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ABSTRACT
PRRS virus (PRRSV) has undergone rapid evolution and resulted in immense economic
losses worldwide. In the present study, a PRRSV strain named FJ0908 causing high
abortion rate (25%) and mortality (40%) was detected in a swine herd in China.
To determine if a new PRRSV genotype had emerged, we characterized the genetic
characteristics of FJ0908. Phylogenetic analysis indicated that FJ0908 was related to
1-7-4-like strains circulating in the United States since 2014. Furthermore, the ORF5
sequence restriction fragment length polymorphism (RFLP) pattern of FJ0908 was 1-
7-4. Additionally, FJ0908 had a 100 aa deletion (aa329–428) within nsp2, as compared
to VR-2332, and the deletion pattern was consistent with most of 1-7-4 PRRSVs.
Collectively, the data of this study contribute to the understanding of 1-7-4-like PRRSV
molecular epidemiology in China.

Subjects Bioinformatics, Genomics, Veterinary Medicine, Virology
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INTRODUCTION
Porcine reproductive and respiratory syndrome (PRRS) is a global viral swine disease and
causing severe economic loss in the global pig industry (Neumann et al., 2005;Zhou & Yang,
2010; Holtkamp et al., 2013; Gao et al., 2017). PRRS virus (PRRSV), the causative agent of
PRRS, is a small enveloped virus with positive-sense single-stranded RNA virus belonging
to the Arteriviridae family in the Nidovirales order (Benfield et al., 1992;Meulenberg, 2000).

The PRRSV genome is about 15 kb in length and contains ten open reading frames
(ORFs), ORF1a, 1b, 2a, 2b, 3, 4, 5a, 5, 6 and 7. ORF1a and ORF1b encode at least 16
non-structural proteins (nsps) (Nsp1α, Nsp1β, Nsp2-6, Nsp2TF, Nsp2N, Nsp7a, Nsp7b
and Nsp8-12), while ORF2-ORF7 encode viral structural proteins: GP2a, E (2b), GP3,
GP4, GP5a, GP5, M, and N (Meulenberg, 2000; Wu et al., 2005; Firth et al., 2011; Fang &
Snijder, 2010; Fang et al., 2012).

PRRSV is characterized by extensive genetic variation. Based on global PRRSV
classification systems, type 2 PRRSV strains in China can be classified into lineage 1
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(NADC30-like), lineage 3 (QYYZ-like), lineage 5.1 (VR2332-like), and lineage 8.7 (JXA1-
like) (Gao et al., 2017; Liu et al., 2017b; Guo et al., 2018). In Fujian Province, one of the
largest livestock trading areas in China, herd movements across provinces and national
borders are also common. Hence, multiple PRRSV types co-exist in swine herds. Recently,
PRRSV isolates of the ORF5 restriction fragment length polymorphism (RFLP) 1-7-4
viruses emerged in America, causing dramatic abortion ‘‘storms’’ in the sow herd (Alkhamis
et al., 2016; Van Geelen et al., 2018). Here, we report a genetic and phylogenetic analysis of
PRRSV isolate FJ0908 belong to the ORF5 1-7-4 viruses in Fujian Province, China.

MATERIALS AND METHODS
Clinical case
In September 2018, severe reproductive and respiratory disease was observed in piglets
in a farm. The affected pigs had respiratory distress, and high abortion rate (25%) and
mortality (40%).

Strain identification and nucleotide sequencing
PRRSV infection was confirmed by Real-time RT-PCR testing of the serum of affected
pigs according to the manufacturer’s instructions. The ORF5 sequence RFLP pattern
was inferred according to Wesley et al. The complete genomic sequences of FJ0908 were
amplified as described previously (Zhang et al., 2018). The PCR products were purified
and cloned into pGEM-T Easy according to the manufacturer’s instructions (Promega,
Madison, WI, USA) and three recombinant clones of every fragment were sequenced by
Ruibo Life Technologies Corporation (Beijing, China).

Complete genomic sequence analysis
Fifty-four representative type 2PRRSV sequences in GenBank were utilized in phylogenetic
analyses (Table 1). Multiplex sequence alignments were performed using CLUSTAL X
(version 1.83) and the phylogenetic relationships were assessed by MEGA 6.0 as described
(Liu et al., 2017b). The ORF5 sequences were classified according to the global PRRSV
classification systems (Shi et al., 2010).

Recombination events were detected using Simplot v 3.5.1 and the boot scanning analysis
was performed with a 200-bp window, sliding along the genome alignments with a step
size of 20 bp.

RESULTS
Complete genomic sequence analysis
The genomes of FJ0908 (GenBank accession no. MK202794) was 15,112 nt in length,
excluding the poly (A) tail at the 3′ end, 300 nt shorter than the genome of the prototypic
VR2332. Genome alignments revealed that FJ0908 shared 83.6% identity with JXA1, 84.7%
with VR2332, 82.2% with QYYZ, 86.3% with NADC30, 97.3–97.6% with 1-7-4 PRRSV
family (IA/2014/NADC34, IA/2015/NADC35) and 98.7% with LNWK130 (Table 2).

The results also showed that 5′-UTR,ORF1a,ORF1b,ORFs 2-7 and the 3′-UTRof FJ0908
shared 97.2–98.2% nucleotide homology with 1-7-4 PRRSV family (IA/2014/NADC34,
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Table 1 PRRSV strains used in this study.

No. Name GenBank accession no. Origin No. Name GenBank accession no. Origin

1 FJ0908 MK202794 China 29 SDSU73 JN654458 USA
2 FJZ03 KP860909 China 30 NADC31 JN660150 USA
3 FJY04 KP860910 China 31 NB/04 FJ536165 China
4 CH-1a AY032626 China 32 BJ-4 AF331831 China
5 JA142 AY424271 USA 33 MN184A DQ176019 USA
6 VR-2332 U87392 USA 34 MN184B DQ176020 USA
7 JXA1-R R FJ548855 China 35 HENNAN-XINX KF611905 China
8 JXA1 EF112445 China 36 NADC30 JN654459 USA
9 FJFS KP998476 China 37 JL580 KR706343 China
10 PA8 AF176348 Canadia 38 CHsx1401 KP861625 China
11 Em2007 EU262603 China 39 ISU30 KT257977 USA
12 GM2 JN662424 China 40 MN184C EF488739 USA
13 QYYZ JQ308798 China 41 NC/2014/ISU-3 MF326990 USA
14 HB-1(sh)/2002 AY150312 China 42 LV M96262 Netherlands
15 HB-2(sh)/2002 AY262352 China 43 NC/2014/ISU-4 MF326991 USA
16 HUN4 EF635006 China 44 IN/2014/ISU-5 MF326992 USA
17 OH/2014/ISU-6 MF326993 USA 45 Ingelvac ATP DQ988080 USA
18 NC/2015/ISU-11 MF326998 USA 46 RespPRRS MLV AF066183 USA
19. IA/2015/ISU-13 MF327000 USA 47 NC/2015/ISU-12 MF326999 USA
20 LNWK130 MG913987 China 48 IA/2015/NADC35 MF326986 USA
21 NCV-13 KX192112 USA 49 IA/2015/NADC36 MF326987 USA
22 NCV-23 KX192116 USA 50 IA/2015/ISU-10 MF326997 USA
23 NCV-25 KX192118 USA 51 IA/2014/NADC34 MF326985 USA
24 OH/2014/ISU-7 MF326994 USA 52 LNWK96-CN MG860516 China
25 IA/2014/ISU-8 MF326995 USA 53 NCV-21 KX192115 USA
26 IA/2015/NADC36 MF326987 USA 54 IA/2015/ISU-9 MF326996 USA
27 FJSD KP998474 China 55 HUB1 EF075945 China
28 IA/2014/ISU-2 MF326989 USA 56 IA/2015/ISU-14 MF327001 USA

IA/2015/NADC35), which was higher than the homology shared with other representative
strains, indicating that FJ0908 strain belonged to 1-7-4 PRRSV. ORF1a and ORF1b encode
16 nsps of PRRSV, Nsp1β and Nsp2 are the most variable protein products among these
nsps (Table 2). ORFs 2 to 7 encode the PRRSV structural proteins, among these structural
proteins, GP2, GP3, GP4, GP5a and GP5 exhibited the most variance (Table 2).

Amino acid analysis of Nsp2
Nsp2 contains different deletions and insertions, as compared to VR2332 and is the most
variable protein in PRRSV genome Liu et al., 2017b; Li et al., 2011). Strikingly, the nsp2
gene of the FJ0908 was 2,640 nt in length and encoded 880 aa, with a 100 aa deletion
(aa329–428) within nsp2, as compared to VR2332, and the deletion pattern was consistent
with most of 1-7-4 PRRSVs.
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Table 2 Detailed comparison of the full-length genomes of FJ0908 to other PRRSV reference strains.

VR2332 BJ-4 JXA1 HuN4 FJFS QYYZ NADC30 ISU30 LNWK96 IA/2014/NADC34 IA/2015/NADC35 LNWK130

Sublineage 5.1 Sublineage 8.7 Lineage 3 Sublineage 1.8 Sublineage 1.5
Pairwise % Identity to FJ0908 (nt/aa)

Nucleotides

Complete genome 84.7 84.6 83.6 83.6 82.2 82.2 86.3 89.4 96.2 97.6 97.5 98.7

5′UTR 93.6 93.6 92.5 92.5 91.0 91.5 95.7 92.9 96.3 97.9 97.3 97.9

ORF1a 82.0 81.9 80.6 80.7 78.6 78.6 82.8 87.8 96.3 97.2 97.2 98.0

ORF1b 86.6 86.6 86.2 86.2 85.8 85.6 88.8 86.2 98.2 98.2 98.1 99.2

ORF2-7 87.2 87.1 85.9 86.0 84.9 84.9 89.4 88.3 93.1 97.6 97.2 99.6

3′UTR 92.7 92.7 90.0 90.1 86.1 88.7 95.4 91.5 95.9 98.0 98.0 98.0

nt 1–760 90.0 89.9 88.1 88.4 86.7 89.1 92.6 94.8 95.4 98.8 98.6 97.1

nt 760–1,300 80.4 80.4 80.6 80.6 78.3 77.2 82.0 94.3 93.9 92.8 9.26 94.4

Amino acids

NSP1α 94.6 95.2 97.0 97.0 93.4 96.4 95.8 96.4 97.0 98.8 98.8 98.2

NSP1β 78.8 78.8 77.4 77.9 78.3 77.0 79.7 91.7 94.0 91.7 91.7 94.5

NSP2 67.0 67.0 66.5 66.7 63.3 64.6 71.4 72.1 92.7 94.5 94.7 96.4

NSP3 91.3 91.3 89.9 90.1 87.7 87.7 91.7 91.9 97.5 97.8 97.5 98.7

NSP4 93.1 93.1 95.1 95.1 92.6 93.1 92.6 96.6 98.5 99.5 99.5 99.0

NSP5 88.8 88.8 89.4 89.4 90.0 89.4 87.6 94.7 97.6 98.8 98.8 98.8

NSP6 87.5 87.5 93.8 93.8 93.8 93.8 87.5 87.5 93.8 93.8 93.8 93.8

NSP7 90.3 89.2 87.3 87.3 86.5 84.6 89.2 95.4 98.8 98.8 98.8 99.2

NSP8 93.3 93.3 93.3 93.3 88.9 93.3 95.6 100 100 100 100 97.8

NSP9 95.8 95.5 96.1 95.8 93.9 94.8 95.8 97.2 98.3 98.9 98.9 99.1

NSP10 95.0 95.0 94.6 95.2 92.3 94.1 98.4 98.2 99.8 99.8 99.5 99.5

NSP11 95.1 95.5 96.0 96.0 94.6 94.6 95.1 94.6 100 99.6 99.6 100

NSP12 90.3 90.2 90.9 90.9 92.2 91.5 89.0 98.0 99.3 98.7 98.7 100

ORF2a/GP2 85.5 86.3 85.9 85.5 80.1 82.8 83.6 84.0 97.7 98.4 96.9 99.6

ORF2b/E 87.8 89.0 86.3 86.3 80.8 91.8 90.4 90.4 97.3 100 98.6 98.6

ORF3/GP3 80.7 80.7 79.9 79.5 80.7 79.9 81.5 81.9 89.4 94.5 93.3 99.2

ORF4/GP4 86.0 84.8 86.5 88.8 88.8 86.5 94.4 92.1 91.6 94.4 94.4 99.4

ORF5/GP5 87.0 87.0 86.0 86.5 85.5 85.5 90.5 88.0 90.0 97.5 97.5 98.5

ORF5a 91.3 91.3 84.8 84.8 84.8 87.0 95.7 93.5 95.7 100 100 97.8

ORF6/M 95.4 94.8 93.7 93.7 95.4 94.8 94.8 93.7 95.4 97.7 97.7 100

ORF7/N 91.1 90.2 90.2 90.2 87.8 87.8 95.9 93.5 9.19 96.7 95.1 99.2
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Antigenic analysis of GP2-GP5
The antigenic regions (ARs) and glycosylation sites within the GP2, GP3, GP4, and GP5
proteins of FJ0908 were predicted and compared to OH/2014/ISU-7 IA/2014/ISU-8,
IA/2014/NADC34, IA/2015/NADC35, IA/2015/NADC36, LNWK96, LNWK130, NV-21,
NV-25, VR2332, CH-1a, JXA1 and NADC30.

In GP2, two antigenic regions (AR 41–55 and AR123–135) were confirmed in type
2 PRRSV (De Lima et al., 2006). The predicted AR at aa 41–55 were highly conserved
and no aa substitution was detected in AR123–135. In GP3, four predicted antigenic
regions (AR32–46, AR 51–105, AR 111–125, and AR 137–159) were proven (De Lima
et al., 2006; Zhou et al., 2006; Wang et al., 2014). The AR comprising aa32–46, aa51–105,
aa111–125, and aa137–159 of FJ0908 was most similar to 1-7-4 representative PRRSVs
including LNWK130, but differed from VR2332, CH-1a, JXA1 and NADC30. GP4 has
one predicted AR at aa51–65 (De Lima et al., 2006). FJ0908 had 1-2 aa substitutions as
compared to the 1-7-4 representative PRRSVs, but had 2-6 aa substitutions as compared to
VR2332, CH-1a, JXA1 and NADC30 and LNWK96. Additionally, no aa substitution was
detected in AR51–65 between FJ0908 and LNWK130. The putative glycosylation sites in
GP2-4 were completely conserved among the investigated strains, except for GP2 of isolate
IA/2015/NADC36 that had one substitution N184D.

GP5 is the major envelope protein encoded by ORF5 and is the most variable PRRSV
protein. Sequences alignments of GP5 revealed that FJ0908 shares 87.0%, 86.0–86.5%,
85.5%, 88.0–90.5% and 97.5% amino acid identity with VR-2332-like (VR2332 and BJ-4),
JXA1-like (JXA1 andHuN4),QYYZ-like (FJFS andQYYZ),NADC30-like strains (NADC30
and ISU30), and 1-7-4-like (IA/2014/NADC34, IA/2015/NADC35), respectively (Table 2).
Furthermore, the restriction sites analysis showed that the ORF5 RFLP of FJ0908 has the
same 1-7-4 pattern [1 (MluI = 0 sites), 7 (HindII = nt 88, 219, 360), 4 (SacII = nt 24,
555)] (Fig. S1).

GP5 has six ARs (AR1–15, AR27–35, AR37–51, AR149–156, AR166–181, and AR192–
200) (De Lima et al., 2006; Zhou et al., 2009). In GP5, the N-terminus ARs (AR1-15 and
AR27-35) were very variable among all strains and only three aa substitutions (K4N,
Q13R and L15P) were found in the two antigenic regions between FJ0908 and LNWK130,
whereas the other four ARs (AR 37–51, AR 149–156 , AR 166–181, and AR 192–200) were
conserved. GP5 had differential predicted N-glycosylation among PRRSV strains. FJ0908
possessed five predicted sites (N32, N44, N51, N57 and N59). Although N-glycosylation
at N57 was not a novel finding, N57 was detected in most of the 1-7-4 sequences. The
results also revealed that FJ0908 had the same N-glycosylation pattern as LNWK96 and
LNWK130.

Phylogenetic analysis
PRRSV ORF5 is the most variable and has been used as a marker of PRRSV genetic
variability. Based on global PRRSV classification systems, type 2 PRRSV was divided into
nine monophyletic lineages (1-9) and lineage1 was further classified into nine sublineages
(1.1–1.9) (Shi et al., 2010; Guo et al., 2018). The ORF5-based phylogenetic tree showed
that FJ0908, as well as 1-7-4 isolates including LNWK130, were clustered in sublineage 1.5
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Figure 1 Phylogenetic tree based on the ORF5 genes (A) and full length (B) of the FJ0908 and reference
viruses. Reliability of the tree was assessed by bootstrap analysis of 1,000 replications. Our representative
isolate FJ0908 were marked with the red triangle (N). Lineage 1 PRRSVs are divided into nine sublineages.

Full-size DOI: 10.7717/peerj.7859/fig-1

(Fig. 1A). Whole genome phylogenetic analysis also indicated that FJ0908 was most closely
related to a genetic cluster in 1-7-4-like lineage 1 (Fig. 1B).

Recombination analysis
To test for possible recombinant events within FJ0908 strain, we performed recombinant
detection using SimPlot v3.5.1 software. From the similarity plot, two recombination
breakpoints within the FJ0908 genome were identified, which were located in Nsp1 (nt 760
and nt 1,300) (Fig. 2A). To further confirm the putative recombination events, phylogenetic
trees for each of the sequence regions identified during the analysis were generated,
we identified two recombination breakpoints located in nsp1 (nt 760 and nt 1,300)
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Figure 2 Characterization of the supported recombinant events between FJL0908 and representative
PRRSV lineages. (A) Similarity plot and bootscan analyses of FJ0908 by SimPlot. The y-axis indicates the
percentage similarity between the parental sequences and the query sequence. Phylogenetic trees based on
major parental regions (nt 1-760 and nt 1301-15534) (B) and the minor parental region (nt 760–1300)
(C). The major parental group (1-7-4 viruses, reference strain IA/2014/NADC34) is shown in red, while
the minor parental groups (reference strain ISU30) are shown in blue, respectively.

Full-size DOI: 10.7717/peerj.7859/fig-2

(Figs. 2B and 2C). The two breakpoints separated the genome of FJ0908 into 3 regions.
For FJ0908, the region between the breakpoints (nt 760–1,300) is closely related to ISU30
strain, the two regions between the breakpoints (nt 1–759 and nt 1,301–15,534) are closely
related to IA/2014/NADC34. Collectively, the above results suggested that FJ0908 derived
from recombination between IA/2014/NADC34 and ISU30 (Fig. 2). Moreover, LNWK130
strain (1-7-4-like PRRSV) firstly identified in Liaoning Province, China was also deriving
from the recombination of 1-7-4 isolates and ISU30 (Zhang et al., 2018). However, the
recombination pattern was different between LNWK130 and FJ0908. For LNWK130,
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the two breakpoints (nt 760–1,300 and nt 1–759) are closely related to ISU30 strain,
one breakpoints (nt 1301–15534) is closely related to IA/2014/NADC34. Additionally,
sequences alignments of the recombination region (nt 1-759) revealed that FJ0908 shares
98.8%, 94.8% and 92.6% nucleotide identity with IA/2014/NADC34, ISU30 and NADC30,
respectively, in contrast, LNWK130 shares 95.8%, 95.9% and 93.1% nucleotide identity
with IA/2014/NADC34, ISU30, and NADC30, respectively. Sequences alignments of the
recombination region (nt 760-1,300) revealed that FJ0908 shares 92.8%, 94.3% and 82.0%
nucleotide identity with IA/2014/NADC34, ISU30 and NADC30, respectively, similarly,
LNWK130 shares 89.4%, 93.0% and 80.2% nucleotide identity with IA/2014/NADC34,
ISU30, and NADC30, respectively. For all of the nsp sequences and structural proteins, the
most variable regions were found in nsp1β, nsp3, nsp5, nsp6, nsp8, GP3 and GP5 between
FJ0908 and LNWK130.

DISCUSSION
PRRSV causes major economic losses in swine industry since 1990s. Notably, PRRSV
continues to expand its genetic diversity. According to Shi et al. (2010), type 2 PRRSV was
classified into nine monophyletic lineages based on ORF5 and extensive genetic variation
exists among strains within each lineage. It is hard to define the PRRSV homologous,
heterologous virus and pathogenic biotype only focused on single gene analysis. To classify
and infer the likely pathogenic biotype, RFLP patterns of ORF5 for type 2 strains is standard
approach for veterinarians (Wesley et al., 1998). The RFLP pattern 1-7-4 emerged in the US
and has become prevalent since 2014, this nomenclature has been associated with severe
disease in herds leading to significant economic losses (Van Geelen et al., 2018). In the
present study, FJ0908 was isolated in a farm with high abortion rate and mortality in sows,
the restriction sites analysis revealed that the ORF5 RFLP of FJ0908 has the 1-7-4 pattern.

Comparison to PRRS sequences in GenBank indicated FJ0908 belonged to 1-7-4-like
PRRSV. The genomic regions with the highest variation were found in Nsp1β, Nsp2, ORF2,
ORF3, ORF4, ORF5a and ORF5, the lowest variation were found in Nsp1α, Nsp8–12, and
ORF6 (Table 2). FJ0908 had 100 aa deletions within Nsp2 (corresponding to position
328–427 of VR2332 nsp2), as compared to the reference strain VR2332, and the deletion
pattern was consistent with 1-7-4 viruses.

The pathogenesis of PRRSV has been linked to the N-glycosylation motifs at certain sites
of GP2-GP5 by acting as a glycan shield against minimizing the viral neutralizing antibody
response (Wissink et al., 2004; Ansari et al., 2006; Faaberg et al., 2006; Das et al., 2011;
Delisle et al., 2012;Wei et al., 2012). Many reports have also suggested that N-glycosylation
motifs in GP5 of PRRSV is important for viral infectivity and viral immune evasion (Wissink
et al., 2004; Ansari et al., 2006; Jiang et al., 2007; Delisle et al., 2012; Wei et al., 2012). In the
present study, GP5 contained five predicted N-glycan motifs in FJ0908: N32, N44, N51,
N57 and N59. More interestingly, the Chinese strains LNWK96, LNWK130 and FJ0908
have an additional N-glycan at 59 compared to 1-7-4 isolates in the United States.

Recombination may play an important mechanism in generating genetic diversity in
PRRSV (Liu et al., 2011; Murtaugh et al., 2010). Most of the 1-7-4 PRRSV isolates may
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be most potentially derived from different recombination patterns occurring among the
local strains in the United States (Van Geelen et al., 2018). Recently, 1-7-4-like PRRSV
strains, LNWK130 isolated in Liaoning Province, China was reported to originate from
recombination events between IA/2014/NADC34 and ISU30. Currently, recombination
events involving NADC30-like PRRSV strains and other PRRSV strains frequently occurred
in China (Zhao et al., 2015; Zhang et al., 2016; Bian et al., 2017; Liu et al., 2017a; Liu et al.,
2017c; Zhao et al., 2017; Wang et al., 2018; Zhou et al., 2018; Liu et al., 2019). To test for
possible recombinant events within FJ0908 strain, we performed recombinant detection
using SimPlot v3.5.1 software. Recombination analysis performed with the available
full-length genome sequences revealed FJ0908 maybe originate from recombination events
between IA/2014/NADC34 and ISU30. Although FJ0908 and LNWK130 maybe drive from
recombination events between IA/2014/NADC34 and ISU30, the recombination pattern
of two strains were different. Two recombination breakpoints were identified in nsp1 (nt
760 and nt 1,300) in FJ0908 strain, whereas one recombination breakpoint in nsp2 (nt
1480) in LNWK130, suggesting the ancestor of FJ0908 and LNWK130 were most probably
transported from different region of United States.

In conclusion, 1-7-4-like PRRSV was also detected in Fujian Province of China besides
Liaoning Province. Therefore, effective strategy should be taken to control 1-7-4-like
PRRSV and to monitor herd movements.

CONCLUSION
In summary, we thoroughly analyzed a new sublineage of PRRSV strain FJ0908 isolated
from Fujian Province, China on the basis of a comprehensive study with the full-length
genome. These novel sublineage 1.5 virus is closely related to the ORF5 RFLP 1-7-4 strains.
Phylogenetic and molecular evolutionary analyses indicated that FJ0908 originated from
a natural recombination event between IA/2014/NADC34 and ISU30. Our data enhance
our understanding of the PRRSV evolution in China.
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