorted as N-DMRs by
Rakyan’s method (Figure 5A-III).
However, there were also some differences in classifica-

tion of the regions in groups I and IV. Group I consisted
of 630 regions defined as T-DMRs by Rakyan’s method
but as N-DMR by QDMR (Figure 5A–I). The example
for this group showed little methylation difference among
16 tissues (Supplementary Figure S5–I). Group IV con-
sisted of 4740 regions as T-DMRs by QDMR but as
N-DMRs by Rakyan’s method (Figure 5A–IV). The
example for this group showed large methylation differ-
ence across 16 tissues, and specific hypermethylation and

Figure 4. Distribution of T-DMRs and N-DMRs in seven genome categories.
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hypomethylation in CM06990 and Sperm, respectively
(Supplementary Figure 5–IV).
To examine the methylation properties of these two

groups, we calculated the mean, range and standard devi-
ation for each region in these two groups. The mean
methylation levels of ROIs in group I were close to 50,
while those in group IV ranged from 10 to 90 (Figure 5B).
Furthermore, ROIs in group IV showed wider range
and greater standard deviation than those in group I
(Figure 5C and D). To further analyse the functional
properties of these two groups, Gene Ontology annotation
was performed at the genes related to each group. The
T-DMRs identified only by QDMR were located within
or nearby 2697 genes. These genes showed enrichment
for cellular developmental process, cell differentiation
and cell–cell adhesion in higher specificity (Table 2 and
Supplementary Table S8). Cell–cell adhesion, especially
calcium-dependent cell–cell adhesion, has a key role in
the organization of tissues comprising multiple cell types
(51). However, 388 genes related to T-DMR identified

only by Rakyan’s method did not show any functional
enrichment under the same P-value threshold
(Supplementary Table S8). Therefore, the T-DMRs
identified by QDMR may possess more unstable methyla-
tion patterns across multiple tissues. Further enrichment
analysis of the genes related with these T-DMRs suggests
that these T-DMRs may participate in biological func-
tions. Overall, QDMR provides a good performance
approach for identifying DMRs across multiple samples.

Measurement of sample specificity for DMRs by QDMR

As mentioned above, QDMR can identify functional
T-DMRs from genome-wide methylation data. Some
T-DMRs may exhibit not only methylation difference
across tissues but also specificity in a particular tissue.
To measure the tissue specificity for T-DMRs identified
by QDMR, categorical sample-specificity CSr=s was
defined based on the entropy difference �Hr=s (details in
‘Materials and Methods’ section). For each tissue, specific
hypermethylated T-DMRs (Hyper-T-DMRs) and specific

Table 1. Functional enrichment of genes related to T-DMRs by g:GOst

Term
type

Term name P-value Term
type

Term name P-value

Up 2 kb
GOBP Multicellular organismal process 1.62E-17 GOBP System development 3.02E-06
GOBP Signal transduction 2.52E-11 GOBP Biological regulation 6.59E-06
GOBP Cell surface receptor linked signalling pathway 4.04E-09 GOCC Intermediate filament cytoskeleton 1.82E-14

50-UTR
KEGG Retinol metabolism 2.63E-04 KEGG Leukocyte transendothelial migration 5.74E-04

Coding exon
GOBP Homophilic cell adhesion 3.82E-17 KEGG Calcium signalling pathway 8.03E-07
GOBP Multicellular organismal development 9.49E-12 REAC Signalling by GPCR 2.07E-11
GOBP Cell–cell adhesion 6.91E-09 MiRNA MI:hsa-miR-886-5p 1.83E-08
GOBP Calcium-dependent cell–cell adhesion 7.48E-08 MiRNA MI:hsa-miR-663 1.96E-08
GOBP Cell morphogenesis involved in differentiation 5.89E-07 MiRNA MI:hsa-miR-339-3p 2.67E-08
GOBP Cell differentiation 1.29E-06 MiRNA MI:hsa-miR-324-3p 8.65E-08
GOMF Transcription factor activity 6.16E-06 MiRNA MI:hsa-miR-638 5.95E-06

Intron
GOBP Multicellular organismal development 2.46E-12 GOBP Regulation of cell communication 2.24E-06
GOBP Anatomical structure development 4.27E-11 GOBP Cell adhesion 2.65E-06
GOBP Multicellular organismal process 4.52E-08 GOCC Cell projection 9.83E-09
GOBP Cell differentiation 4.74E-08 GOMF Cytoskeletal protein binding 2.24E-12
GOBP Organ development 1.87E-07 GOMF Calcium ion binding 3.22E-07

30-UTR
GOCC Intracellular 1.69E-05

Down 2 kb
None

Intergenic
GOBP Regulation of transcription 1.40E-21 GOBP Regulation of developmental process 2.19E-05
GOBP Regulation of gene expression GOCC Nucleus 3.70E-12
GOBP Cell fate specification 8.96E-12 GOMF DNA binding 5.10E-21
GOBP Multicellular organismal development 2.00E-08 GOMF Nucleic acid binding 6.13E-16
GOBP Organ development 2.64E-08 GOMF Transcription regulator activity 3.58E-13
GOBP Cell fate commitment 1.11E-07 GOMF Transcription factor activity 3.73E-11
GOBP Anatomical structure development 1.35E-07 MiRNA MI:hsa-miR-615-5p 3.66E-10
GOBP Organ morphogenesis 2.97E-07 MiRNA MI:hsa-miR-339-3p 6.62E-06
GOBP Regulation of transcription from

RNA polymerase II promoter
9.34E-07 MiRNA MI:hsa-miR-663 1.05E-05

GOBP Embryonic morphogenesis 7.70E-06 MiRNA MI:hsa-miR-423-3p 4.13E-05
GOBP Cell differentiation 8.52E-06 MiRNA MI:hsa-miR-296-5p 7.11E-05
GOBP Regulation of cell differentiation 1.53E-05 MiRNA MI:hsa-miR-886-5p 1.17E-04

Term type: Annotation database and gradation. GOBP: biological process in GO; GOCC: cellular component in GO; GOMF: molecular function in
GO; KEGG: KEGG pathway; REAC: reactome pathway; MiRNA: microRNA target.
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hypomethylated T-DMRs (Hypo-T-DMRs) were selected
from 10 651 regions by positive and negative CSr=s, re-
spectively (Table 3 and Supplementary Table S9). The
number of tissue-specific methylated regions varied
widely among the tissues (Supplementary Figure S6).
Especially, there were more specific T-DMRs in Uterus
and Sperm suggesting the distinctive methylation
patterns in germ cell-related tissues (52). In addition, the
proportion of Hyper-T-DMRs and Hypo-T-DMRs was
also different among different tissues. For example, the
number of Hypo-T-DMRs was 2.5 times more than that
of Hyper-T-DMRs in CD4+ T cells. Further analysis on
gene EPYC, which involves in female pregnancy,
demonstrated that the specific hypomethylation of the
T-DMR in the promoter of EPYC may account for its
specific high expression in placenta (Supplementary
Figure S7). Therefore, it is speculated that specific tissue
may possess its unique methylation patterns which deter-
mine its development and differentiation.

The relationship between histone modification and
specific T-DMRs

Histone modifications play important roles in stem cell
maintenance and tissue differentiation (53,54). A recent
study reported the specificity of histone modifications
in lineage fate determination of differentiating CD4+ T
cells (55). We investigated the normalized tag density of
each histone modification in Hyper-T-DMRs and Hypo-
T-DMRs in CD4+ T cells. The ratio between the mean
tag density in Hypo-T-DMRs and that in Hyper-T-
DMRs was defined as the relative modification intensity.
We compared the tag densities of each histone modification
between Hyper- and Hypo-T-DMRs. As shown in
Figure 6, Hypo-T-DMRs were more likely to be
overlapped with active chromatin marks, such as
H4K20me1, H3K79me3, H2BK5me1, H3K79me2,
H3K79me1, H3K4me1, H3R2me2, H3K9me1, H4K16ac
and H4K19ac, most of which correlates with active

Figure 5. Performance of QDMR in identification of T-DMRs and N-DMRs. (A) Different categories of regions by Rakyan’s method and QDMR.
X-axis are the ROIs which are divided into two groups according Rakyan’s method, T-DMRs represented by orange dots (I and II), and N-DMRs
represented by blue dots (III and IV). Y-axis is the entropy for each ROI derived from QDMR. All 40 437 regions are classified as N-DMRs (I and
III) and T-DMRs (II and IV) by DMR threshold represented by the red line. The number indicates the amount of regions in the corresponding
category. (B) The mean methylation levels across 16 tissues of the regions in I and IV. (C) The range of methylation levels in 16 tissues of the regions
in I and IV. (D) The standard deviation of methylation levels in 16 tissues of the regions in I and IV.
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transcription of genes (40) and play critical role in mam-
mal development (56). On the contrary, Hyper-T-DMRs
were in preference in suppressive histone modifications,
such as H3K9me3, H3K27me3 and H3K27me2, most of
which are involved in pluripotency maintenance and cell
fate decisions (53). These results suggested that Hyper-T-
DMRs and Hypo-T-DMRs may correlate with histone
modifications that have different activities and functions.

The correlation between DNA methylation difference and
gene expression difference

Irizarry et al. found differential methylation across tran-
scription start sites exhibited a strong inverse relationship

with differential gene expression (3). To examine whether
this relationship is still hold genome-widely, we obtained
16 258 ROIs related to 10 220 Refseq genes for 11 tissues
whose corresponding gene expressions were available in
the gene atlas data (36). We investigated the correlation
between methylation difference and expression difference
of associated genes in seven genome categories. The
methylation difference of each ROI was quantified by
the entropy derived from QDMR and the expression dif-
ference of each gene by the entropy was derived from
ROKU (38) for average expression status of related
genes of the same ROI. For ROIs in Up2kb, 50-UTR,
CodingExon and Intron, the Pearson correlation coeffi-
cient (PCC) between methylation entropy and expression
entropy shows that methylation difference is positively
correlated with gene expression difference
(Supplementary Figure S8). This observation is consistent
with a recent study which demonstrated that differential
DNA methylation correlates with differential expression
of angiogenic factors in human heart failure (57).

Recent studies demonstrated that T-DMRs are
associated with differences in gene expression (3,42). We
studied the locations of T-DMRs identified by QDMR
and tissue-specific differentially expressed genes
(T-DEGs) in 11 tissues. Based on the quantified methyla-
tion difference, QDMR identified 2391 T-DMRs and
13 867 N-DMRs using the threshold HDMR =4.637 for
11 samples. And based on the quantified expression dif-
ference, we selected 2965 T-DEGs and 7255 N-DEGs
using the threshold HDEG =2.326 which was estimated
from probability model of gene expression as described
in Schug’s work (30). About 35.1% (840/2391) of
T-DMRs located from upstream 2000 bp to downstream
2000 bp of a T-DEG (Supplementary Table S10), while
only 27.5% (3813/13 867) N-DMRs located from
upstream 2000 bp to downstream 2000 bp of a T-DEG.
Thus T-DMRs overlapped with T-DEGs much more
than expected (Chi-square test, P< 0.0001,
Supplementary Table S10), which was consistent with
the finding of previous studies (3,57). For example, there
was a T-DMR in the first intron of gene IL7R
(Supplementary Figure S9A). The hypomethylation of
this T-DMR in CD4+ T cells and CD8+ T cells may
involve in regulating the high expression of this gene
(Supplementary Figure S9B–D), which has been
demonstrated by Kim et al. (58). These results indicated
that T-DMRs may involve in regulation of cell/
tissue-specific gene expression which is considered as a
natural event in the tissue formation process (43).

The software package

The results have demonstrated that QDMR is useful in
quantification of methylation difference, identification of
DMRs and measurement of sample specificity for each
DMR. To facilitate its use in analysis of DMRs, we de-
veloped stand-alone and web-based software packages
using Java (Supplementary Figure S10). This software
includes all the features discussed in this article. It can
process data files with at least two samples with the fol-
lowing steps: data import, differentiation quantization,

Table 2. Functional enrichment of genes related to T-DMRs

identified only by QDMR based on biological process (BP)

BP term Gene
number

Bonferroni
P-value

Multicellular organismal process 789 7.56E-15
Homophilic cell adhesion 59 4.80E-13
Biological adhesion 174 7.53E-10
Cell–cell adhesion 88 1.29E-09
Cell adhesion 173 1.33E-09
Anatomical structure development 485 2.25E-09
Nervous system development 243 2.27E-09
System development 449 1.38E-08
Developmental process 575 8.33E-08
Multicellular organismal development 527 2.78E-07
System process 299 5.24E-06
Neurological system process 249 7.04E-06
Calcium-dependent cell–cell adhesion 17 1.36E-05
Cellular developmental process 314 6.18E-03
Cell differentiation 303 6.22E-03
Cell–cell signalling 128 1.67E-02
Anatomical structure morphogenesis 228 2.12E-02
Cell communication 161 2.19E-02
Synaptic transmission 73 2.25E-02
Cognition 179 3.56E-02
Neurogenesis 126 4.85E-02

Only annotations with Bonferroni P< 0.05 for GO in all levels are
listed here. Full lists and more details are provided in Supplementary
Table S7.

Table 3. Specifically hyper- and hypomethylated T-DMRs across 16

human tissues

Tissue T-DMR Hyper-T-DMR (%) Hypo-T-DMR (%)

B cell 461 180 (52.7) 281 (47.3)
CD4+ T cell 522 117 (22.4) 405 (77.6)
CD8+ T cell 840 619 (73.7) 221 (26.3)
Cervix 478 304 (63.6) 174 (36.4)
Colon 375 181 (50.9) 194 (49.1)
Liver 1174 851 (72.5) 323 (27.5)
Lung 412 224 (54.4) 188 (45.6)
Pancreas 657 321 (48.9) 336 (51.1)
Prostate 419 220 (52.5) 199 (47.5)
Rectum 628 280 (44.6) 348 (55.4)
Skeletal muscle 1865 1614 (86.5) 251 (13.5)
Uterus 4876 2057 (42.2) 2819 (57.8)
Whole blood 926 552 (59.6) 374 (40.4)
Placenta 1170 722 (61.7) 448 (38.3)
Sperm 4079 585 (14.3) 3494 (85.7)
Gm06990 2415 1606 (66.5) 809 (33.5)
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DMR identification, specificity measurement and methy-
lation visualization. Two output formats are available:
tabular and graphical. The tabular output is a table of
DMRs entries with columns representing region informa-
tion, entropy, sample specificity and raw methylation
data. The graphical output allows the user to inspect the
raw methylation data pattern, DMR distribution on
chromosomes and genome information at UCSC
Genome Browser. The standalone and online version of
QDMR is provided at http://bioinfo.hrbmu.edu.cn/qdmr.
In addition, the source code is also open to the public.

Application of QDMR to the methylation profiles in
mouse

Finally, QDMR software was applied to analyse the
methylation data set which was detected by RRBS in
seven adult mouse tissues/cells of 9636 CpG islands (5).
The heat map of methylation in seven tissues/cells of
mouse demonstrated that QDMR also can quantify
methylation difference for mouse methylation data
(Supplementary Figure S11A). Most CpG islands ex-
hibited consistent hypomethylation across seven tissues/
cells, which is consistent with a previous finding that
CpG islands are often free of methylation in normal
somatic tissues (59). According to the threshold
HDMR=3.636 for seven samples, only 4% (397/9636)
of CpG islands were identified as T-DMRs
(Supplementary Table S11). It is implied that CpG
islands possess less tissues/cells differential methylation
which is consistent with the finding in human genome in
this article. There were less T-DMRs than N-DMRs in
each genome category, while the CpG islands in Up2kb,

50-UTR and Intron exhibited a smaller proportion of
T-DMRs than other genome categories (Supplementary
Figure S11B). The distribution of all the T-DMRs
identified by QDMR on mouse chromosomes was also
shown in the visualization module in QDMR software
(Supplementary Figure S11C). The total 326 genes that
are related to these T-DMRs showed enrichment for
organ development (Supplementary Table S11). For
example, there is a T-DMR in the promoter of gene
HOXA5 encoding a transcription factor which plays key
roles in differentiation of adult cells (60). Previous studies
have demonstrated that the methylation of this T-DMR is
involved in regulation of cell-type-specific expression of
gene HOXA5 (61,62), which was also shown in our
analysis (Supplementary Figure S12).

DISCUSSION

Shannon entropy, as a measure of the uncertainty
associated with a random variable, has been previously
used to carry out biological research, such as to identify
potential drug targets (29), to prioritize promoter activity
(63) and to measure tissue specificity of gene expression in
many tissues (30). Due to the unique characteristics of the
methylation data, a two-step optimization was performed
based on Shannon entropy. The main difference between
QDMR and Shannon entropy is that QDMR introduces a
weight to adjust the entropy, which makes significant im-
provement in quantification of methylation difference. In
order to show the impact of weighting, we selected three
methylation patterns as shown in Figure 7A–C from the
data in Figure 2B divided by 2, 10 and 100, respectively.

Figure 6. Relative modification intensity between CD4+ T cell-specific Hyper-T-DMRs and Hypo-T-DMRs. X-axis is 38 histone modifications in
CD4+ T cell. Y-axis is the relative modification intensity of histone modification between hypermethylated and hypomethylated T-DMRs. The
horizontal line represents the same modification intensity between CD4+ T cell-specific Hyper-T-DMRs and Hypo-T-DMRs. ‘Asterisk’ represents
those histone modifications with significantly different modification intensity between CD4+ T cell-specific Hyper-T-DMRs and Hypo-T-DMRs.
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With this process, the three new patterns in Figure 7 have
smaller fluctuation range compared with region in
Figure 2B. As shown in Figure 7, when the fluctuation
range of methylation becomes smaller, HQ from QDMR
becomes bigger, while both HO and HP have no change.
Therefore, the entropy adjustment process by weight plays
an important role in quantifying the methylation differ-
ence for regions with small methylation fluctuation range.
This methylation pattern is very common in genomes
with numerous CpG islands which have constitutive
hypomethylation among all samples.
There are two major differences between QDMR and

the previous methods in identification of DMRs. The first
difference is that QDMR identifies DMRs based on quan-
tified methylation difference, while previous methods
based on statistics or counting. The entropy derived
from QDMR can quantify methylation difference reason-
ably, and can reflect the biological characteristics of
methylation difference, such as methylation difference dis-
tribution, the relationship between methylation difference
and CpG density, and the association between methyla-
tion difference and gene expression difference. QDMR can
be used to quantify methylation difference among various
numbers of samples, which benefits from the mathematic-
al properties of Shannon entropy. Moreover, the thresh-
olds determined from methylation probability model can
be used to identify DMRs based on the quantified methy-
lation difference. The second difference of QDMR is its
adaptability to the number of samples. The previous
methods were designed for the particular data set with
the given numbers of samples in their works. Instead,
QDMR was developed for identifying DMRs for variable
sample numbers. Therefore, QDMR may be a more
suitable method for identification of DMRs from methy-
lation profiles with multiple samples.
QDMR is independent of specific methylation mapping

technique. Currently, nearly all of these techniques need
the pre-treatment of DNA before amplification or hybrid-
ization by three main approaches, including endonuclease
digestion, affinity enrichment and bisulphite conversion as
reviewed by Laird (22). For biological and historical
reasons, the methylation data is with measurement scale
from 0 to 1 (0=unmethylated, 1=100% methylated)

in most of methylation mapping techniques, especially
some sequencing-based techniques MethylC-Seq, RRBS,
MeDIP-seq and MSCC. QDMR works on the fraction or
percentage methylation across multiple samples, and
identifies DMRs in a quantitative way, which has not
been performed by previous methylation analysis.
QDMR can be used to analyse the methylation profiles
from most of the current methylation mapping techniques
as summarized in Supplementary Table S12.

With the emergence of cost-effective high-throughput
sequencing techniques (for example, single-molecule
sequencing and nanopore sequencing), it may become
less expensive to profile the methylation status in various
tissues and other states (9,22). The identification of DMRs
from those high-throughput data may be the foundation
of further functional genomics analysis. In addition to the
identification of T-DMRs, QDMR could be applied to
identify C-DMRs, D-DMRs, R-DMRs, Intra-DMRs,
Inter-DMRs and DMRs in other biological processes.
The quantification of methylation difference and identifi-
cation of DMRs in multifarious temporal and spatial
methylomes should provide comprehensive survey of
genome-wide epigenetic functions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 7. Importance of methylation range across samples. Three regions with different methylation range across samples are artificially synthesized
based on the methylation values in Figure 2B. (A) Methylation values are produced from Figure 2B divided by 2. (B) Methylation values are
produced from Figure 2B divided by 10. (C) Methylation values are produced from Figure 2B divided by 100.
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