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Abstract
Several functional magnetic resonance imaging (fMRI) studies have demonstrated that resting-state brain activity consists 
of multiple components, each corresponding to the spatial pattern of brain activity induced by performing a task. Especially 
in a movement task, such components have been shown to correspond to the brain activity pattern of the relevant anatomi-
cal region, meaning that the voxels of pattern that are cooperatively activated while using a body part (e.g., foot, hand, and 
tongue) also behave cooperatively in the resting state. However, it is unclear whether the components involved in resting-state 
brain activity correspond to those induced by the movement of discrete body parts. To address this issue, in the present study, 
we focused on wrist and finger movements in the hand, and a cross-decoding technique trained to discriminate between the 
multi-voxel patterns induced by wrist and finger movement was applied to the resting-state fMRI. We found that the multi-
voxel pattern in resting-state brain activity corresponds to either wrist or finger movements in the motor-related areas of each 
hemisphere of the cerebrum and cerebellum. These results suggest that resting-state brain activity in the motor-related areas 
consists of the components corresponding to the elementary movements of individual body parts. Therefore, the resting-state 
brain activity possibly has a finer structure than considered previously.
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Introduction

The brain is active even when unengaged in motor or cogni-
tive tasks. The brain activity that occurs in the absence of 
any task engagement is referred to as spontaneous or rest-
ing-state brain activity (Biswal et al. 1995; Raichle 2010). 
Spontaneous fluctuations in brain activity, as measured by 
functional magnetic resonance imaging (fMRI), have physi-
ologically significant features but not a noise component 
(Biswal et al. 1996; Greicius et al. 2004; Sheline and Raichle 
2013; Kenet et al. 2003; Wang 2013; Albert et al. 2009). For 
example, several studies have reported a part of the resting-
state brain activity to be associated with processes such as 
memory, brain function maintenance, and creative think-
ing, as well as indicated its usefulness as a biomarker of 
brain diseases (Greicius, et al. 2004; Sheline and Raichle 
2013). Importantly, spontaneous fluctuations in resting-state 
brain activity consist of multiple components that resemble 
several neural substrates of more complex cognitive tasks, 
including anatomical parcellation such as retinotopic maps 
and somatotopic arrangement. This has been corroborated 
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in studies that utilize complementary methods. For exam-
ple, a study of the resting-state brain activity of anesthetized 
cats revealed that spontaneous fluctuations in ongoing visual 
cortex activity corresponded closely to orientation maps 
created using a voltage-sensitive dye method (retinotopic 
maps) (Kenet et al. 2003), and population-level patterns in 
the spontaneous activity of rat auditory and somatosensory 
cortices have previously been shown to align with the pat-
terns that respond to direct sensory stimulation (Luczak 
et al. 2009). Furthermore, in the somatosensory cortices of 
non-human primates, a close relationship between anatomi-
cal connections from electrophysiological recordings and 
resting-state functional connectivity from fMRI has been 
established (somatotopic arrangement) (Wang et al. 2013). 
Collectively, these prior reports suggest that spontaneous or 
resting-state neural activity occurs in a replicable, reliable, 
and externally valid manner.

In addition, studies done in humans have revealed that 
resting-state brain activity often echoes activity-dependent 
neural activation (Biswal et al. 1995; Smith et al. 2009; Long 
et al. 2014). In large-scale brain networks, components esti-
mated from resting-state brain activity by independent com-
ponent analysis (ICA) are very similar to the brain activity 
underlying several different types of tasks (e.g., visual, audi-
tory, and motor) (Smith et al. 2009; Laird 2011). Previous 
studies have also revealed that more fine-grade representa-
tions or intra-regional connectivity may occur in the visual 
(Wilf et al. 2017; Lu et al. 2017) and somatosensory (Long, 
et al. 2014) domains. In the sensorimotor-related regions, 
it has been previously established that task-induced brain 
activity in the pre- and postcentral gyri and the cerebellum 
are organized in close approximation to the body parts that 
they represent (i.e., somatotopic arrangement) (Penfield and 
Rasmussen 1952; Meier et al. 2008; Buccino 2001; Schieber 
2001). Long et al. (2014) suggested the primary sensori-
motor cortex activity in the resting state is somatotopically 
related to the use of body parts (e.g., the foot, hand, and 
tongue), and more fine-grained activity may also exist, as 
reported in anatomical and task-induced activation studies 
(Penfield and Rasmussen 1952; Meier, et al. 2008; Buccino, 
et al. 2001; Schieber 2001). Therefore, the specificity or fine-
ness of these similarities between task-induced and resting-
state brain activity remains unclear. Given this background, 
we chose to focus to wrist and finger movements, which are 
neighboring body parts and have widely overlapping acti-
vation areas in the brain; therefore, they are likely to have 
abutting cortical representations (somatotopic arrangement.)

In the present study, we aimed to confirm whether rest-
ing-state brain activity of fMRI has components similar to 
task-induced brain activity, even related to more discrete 
body parts. To achieve this goal, we used cross-decoding 
(Kriegeskorte 2011) to extract the task-similar resting-state 
brain activity in motor-related areas (primary somatosensory 

cortex, primary motor cortex, pre-motor area, and cerebel-
lum) [see below and Supplementary Information (SI) for 
more detail]. The cross-decoding is one of multi-voxel (-var-
iate) pattern analysis (MVPA) based on machine learning, 
and the sensitivity of MVPA is higher than uni-voxel (vari-
ate) statistical analyses, because it synthesizes information 
across multiple voxels using machine learning algorithm 
(Davis et al. 2014). Here, cross-decoding is a procedure of 
applying a decoder that has learned to classify each task 
based on other data, such as a combination of the move-
ment task and the resting-state brain activity (i.e., extracting 
the similarity of test data to the training data). The cross-
decoding outputs the similarity between the training data 
(movement task) and the test data (resting state).

The cross-decoding consists of two steps. The first step 
is extracting the characteristic multi-voxel patterns corre-
sponding to the specific brain activity induced by each task. 
Several studies have shown that machine learning can esti-
mate correspondence between several tasks (task labels) and 
task-induced brain activities (data) (Haynes and Rees 2005a, 
b; Haynes and Rees 2005a, b; Kamitani and Tong 2005, 
2006; Norman, et al. 2006; Ogawa and Imamizu 2013). 
In fact, several studies have also adopted this approach to 
identify specific information represented in the resting-state 
brain activity (Deuker 2013; Kurashige et al. 2018; Schapiro 
et al. 2018).

The second step is measuring the similarity between the 
characteristic multi-voxel patterns of the first step and the 
task-similar resting-state brain activity. We defined the out-
put of cross-decoding as a task-relevancy index (RI.) As 
characteristic of the decoder, RI is large when input data are 
similar to the training data, whereas RI is small (close to the 
decision boundary: ~ 0) when input data are not similar to 
training data. Thus, we evaluated how far the RI is from the 
task-dissimilar brain activity (the decision boundary) and 
examined the existence of the task-similar activity of wrist 
and finger movements in the resting-state brain activity.

Materials and methods

Subjects

Twenty-one healthy right-handed adult men (20–33 years; 
mean 23.4 years) participated in the present study. They 
had no history of psychiatric or neural disease and pro-
vided informed consent documents before the experiment. 
The Institutional Ethics Committee of the Advanced Tel-
ecommunications Research Institute International and the 
National Center of Neurology and Psychiatry (NCNP), in 
accordance with the tenets of the Declaration of Helsinki, 
approved of this study.
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MRI data acquisition

All structural and functional images were acquired using 
a Siemens Verio 3-Tesla MR scanner (Siemens, Erlangen, 
Germany). Here, the structural image was a three-dimen-
sional T1-weighted image (magnetization-prepared rapid 
gradient-echo imaging: MPRAGE) with the following 
parameters: 192 slices; matrix size, 256 × 256; TR, 1900 ms; 
TI, 900 ms; TE, 2.52 ms; flip angle 9 degrees; voxel size, 
0.97 × 0.97 × 0.97 mm. Functional images were scanned via 
echo-planar imaging (EPI) with the following parameters: 
39 slices; matrix size, 64 × 64; TR, 3000 ms; TE, 40 ms; flip 
angle 90°; voxel size, 3 × 3 × 3 mm; slice gap 0.6 mm. All 
subject instructions were projected from outside the scan-
ner room onto a mirror located at the scanner bore. Note 
that currently, data of this paper are confidential and are not 
allowed to access (Data and Code Availability Statement.)

Experiment

All experiments were conducted over 2 (18 subjects) or 
3 days (3 subjects.) The experiment consisted of one resting-
state session and movement-task sessions. While the resting-
state session was performed on each day of the experimen-
tal period, we used only the data obtained on the first day, 
considering the plasticity of the brain activity. The number 
of movement-task sessions differed between subjects, but at 
least eight sessions were conducted because of the subjects’ 
health (e.g., tired and sleepy) and schedule. Seven subjects 
performed 8 sessions, one subject performed 10 sessions, 
four subjects performed 12 sessions, one subject performed 
15 sessions, and the remainder of the subjects performed 
16 sessions (see SI, Table S1 for further details). During 
experiments, subjects remained in a supine position with 
their arms fixed to the side of the body. In addition, they 
wore earphones during the scan period.

Resting‑state session

The resting-state session was conducted before the move-
ment-task session, and 200 images were acquired on each 
day. Before the resting-state session, subjects were instructed 
not to think of anything and to focus on the fixation cross 
on the center of the screen. We used only images that were 
obtained on the first day (a total of 200 images) to elimi-
nate the after-effects of the movement task. In addition, we 
denoted the fMRI data in the resting-state session as RS.

Movement task session

During the movement-task session, we asked subjects to 
move either their wrist (Wrist task) or finger (Finger task). 
All movement-task sessions were performed in a block 

design. Wrist task involved flexion and extension of the 
right wrist and subjects were instructed not to touch any 
other body parts (e.g., a thigh) directly prior to beginning the 
experiment. In Finger task, the fingers of the right hand were 
flexed and extended. Participants were instructed not to touch 
the fingers to one another [i.e., subjects did not form a fist, 
see Figure S1 (b) in SI]. Each movement task was performed 
in synchrony with a 2-Hz tone delivered via earphones. Each 
movement task lasted for 18 s, each was performed 4 times 
per session, with a rest period of 18 s between movement 
tasks (e.g., Rest period—> Wrist task—> Rest period—> 
Finger task—> Rest period—> Wrist task…—> Rest 
period). Thus, the measurement time per session was 306 s 
(about 5 min) (102 scans). In addition, we presented instruc-
tions on a screen as follows: “Wrist” or “Finger” and “Go” or 
“Wait”, for execution timing (see Fig. 1.) Here, we changed 
the type of the first movement at the number session (even 
and odd number session) to eliminate the bias of the move-
ment task. Odd sessions began with the Wrist task, while 
even sessions began with the Finger task (see SI for task 
schedule details.) In addition, we denoted the fMRI data in 
the movement-task session as MT.

DATA preprocessing

All measured data were preprocessed via MATLAB 2019a 
(MathWorks, Natick, MA, USA.)

Spatial preprocessing

Whole brain images from each session were preprocessed 
using realignment and head motion corrections (second-
degree B-spline), followed by the slice timing corrections 
using the mean slice of all sessions as a reference via SPM 
12 (update revision number: 7487) (Penny, et al. 2011) 
(http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/). T1 images were co-
registered to the mean slice via the above-mentioned toolbox 

Rest Wrist Rest Finger … Wrist Rest

6 scans

1 block

1 session = 17 blocks

Wrist

Wait

Wrist

Go

Finger

Wait

Finger

Go

Fig. 1   Instruction screen display timing. Note that Wrist, Finger, and 
Wait were displayed in Japanese in actual

http://www.fil.ion.ucl.ac.uk/spm/
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and they were segmented to six categories (gray matter, 
white matter, cerebrospinal fluid, bone, soft tissue, and air.)

The region of interest (ROI)

Region of interest (ROI) was defined using the FreeSurfer 
cortical modeling software package (ver. 6.0.0, Laboratory 
for Computational Neuroimaging, Athinoula A. Martinos 
Center for Biomedical Imaging, https://​surfer.​nmr.​mgh.​
harva​rd.​edu) (Fischl 2012). We defined the ROIs in both 
contralateral and ipsilateral sensorimotor areas in the cer-
ebral cortex. This is because several studies of human and 
non-human primate movement have reported that charac-
teristic brain activity during unilateral movement occurs 
in both the contralateral (Meier et al. 2008) and ipsilateral 
motor cortices (Tanji et al. 1988; Newton et al. 2005; Ver-
stynen et al. 2005). Furthermore, we also defined the ROIs 
in the contralateral and ipsilateral cerebellum, because the 
cerebellum has also been found to be organized somatotopi-
cally (Manni and Petrosini 2004). The details of the ROIs 
defined in the present study are as follows: the primary 
somatosensory cortex (left and right Brodmann areas 3, 1, 
and 2): LS1/RS1; the primary motor cortex (left and right 
Brodmann area 4): LM1/RM1; the pre-motor area (left and 
right Brodmann area 6): LPM/RPM; and the left and right 
cerebellar hemispheres: LCB/RCB. Additionally, the ven-
tricles (combined laterals, third, and fourth ventricles) were 
used as a control ROI. Here, we defined a probabilistic atlas 
based on cytoarchitecture (Amunts et al. 2007; Fischl et al. 
2002; 2007; Hinds 2008; Toga et al. 2006; Zilles et al. 2002) 
and all ROIs were masked using a gray matter image created 
by segmentation of SPM12 (Penny et al. 2011), with the 
exception of the LCB/RCB and the ventricles. The LCB/
RCB gray matter area was segmented with FreeSurfer.

Temporal preprocessing

After spatial preprocessing of each ROI, components that 
did not relate to brain signals, such as linear trend or noise 
components, were eliminated from the time series of each 
session’s images. These components were eliminated by 
regressing them out. Here, we defined the noise component 
(N) as that which was derived from signals beyond brain 
activity (e.g., head motion), consisting of cerebrospinal 
fluid (CSF), white matter (WM), global signal (GS), and 
six parameters for realignment of motion correction (RP) 
[i.e., N = (CSF WM GS RP)]. Here, the CSF and WM were 
defined based on structural images obtained via segmen-
tation implemented in SPM12 and ROI extraction using 
MarsBar software (ver. 0.44, http://​marsb​ar.​sourc​eforge.​net) 
(Brett et al. 2002) (“Build ROI” in the “ROI definition”; 
binarization threshold: 0.1 for CSF and WM). Note that the 
ventricles were eliminated from the CSF signal, because 

they were used as a control ROI (see below). The GS was 
defined as that which appeared after BET processing of the 
structural image obtained via FSL (ver. 5.0.9, the FMRIB 
Software Library, The University of Oxford, http://​www.​
fmrib.​ox.​ac.​uk/​fsl) (Smith et al. 2004) [BET (Smith, Fast 
robust automated brain extraction 2002) function of FSL was 
used]. In addition to the noise component N, we calculated a 
temporal derivative of the above noise components of N (N′) 
and the quadratic term in each component ( N2N′2 ). These 
four components derived from N were used as a noise regres-
sor for regressing out ( RNoise ) (i.e., RNoise =

[

N N�N2N�2
]

 ) 
(Satterthwaite, 2013). The noise regressor was normalized, 
such that its maximum value was 1. In addition, we defined 
another regressor that represented the trend and baseline 
component ( RTrend .) We estimated task components with a 
regressor derived from a combination of noise and the trend 
regressor ( R =

[

RNoise RTrend

]

 .) We subtracted this to esti-
mate a task component from the MT.

The RS for each time series were subtracted from that 
time series’ mean value and a band-pass filter was applied 
(passband: 0.010–0.10 Hz, fourth order) (Fox et al. 2005). 
As in the movement task, the noise and trend components 
of the resting state were estimated and subtracted separately 
for each day. Note that this noise estimation was conducted 
independently from data acquisition during the movement 
task and the resting state session.

Decoding and cross‑decoding

To examine the task-similar resting-state brain activity, we 
used MVPA. In particular, we adopted a variant of MVPA 
called cross-decoding. In cross-decoding, a decoder is 
trained to classify brain activity related to each movement 
task. In general, cross-decoding uses this trained decoder 
to extract characteristic components from an untrained cat-
egory (Walther et al. 2011) or different types of one, such 
as that derived from resting-state imaging (Guidotti et al. 
2015). Figure 2 depicts a flowchart of cross-decoding pro-
cedures in the present study (see SI for more details on these 
analyses.)

The cross-decoding is performed in two steps. Below is a 
summary of the analyses performed during each step.

1.	 Training step (Fig. 2a)

–	 Training a decoder using movement data
–	 Evaluate the trained decoder’s accuracy by leave-

one-session-out cross-validation (LOO-CV)
–	 Check the trained decoder’s weight parameter map 

in the brain.

2.	 Extraction step (Cross-decoding; Fig. 2b)

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
http://marsbar.sourceforge.net
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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–	 Extract the RI from the RS using the trained decoder
–	 Calculate the RI of task-irrelevant component (IC)
–	 Compare the RI of RS and IC.

Here, RI represents how much the inputted data (RS) are 
similar to each task’s training data (MT). Properties of the 
RI includes the following:

1.	 If it is positive on average, the inputted data are similar 
to the brain activity during the Finger task (i.e., part of 
RCs).

2.	 If it is negative on average, the inputted data are similar 
to the activity during the Wrist task (i.e., part of RCs).

3.	 If the RI has a peak of distribution at the origin 
(peak = 0) and is distributed around 0, it is not similar 
to the brain activity associated with each movement (i.e., 
IC).

The RS reflects the RC and IC (see Fig. 2c). When the 
RC is included substantially, the RI of RS (RIRS) has a wider 
distribution, because RI of RC (RIIC) is far from the origin 
(see supplementary for the case that holds this assumption). 
Moreover, if a brain activity pattern that combined the wrist 
and finger brain activity input to a trained decoder, the RI 
does not have wide distribution (see SI for more detail). 
Therefore, that resting-state fMRI data in the motor-related 
areas (ROIs) should have the task-similar brain activity if 

the RIRS in these areas would be wider than motor-unrelated 
area (i.e., IC.) To test this prediction, we calculated the RIRS 
and its standard deviation (SDRS) as an index of distribution 
width, and compared the SDRS and SD calculated from task-
irrelevant components (see below for details.)

Training step

Training a decoder

First, the first two scans collected for each movement-task 
trial were excluded to eliminate any effect of the previ-
ous task, as hemodynamics are delayed relative to neural 
signals (Ogawa et al. 1990). Next, data were normalized 
such that the Euclidean distance between voxels at each 
time point (scan) was 1. Data for each trial were averaged 
across the time series. This normalization was used to fit 
the voxel space during the movement task to resting-state 
images. Next, the decoder was trained using the normal-
ized data. We used a regularized logistic regression (RLR) 
approach, which added a regularized L2-norm term. Equa-
tions (1)–(3) account for the probability distribution of 
RLR. Note that P() is the probability function, y is a binary 
variable for the class {Wrist, Finger}, X is the brain activ-
ity pattern (single scan × voxels), and w is a weighted 
decoder’s parameter. Furthermore, �() is the sigmoid func-
tion. We used the RLR code provided with SLR Toolbox 

(c) The RI distribution of RS

ICs FW

RCs

Decoder
(RLR)

(b) Extraction step

RI

RI

(a) Training step

, RS

Evaluate
performance

Cross-decoding

Class label
none

Class label
 =  { , }

Σ

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y RS

RI

= { , } RS

Training

Fig. 2   Flowchart of cross-decoding and evaluation. a: Training a 
decoder using regularized logistic regression (RLR) to classify input 
fMRI data X and class label y (Wrist task ( X�

��� y� ) and Finger 
task ( X�

��� y� )) (training step). The trained weight parameter (w) 
was used for the subsequent step. b Extracting the task-relevant com-
ponents (RCs) from resting-state fMRI data X�� (extraction step). 
The extraction step outputs a task-relevancy index (RI). c Expected 

RI distribution of the resting state (RS). The resting-state brain activ-
ity is constructed by the weighted addition of two distributions: 
RCs and task-irrelevant components (ICs). In consideration of this 
assumption, the RI of the resting-state brain activity (magenta line) 
should be wider than that of the ICs (green line), if the RC exists. 
The RCs correspond to two distributions that are relevant to each task 
(Wrist task and Finger task)
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(biclsfy_rlrvar.m) (ver. 1.51, ATR Computational Neuro-
science Laboratories, http://​www.​cns.​atr.​jp/%​7Eoya​mashi/​
SLR_​WEB.​html) (Yamashita 2011; Miyawaki 2008)

Evaluating the trained decoder’s accuracy

Classification accuracy was defined as the percentages of 
correct class labels (i.e., the number of correctly estimated 
labels divided by the total number of labels.) Accuracy 
was calculated using a leaving one session out cross-
validation (LOO-CV) for each subject and each ROI. 
To confirm whether the trained decoder is sufficient to 
classify each movement, we evaluated its accuracy with 
a Wilcoxon signed-rank sum test (Wilcoxon 1945) of the 
difference between each ROI and the Ventricles-ROI at p 
< 0.05. We used a Bonferroni correction to correct for a 
family-wise error rate of NROI = 8.

Checking the trained decoder’s weight parameter map 
in the brain

We checked the trained decoder’s weight parameter on the 
brain to confirm brain activity details and classify each 
movement task. The values of the weight parameter rep-
resent the importance of each voxel in a three-dimensional 
voxel space. Thus, we generated a map (image) from the 
weight parameter (weight parameter map). Previous stud-
ies have shown that the neural representations related to 
movement tasks are somatotopically arranged (Penfield 
and Rasmussen 1952). Thus, we expected that the trained 
decoder’s weight parameter map might also be organized 
in a somatotopic manner. However, if weight parameter 
map revealed a mosaic pattern, we would conclude that 
brain activity contained complex information.

We transformed all subjects’ weight parameter maps to 
the MNI 152 coordinates contained in Montreal imaging 
institute (MNI) space and averaged across all subjects for 
each ROI. To display voxels that were considered to be 
particularly important when classifying, we extracted only 
those voxels with an absolute value of averaged weight 
parameter map in the top 10% for each movement task.

(1)P(y = Finger|X, w) = �(Xw),

(2)P(y = Wrist|X, �) = 1 − �(Xw),

(3)�(Xw) =
1

1 + exp (−Xw)
.

Extraction step

Extracting the RI from the RS using the trained decoder

Next, we performed cross-decoding to the RS and calculated 
the RI. Here, RI is defined as the multiplication of the 
trained decoder’s weight parameter (w) and the fMRI data 
(X) (i.e., RI ≡ Xw ). Note that this formula requires the 
denominator of Pearson correlation coefficient 
ri =

(xi−xi)(w−w̄)
SDxi

SDw

 ( ri : Pearson correlation coefficient at ith 

scan, xi : fMRI data at ith scan, xi : mean value of xi , w̄ : mean 
value of w , SDxi∕w

 : standard deviation of xi∕w ). The RI was 
calculated for each scan (time series) and the standard devia-
tion (SD) of the RI was calculated by investigating whether 
the brain activity during the resting state is similar to that 
during task performance.

Calculating the RI of IC

To evaluate existence of the somatotopic organization for 
wrists or fingers in the resting-state activity, we considered 
task-irrelevant components (IC) as null distributions to com-
pare it with RS.

We assumed that an information related to tasks is con-
structed as multi-voxel patterns, so the RC and IC are dif-
ferent patterns.

However, if there is no limit to the generation of the IC, 
the IC exists infinitely. Thus, we generated the IC under 
the constraint of using real fMRI data, and the multi-voxel 
patterns of data were randomly shuffled to break down the 
information about each task. Here, the RS was used to gener-
ate the IC and the process was replicated 1000 times.

One problem was that the computation cost was too 
large to generate the IC from each RS scan (number of 
iterations × number of scans = 1000 × 200), so alternately 
we randomly shuffled the voxels of RS by each iteration 
only. This procedure is same shuffling the weight parameter 
except for the bias term when calculating the RI of IC. Thus, 
we shuffled the trained decoder’s weight parameter [i.e., the 
computation cost is the number of iteration (1000)]. Here, 
the shuffling algorithm we used was the iterative amplitude 
adjusted Fourier transform (Venema et al. 2006; Venema 
et al. 2007; Schomburg et al. 2012) (IAAFT). We defined 
the decoder constructed by this procedure as a shuffled task-
relevant decoder ( RDshuffle).

Comparing the RI of resting‑state brain activity and IC

The SD had a bias, which was dependent on the decoder’s 
accuracy (see SI), and each subject’s decoder was not of the 
same accuracy in even the same ROI. Thus, we needed to 

http://www.cns.atr.jp/%7Eoyamashi/SLR_WEB.html
http://www.cns.atr.jp/%7Eoyamashi/SLR_WEB.html
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eliminate the bias from the SDRS and SDIC before comparing 
each SD. Here, we defined the mean SDIC as bias. However, 
the SDRS existed in the SDIC distribution, but the mean of the 
SDIC is not the same as SDRS in many cases. Thus, we also 
subtracted the SD of the SDIC distribution to close SDRS to 
the mean of SDIC . Therefore, we corrected each SD for the 
following equations:

Finally, we examined whether SDRS is greater than the 
value at 95% of SDIC distribution.

Results

Decoding results

We confirmed the trained decoder’s accuracy in each ROI 
(Fig. 3). The mean accuracy across subjects was as follows: 
LS1: 90.8 ± 4.9%, RS1: 73.3 ± 10.8%, LM1: 88.8 ± 5.6%, 
RM1: 69.4 ± 11.1%, LPM: 87.9 ± 5.2%, RPM: 75.4 ± 11.1%, 
LCB: 64.5 ± 8.8%, RCB: 72.5 ± 11.2%, and Ventricles: 
53.2 ± 7.6% (mean ± SD). Results obtained for each motor-
related ROI without RM1 were significantly larger than 
those for the control area (Ventricles-ROI) (p < 0.05, cor-
rected). A difference in accuracy between left- and right-
lateralized homologous regions (left–right) was observed 
(S1: 17.5 ± 8.7%, M1: 19.4 ± 11.5%, PM: 12.5 ± 9.7%, CB: 
− 8.4 ± 9.2%). This result revealed that the accuracy in con-
tralateral ROIs was higher those in ipsilateral ROIs in the 
cerebrum, while the accuracy in ipsilateral ROI was higher 
those in the contralateral ROI in the cerebellum, with a dif-
ference of approximately over 8%. Additionally, there was 
no significant difference between subjects with a different 

SDRS = SDRS −
(

mean
(

SDIC

)

+ SD
(

SDIC

))

,

SDIC = SDIC −mean
(

SDIC

)

.

number of sessions, except for the RPMdv and one non-
anatomical ROI (see below and SI.)

Next, we confirmed the spatial distribution of weights 
to examine whether the trained decoder’s weight parameter 
was related to a somatotopic representation. Figure 4 depicts 
weight parameter maps on a normal brain. Distributions 
across the left and right hemispheres in cerebrum were simi-
lar (Fig. 4a–c, d–f). Consistent with previous studies (Long 
et al. 2014; Penfield and Rasmussen 1952; Meier et al. 2008; 
Manni and Petrosini 2004), the wrist and finger activation 
areas are represented in posterior and lateral regions of the 
precentral gyrus, respectively. Moreover, the distribution of 
weight related to each movement was clustered. However, 
this distribution is observed within a smaller area than previ-
ously reported (Wang et al. 2012).

Cross‑decoding results

Next, we applied the trained decoder to RS (cross-decoding) 
and obtained RI distribution for each ROI to confirm RC in 
the RS. A representative example of the RI distribution for 
the task in LS1 is depicted in Fig. 5a. The RIRS is widely 
distributed, with its peak nearly at the origin (= 0), as is 
expected. Figure 5b depicts the RI distribution of the Ven-
tricles-ROI and Fig. 5c depicts the enlarged that. Unexpect-
edly, its RIRS is widely distributed. We thought that the RIRS 
has many ICs, because Ventricles-ROI is a low accuracy 
decoder (about chance level.) Therefore, we thought that 
could not conclude from only RI distribution.

Figure 5a depicts that the RI distributions in LS1 for each 
task were little overlapping. We found that the overlapping 
area was wide when the trained accuracy was low and nar-
row when the accuracy was high.

Next, we examined SDRS and SDIC for motor-related 
ROIs and it corrected by Ventricles-ROI. Figure 6 depicts 
SDRS bar and SDIC violin plot for motor-related ROIs. 
Their SDRS are: LS1: 0.189 ± 0.212, RS1: 0.081 ± 0.102, 

Fig. 3   Decoder accuracy 
measured by leave-one-session-
out cross-validation (LOO-CV) 
across subjects for each ROI. 
Each dot depicts accuracy 
for each subject. Horizontal 
dashed lines depict chance-
level accuracy (50%.) The 
asterisks indicate statistical 
significance when compared to 
the Ventricles-ROI; **p < 0.01, 
***p < 0.001
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LM1: 0.132 ± 0.111, RM1: 0.037 ± 0.076, LPM: 
0.151 ± 0.086, RPM: 0.089 ± 0.069, LCB: 0.077 ± 0.042, 
and RCB: 0.074 ± 0.043 (mean ± SD; arbitrary unit). 
In addition, the difference in SDRS between the left 
and right hemispheres (left–right) was positive; S1: 
0.108 ± 0.186, M1: 0.096 ± 0.124, PM: 0.086 ± 0.131, 
and CB: 0.003 ± 0.051. This result revealed that, as with 
accuracy (Fig. 3), the SD of the RI for contralateral ROIs 
were higher than those of ipsilateral ROIs in the cere-
brum. Next, we compared SDRS and SDIC . The results of 
this test revealed that the SDRS for cerebral and cerebel-
lar motor-related activities were significantly larger than 
the SDIC ; L/R S1, L/R M1, L/R PM, and L/R CB: ~ 0 (p 
value; arbitrary unit). Therefore, we found the task-similar 
multi-voxel patterns to be bilaterally apparent in cerebral/
cerebellar motor-related areas in the resting-state.

Discussion

In the present study, we examined task-similar multi-voxel 
patterns in resting-state brain activity compared to move-
ment-induced brain activity. Our results reveal significant 
similarities between these two conditions and support our 
hypothesis that neural representations of the resting state 
in the sensorimotor areas correspond to the fine neural 
areas activated by movement and have a similar somato-
topic arrangement. These results suggest that task-related 
neural representations in the resting state are finer and 
more widely distributed in the brain than conventionally 
expected.

Somatotopic arrangement in trained decoder’s 
weight parameter

Several studies have demonstrated that, when executing 
right-hand movement, the S1, M1, and PM in the con-
tralateral cerebrum (left hemisphere) are activated (Pen-
field and Rasmussen 1952; Woolsey et al. 1979; Rizzolatti 
and Luppino 2001) and that these regions are somatotopi-
cally organized. Similarly, a somatotopic organization in 
cerebellar regions has been noted ipsilateral to the move-
ment-executing hand (Lotze 1999; Grodd et al. 2001).

The trained decoder’s weight parameter arrangement 
was similar (see Fig. 4). In the results presented here, the 
weight parameter revealed that negative voxels (i.e., wrist-
related voxels) were located in the superior–dorsal–medial 
region and that positive voxels (i.e., finger-related voxels) 
were located in the superior–dorsal–lateral region of the 
cerebrum (Fig. 4a–f). These results demonstrate similari-
ties in the somatotopic arrangement of cerebral motor-
related areas (L/R S1, L/R M1, and L/R PM-ROI) (Long 
et al. 2014; Meier et al. 2008; Manni and Petrosini 2004).

Furthermore, we checked the location of the peak value 
voxel in the weight parameter and the anatomical loca-
tion using FSL (ver. 5.0.9, the FMRIB Software Library, 
The University of Oxford, http://​www.​fmrib.​ox.​ac.​uk/​fsl) 
(Smith et al. 2004) (see Table S6–S8 in SI). The peak 
value in the motor-related areas was found to be consistent 
with a somatotopic arrangement for many sensorimotor 
areas, except for RM1.

The formula of cross-decoding resembles the Pearson 
correlation coefficient (see SI more detail), and the cross-
decoding results show the correlation between RS and 
the trained decoder’s weight parameter. If the pattern is 
similar to the somatotopic arrangement, a large RI denotes 
a strong correlation. From these results, our results are 
unlikely to be occurred in only somatotopic representation 
of the weight itself. Also, the resting-state activity that 

Fig. 4   Weight parameter maps for the subject average in each ROI 
(top 10% of positive/negative values in the weight parameter for each 
subject) of the trained decoder. Images are visualized on the trans-
verse plane (Z). a–h L/R S1, M1, PM, CB-ROI, (i): Ventricle-ROI. 
Background structural images (T1-weighted) are normalized to MNI 
152 coordinates and averaged across subjects. Warm colors (red to 
yellow) depict a positive value of voxels, whereas cool colors (sky 
blue to blue) depict a negative value of voxels

http://www.fmrib.ox.ac.uk/fsl
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does not have somatotopic representation, but is similar 
to task-related signals (e.g., the combined activity of the 
wrist and finger movements) cannot replicate our results 
(see SI more detail). Therefore, a part of the resting-state 
brain activity in motor-related areas mimics the somato-
topic arrangement.

Task‑related activity in bilateral hemispheres 
during right‑hand movement task

We explored whether a resting-state brain activity pattern 
is similar to those seen during Wrist and Finger tasks. Our 
results show that task-similar resting-state brain activity 
exists. Additionally, from the above relationship between 

Fig. 5   The results of cross-
decoding for LS1-ROI (a) and 
Ventricles-ROI (b, c). a, b The 
RI distributions. c Enlarged the 
RI distributions for Ventricles-
ROI (b). Blue solid line: The 
RI distribution of Wrist, Red 
solid line: the RI distribu-
tion of Finger, Magenta solid 
line: the RI distribution of the 
resting state, and Green solid 
line: The RI distribution of the 
task-irrelevant components (top 
50th/1000, indicating the value 
of significance level p < 0.05). 
Upper lines—Magenta: SD of 
resting state; Green: SD of the 
task-irrelevant components at 
top 50th/1000. Note: this SD is 
before correction

RI

(a): LS1-ROI

(b): Ventricles

(c): Closeup (b)

Wrist
Finger
RS
IC

SD

ycneuqerf dezila
mro

N

Fig. 6   The SD
RS

 bar and the 
SD

IC
 violin plot for motor-

related regions of interest 
(ROIs.) The asterisks indi-
cate statistical significance 
when compared to the SD

IC
 ; 

***p < 0.001. Magenta bar: 
SD

RS
 ; green violin plot: SD

IC
 ; 

black line: top 50th/1000 of the 
SD

IC
 . Note that these SD

RS∕IC 
are the subtracted mean of SD

IC
 

and SD of SD
IC

 (see the supple-
mentary information for further 
details.) SD: standard deviation; 
IC: task-irrelevant component; 
RS: the resting-state brain 
activity
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the weight parameter on the brain and the somatotopic 
representation, we think that a part of resting-state brain 
activity is similar to the somatotopic arrangement. Moreo-
ver, these results were found at both hemispheres in motor-
related areas. Several previous studies have established that 
ipsilateral activation during unilateral movements relates to 
interhemispheric interactions (Hoshiyama 1997; Kobayashi 
et al. 2003; Verstynen and Ivry 2011). Similarly, resting-
state functional connectivity has also been reported to be 
bilaterally arranged (Smith et al. 2009). For example, an S1/
Cerebellum network is bilaterally detected using independ-
ent component analysis (ICA)-based network analysis of the 
resting state. Consistent with these findings, we also found 
that task-similar resting-state brain activity was observed 
in both contralateral and ipsilateral cerebral/cerebellum. 
In addition, we found that both decoder accuracies and the 
width of RI distributions (SDRS) were greater for ROIs in the 
dominant hemisphere (contralateral cerebrum ROIs) than 
in the non-dominant hemisphere (Figs. 3, 6). This suggests 
that task-similar resting-state brain activity exists similarly 
(though not identically) and in a more refined degree than 
has previously been described. In fact, the success of decod-
ing ipsilateral movements have been reported previously 
using fMRI, electroencephalogram, and electrocorticogram 
approaches (Fujiwara 2017; Bundy et al. 2012; Scherer et al. 
2009; Liu et al. 2010; Hotson 2014; Diedrichsen et al. 2012).

Difference between task and the resting‑state brain 
activity

As described in the “Introduction”, the previous studies have 
shown that the resting-state brain activity is similar to that 
noted during several tasks (Smith et al. 2009; Long et al. 
2014; Biswal et al. 1995). Our results with respect to cross-
decoding show that the sensorimotor areas (L/R S1, L/R 
M1, and L/R PM) have significant task-similar brain activ-
ity, indicating that our results support those of the previous 
studies. Contrary to this, other previous studies have shown 
that resting-state brain activity is not similar to that dur-
ing task performance and a part of the brain activity during 
task performance is different from that during the resting 
state (Arbabshirani et al. 2013; Di et al. 2013; Rehme et al. 
2013; Rehme and Grefkes 2013). For example, while per-
forming right-hand movements, the task-related activity in 
the primary motor cortex in the left hemisphere has a posi-
tive correlation with other motor-related areas, whereas that 
in right hemisphere has a negative correlation with other 
areas (Rehme et al. 2013). On the other hand, the resting-
state brain activity has a positive correlation with bilateral 
motor-related areas (Rehme et al. 2013 State-dependent dif-
ferences between functional and effective connectivity of 
the human cortical motor system). Hence, the correlation of 
task-state brain activity is asymmetric, but the correlation 

of that in the resting state is symmetric. Consistent with 
the previous study (Rehme et al. 2013), in this study, the 
decoder accuracy in each hemisphere is different; thus, the 
information for the task-state is asymmetric. However, cross-
decoding results in the sensorimotor areas (L/R S1 and L/R 
PM) in the both hemispheres are approximately the same (p 
value =  ~ 0); thus, there is symmetry. The reason why we 
obtained symmetric results from the asymmetric decoder is 
likely the symmetric patterns of the weight parameter map 
in the decoder. As shown in Fig. 4, the order of positive and 
negative weight parameter arrangement is symmetric in S1 
and PM. Even though the contribution of the positive and 
negative BOLD responses to the weight is different between 
LM1 and RM1, the weight parameter map seems to be sym-
metric (Newton et al. 2005; Mullinger et al. 2014).

In addition, the previous studies (Arbabshirani et  al. 
2013; Di et al. 2013; Rehme et al. 2013; Rehme and Grefkes 
2013) that assessed the difference between task and resting-
state brain activity have shown the connectivity between 
areas (i.e., the analysis target is a large area). On the other 
hand, our study focused on the intra-regional multi-voxel 
patterns and cross-decoding is applied to only one ROI (i.e., 
the analysis target is a small area.) Thus, the scale of the tar-
gets of interest (i.e., inter-regional global networks or intra-
regional patterns) should be considered to discuss similarity 
of the task-state and resting-state brain activity. Therefore, 
we think that the resting-state brain activity is not a simple 
symmetric pattern, and it may have a pattern that is related 
to positive and negative BOLD signals as subnetworks in the 
resting state (Smith et al. 2009).

Limitations and future directions

Several limitations to the present study warrant some discus-
sion. First, we did not consider overlapping areas that were 
activated by both wrist and finger-related areas (Meier et al. 
2008). Binary MVPA revealed that voxels assigned a posi-
tive or negative weight parameter could be used to classify 
two types of movement. The weight parameter in this area 
learned as finger (positive value), the wrist (negative value), 
or neither (nearly zero). Therefore, we have to eliminate this 
overlapping area to define an ROI (i.e., exclusive OR of wrist 
and finger-related areas). However, we also have to examine 
whether this area is like mosaic or arrangement with each 
movement, because this area might have important informa-
tion for execution of movements with both body parts.

Additionally, in the present study, we extracted only some 
of the resting-state data and focused on only two types of 
movement: that of Wrist and Finger tasks. However, more 
fine-grained use of specific body parts, such as each finger 
or each toe, might have instead been used in action tasks. 
One previous study found that the resting-state functional 
connectivity is similar to the anatomical connectivity of each 
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finger (Wang et al. 2013). Thus, future work should analyze 
these more fine-grained representations of the resting-state 
brain activity using the methods described here.

Our results suggest some potential applications using the 
resting-state brain activity. Although, in the present study, 
we only discussed healthy subjects, it might be possible to 
consider a potential application for patients with other condi-
tions, such as stroke. Generally, performing several move-
ment tasks is hard for the patients. However, there is no 
active task during the resting-state brain activity measure-
ment. Therefore, analysis of the resting-state brain activity 
can be used for diagnosis of the state of sensorimotor areas 
in the patient or tracking changes of these areas during inter-
ventions (Lee et al. 2013; Meer 2010; Grefkes 2008). Out 
results could extend these approaches by improving a resolu-
tion of neural representation in the resting state. Needless to 
say, in its current state, we must confirm whether the trained 
decoder for different subjects can be used for the analysis of 
the other subjects. Similarly, there is a possibility that we 
train a decoder using the current database, and then apply 
cross-decoding to patients with other conditions.

In the present study, using cross-decoding, the brain 
activity during the resting state was found to be similar to 
that during the movement task. However, the brain activity 
may be task-irrelevant, and thus be common between the 
movement task and resting state; this would be defined as the 
common component. From the simulation results, where the 
brain activity largely contains the common component, only 
the high accuracy decoder could detect task-relevant infor-
mation for cross-decoding (see the SI for more information.) 
We speculated that this could be attributed to the fact that the 
low accuracy decoder trained using the common component 
(i.e., without the task-relevant component.) It is best that the 
common parameter is eliminated before analysis; however, it 
is difficult to selectively eliminate the common component. 
Thus, the common component must be considered in future 
studies.

Conclusions

In the present study, using a cross-decoding MVPA based on 
machine learning, we report that task-similar brain activity 
related to wrist and finger movements exists in the resting 
state, and these are similar to the somatotopic arrangement 
for wrist and finger movements. In addition, we confirm 
that they are specific to motor-related areas of bilateral cer-
ebrum or cerebellum. These results suggest that neural rep-
resentations in the resting-state may be evaluated in lieu of 
motor tasks at finer levels in future studies. Therefore, we 
think that these results will support development of several 

applications using the resting-state, and will be useful for 
rehabilitation of patients with other conditions.
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