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This paper presents the multiclass classifier based on analytical center of feasible space (MACM). This multiclass classifier is
formulated as quadratic constrained linear optimization and does not need repeatedly constructing classifiers to separate a single
class from all the others. Its generalization error upper bound is proved theoretically. The experiments on benchmark datasets
validate the generalization performance of MACM.

1. Introduction

Multiclass classification is an important and on-going re-
search subject in machine learning. Its application is im-
mense, such as machine vision [1, 2], text and speech catego-
rization [3, 4], natural language processing [5], and dis-
ease diagnosis [6, 7]. Two kinds of approaches have been
proposed to solve multiclass classification problem [8]. The
first multiclass classification approach is extending binary
classifier to handle the multiclass case directly. This included
neural networks, decision trees, support vector machines,
naive Bayes, and 𝐾-nearest neighbors. The second approach
decomposes themulticlass classification problem into several
binary classification tasks. Several methods are used for this
decomposition: one-versus-all [9], all-versus-all [10], and
error-correcting output coding [11].

The one-versus-all approach reduces the problem of
classifying among 𝐾 classes into 𝐾 binary problems, where
each problem discriminates a given class from the other𝐾−1
classes.

For the all-versus-all method, a binary classifier is built
to discriminate between each pair of classes, while discarding
the rest of the classes.This requires building𝐾(𝐾−1)/2 binary
classifiers for𝐾 classes problem.When testing a new example,
voting is performed among the classifiers and the class with
the maximum number of votes wins.

For error-correcting output coding, it works by training
𝑁 binary classifiers to distinguish between the 𝐾 different

classes. Each class is given a codeword of length𝑁 according
to a binarymatrix𝑀. Each row of𝑀 corresponds to a certain
class.

The above multiclass classification algorithms need con-
struct binary classifier repeatedly to separate a single class
from all the others for 𝐾 classes problem, which leads to
daunting computation and low efficiency of classification.
Reference [12] proposes multiclass support vector machine
(MSVM), which corresponds to simple quadratic optimiza-
tion and need not repeat constructing binary classifier. How-
ever, support vector machine corresponds to the center of
the largest inscribed hypersphere of feasible space. When the
feasible space, that is, the space of hypotheses consistent with
the training data, is elongated or asymmetric, support vector
machine is not effective [13]. To address the above problems,
multiclass classifier based on the analytical center of feasible
space (MACM) is proposed. At the same time, in order
to validate its generalization performance theoretically, its
generalization error upper bound is formulated and proved.
And the experiments on benchmark dataset validate the
generalization performance of MACM.

2. Multiclass Analytical Center Classifier

To facilitate the discussion of multiclass analytical center
classifier, the following definitions are introduced.
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Definition 1 (chunk). A vector, k = (V
1
, . . . , V

𝑘𝑑
) ∈ R𝑘𝑑, is

broken into 𝑘 chunks (k
1
, . . . , k

𝑘
) where the 𝑖th chunk k

𝑖
=

(V
(𝑖−1)∗𝑑+1

, . . . , V
𝑖∗𝑑
).

Definition 2 (expansion). Let Vec(𝑥, 𝑖) ∈ R𝑘𝑑 be a vector
where x ∈ R𝑑 is embedded in 𝑘𝑑 dimensions space by
writing the coordinates of x in the 𝑖th chunk of a vector
in R𝑘𝑑. 0ℓ denotes the zero vector of length ℓ. Then,
Vec(x, 𝑖) can be written formally as the concatenation of three
vectors, Vec(x, 𝑖) = (0(𝑖−1)∗𝑑, x, 0(𝑘−𝑖)∗𝑑) ∈ R𝑘𝑑. And define
Vec(x, 𝑖, 𝑗) = Vec(x, 𝑖) − Vec(x, 𝑗) as a vector where x is
embedded in the 𝑖th chunk and −x is embedded in the 𝑗th
chunk of a vector inR𝑘𝑑.

Definition 3. Given the sample (x, 𝑦) ∈ R𝑑 × {1, . . . , 𝑘},
its expansion is defined as 𝐺(x, 𝑦) = {Vec(x, 𝑖, 𝑗) | 𝑖 =
𝑦, 𝑗 = {1, . . . , 𝑘}/𝑖}; the expansion of the whole sample set 𝑆 =
{(x
1
, 𝑦
1
), (x
2
, 𝑦
2
), . . .} is defined as 𝐺(𝑆) = ⋃

(x,𝑦)∈𝑆 𝐺(x, 𝑦).

Definition 4 (piecewise linear separability). The point sets
𝐴
𝑖
∈ R𝑑×𝑚𝑖 , 𝑖 = 1, . . . , 𝑘 (𝑘 represents the class labels and 𝑚

𝑖

the number of samples belonging to 𝑖th class), are piecewise
linear separable if there exists w𝑖 ∈ R𝑑, 𝛾𝑖 ∈ R, 𝑖 = 1, . . . , 𝑘,
where 𝑑 represents the dimension of point, such that

𝐴
𝑖

ℓ
w𝑖 − 𝛾𝑖 > 𝐴𝑖

ℓ
w𝑗 − 𝛾𝑗,

𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ̸= 𝑗, ℓ = 1, . . . , 𝑚
𝑖
.

(1)

Definition 5 (piecewise linear classifier). Assume w = (w
1
,

. . . ,w
𝑘
), where (w

1
, . . . ,w

𝑘
) ∈ R𝑘∗(𝑑+1) = R𝑑+1 × ⋅ ⋅ ⋅ ×R𝑑+1.

Given a new point x ∈ R𝑑+1, a piecewise linear classifier is a
function 𝑓 : R𝑑+1 → {1, . . . , 𝑘} as follows:

𝑓 (x) = argmax
𝑖=1,...,𝑘

w
𝑖
x, (2)

where argmax returns to a class label corresponding to the
maximum value.

To simplify the notation for the formulation of multiclass
analytical center classifier, we consider an augmented weight
space as follows.

Let

𝐴
𝑖

ℓ
= [
𝐴
𝑖

ℓ

1
] ∈ R

𝑑+1
, w̃𝑖 = [w

𝑖

𝛾
] ∈ R

𝑑+1
,

𝑖 = 1, . . . , 𝑘, ℓ = 1, . . . , 𝑚
𝑖
;

(3)

then, inequality (1) can be rewritten as

𝐴
𝑖

ℓ
w̃𝑖 − 𝐴𝑖

ℓ
w̃𝑗 > 0, 𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ̸= 𝑗, ℓ = 1, . . . , 𝑚

𝑖
.

(4)

Let w̃ = (w̃
1
, . . . , w̃

𝑘
) ∈ R𝑘∗(𝑑+1) = R𝑑+1×⋅ ⋅ ⋅×R𝑑+1. Accord-

ing to Definition 2, embedding 𝐴𝑖
ℓ
into R𝑘∗(𝑑+1) space,

inequality (4) has the following form:

(Vec (𝐴𝑖
ℓ
, 𝑖) − Vec (𝐴𝑖

ℓ
, 𝑗)) w̃ > 0,

𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ̸= 𝑗, ℓ = 1, . . . , 𝑚
𝑖
.

(5)

Consider that

Vec (𝐴𝑖
ℓ
, 𝑖, 𝑗) = Vec (𝐴𝑖

ℓ
, 𝑖) − Vec (𝐴𝑖

ℓ
, 𝑗) ,

𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ̸= 𝑗, ℓ = 1, . . . , 𝑚
𝑖
.

(6)

Thus, inequality (6) can be rewritten as follows:

Vec (𝐴𝑖
ℓ
, 𝑖, 𝑗) w̃ > 0, 𝑖, 𝑗 = 1, . . . , 𝑘, 𝑖 ̸= 𝑗, ℓ = 1, . . . , 𝑚

𝑖
.

(7)

Inequality (7) represents the feasible space of w̃ in the
higher dimension spaceR𝑘∗(𝑑+1). Similar to the binary classi-
fication based on the analytical center of version space [8], we
define the slack variable 𝑆

𝑖,𝑗,ℓ
= Vec(𝐴𝑖

ℓ
, 𝑖, 𝑗)w̃, 𝑖, 𝑗 = 1, . . . , 𝑘,

𝑖 ̸= 𝑗, ℓ = 1, . . . , 𝑚
𝑖
and then have the following minimization

problem, whose solver corresponds to the analytical center of
higher dimension space:

min Φ (w̃) = −
𝑚𝑖

∑

ℓ=1

𝑘

∑

𝑖 ̸= 𝑗,𝑖,𝑗=1

ln 𝑆
𝑖,𝑗,ℓ

s.t. ℎ (w̃) = 1
2
w̃w̃ − 1 = 0.

(8)

In order to further simplify the formulation of multiclass
analytical center classifier, we introduce some notations as
follows:𝑀 = 𝑘∗(𝑘−1)∗∑

𝑘

𝑖=1
𝑚
𝑖
, 𝐵 = {Vec(𝐴𝑖

ℓ
, 𝑖, 𝑗) | 𝑖, 𝑗 = 1,

. . . , 𝑘, 𝑖 ̸= 𝑗, ℓ = 1, . . . , 𝑚
𝑖
} ∈ R𝑀×𝑘∗(𝑑+1); let 𝐵

𝑖
represent the

𝑖th row vector of 𝐵. Then, the optimization problem (8) can
be rewritten as follows:

min Φ (w̃) = −
𝑀

∑

𝑖=1

ln 𝑆
𝑖

where 𝑆
𝑖
= 𝐵
𝑖
w̃

s.t. ℎ (w̃) = 1
2
w̃w̃ − 1 = 0.

(9)

After solving the optimization problem (9) to get the
optimal weight w̃∗, we have a piecewise linear classifier 𝑓 :
R𝑑+1 → {1, . . . , 𝑘} computed in the following way:

𝑓 (x) = arg max
𝑖=1,...,𝑘

w̃∗
𝑖
x, (10)

where argmax returns to a class label corresponding to the
maximum value.

If the dataset is not piecewise linear separable, the kernel
function is used to map the data into high dimension linear
space.

3. Generalization Error Bound of
Multiclass Analytical Center Classifier

In order to analyze the generalization error bound theoreti-
cally, we introduce the definition of classification margin and
data radius and then deduce themargin-based generalization
error bound of MACM.
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Definition 6 (classification margin). Given the linear classi-
fier ℎ(x

𝑗
) = arg max

𝑖=1,...,𝑘
w̃
𝑖
x̃


𝑗
, the classification margin of

the sample (x
𝑗
, 𝑦
𝑗
) ∈ R𝑑 × {1, . . . , 𝑘} is defined as follows:

𝑟
𝑗
= min
𝑙=𝑦𝑗 ,𝑖={1,...,𝑘}/𝑙

(w̃
𝑙
x̃


𝑗
− w̃
𝑖
x̃


𝑗
) . (11)

For the whole training set 𝑆 =

{(x
1
, 𝑦
1
), (x
2
, 𝑦
2
), . . . , (x

𝑚
, 𝑦
𝑚
)}, the minimal margin is

as follows:
margin

𝑆
(ℎ) = min

(x𝑗 ,𝑦𝑗)∈𝑆
𝑟
𝑗
. (12)

Definition 7 (data radius). Given dataset 𝑆 = {(x
1
, 𝑦
1
), (x
2
,

𝑦
2
), . . . , (x

𝑚
, 𝑦
𝑚
)}, the data radius is defined as follows:

𝜍 (𝑆) = max
x𝑖∈𝑆

x𝑖
. (13)

Theorem 8. Define data radius of dataset 𝑆 as 𝜍(𝑆) and data
radius of dataset Vec(𝑆, 𝑖, 𝑗) as 𝜍(Vec(𝑆, 𝑖, 𝑗)); if 𝜍(𝑆) ≤ 𝑅, then
𝜍(Vec(𝑆, 𝑖, 𝑗)) ≤ 2𝑅.

Proof. Consider the following:

𝜍 (Vec (𝑆, 𝑖, 𝑗))

= max
x𝑙∈𝑆

Vec (x𝑙, 𝑖, 𝑗)


= max
x𝑙∈𝑆

Vec (x𝑙, 𝑖) − Vec (x𝑙, 𝑗)


≤ max
x𝑙∈𝑆

(
Vec (x𝑙, 𝑖)

 +
Vec (x𝑙, 𝑗)

)

= max
x𝑙∈𝑆

Vec (x𝑙, 𝑖)
 +max

x𝑙∈𝑆
Vec (x𝑙, 𝑗)

 .

(14)

Because ‖Vec(x, 𝑖)‖ = ‖(0, x, 0)‖ = ‖x‖, 𝜍(Vec(𝑆, 𝑖, 𝑗)) ≤ 2 ∗
maxx𝑖∈𝑆‖x𝑖‖ = 2𝑅. This ends the proof of Theorem 8.

Theorem 9 (see [14]). Consider thresholding of a real-valued
function H with unit weight vectors ‖w‖ = 1 on the inner
product space 𝑋 and fix margin 𝑟 ∈ R+. For any probability
distribution D on 𝑋 × {−1, 1} with support in a ball of radius
𝑅 around the origin, with probability 1 − 𝛿 over 𝑚 random
samples 𝑆, any hypothesis ℎ ∈ H with margin

𝑆
(ℎ) ≥ 𝑟 on 𝑆

has error more than
errD (ℎ) = 𝜀 (𝑟, 𝑚, 𝛿, 𝑅)

=
2

𝑚
(
64𝑅
2

𝑟2
log emr

8𝑅2
log 32𝑚

𝑟2
+ log 4

𝛿
) ,

(15)

provided𝑚 > 2/𝜀, 64𝑅2/𝑟2 < 𝑚.
From Definition 3 and inequality (7), it is shown that

to correctly classify the sample 𝐴𝑖, 𝑖 = 1, . . . , 𝑘, 𝐺(𝐴)w̃ =

𝐺(⋃
𝑘

𝑖=1
𝐴
𝑖
)w̃ > 0 is satisfied. Here, one introduces the

samples’ pairs 𝑃
+
(𝐴) = {𝐺(𝐴), +1} ∈ R𝑘∗(𝑑+1) × {+1}

and 𝑃
−
(𝐴) = {−𝐺(𝐴), −1} ∈ R𝑘∗(𝑑+1) × {−1}, where 0, 1

denote the corresponding dimension vector with elements 0 or 1,
respectively. So, one can construct the new samples’ set 𝑃(𝐴) =
𝑃
+
(𝐴)⋃𝑃

−
(𝐴) ∈ R𝑘∗(𝑑+1) × {−1, +1}.

Theorem 10. The binary classification of sample 𝑃(𝐴) by
analytical center classifier is equivalent to the multiclass clas-
sification of sample 𝐴 = {𝐴𝑖}𝑘

𝑖=1
by multiclass analytical center

classifier.

Proof. Assume that {𝑋+
𝑖
, 𝑌
+
} ∈ 𝑃
+
(𝐴), {𝑋

−

𝑖
, 𝑌
−
} ∈ 𝑃
−
(𝐴), 𝑖 =

1, . . . , |𝑃
+
(𝐴)|; then, binary classification is to solve the

following feasible problem:

𝑌
+
(𝑋
+

𝑖
w + 𝑏) > 0, 𝑖 = 1, . . . ,

𝑃+ (𝐴)
 ,

𝑌
−
(𝑋
−

𝑖
w + 𝑏) > 0, 𝑖 = 1, . . . ,

𝑃− (𝐴)
 .

(16)

Suppose the bias 𝑏 equals 0, because 𝑃
−
(𝐴) and 𝑃

+
(𝐴) are

symmetrical on the origin. The feasible constraints can be
rewritten as follows:

𝑋
+

𝑖
w > 0, 𝑖 = 1, . . . ,

𝑃+ (𝐴)
 . (17)

The feasible constraints (17) define the feasible space ofweight
vector w ∈ R𝑘∗(𝑑+1); the binary classification by analytical
center classifier can be formulated as follows:

min Φ (w) = −
|𝑃+(𝐴)|

∑

𝑖=1

𝑋
+

𝑖
w > 0

s.t. 1

2
ww − 1 = 0.

(18)

Because𝑋+
𝑖
∈ 𝐺(𝐴) and |𝑃

+
(𝐴)| = |𝐺(𝐴)|, the problem (18) is

equivalent to problem (8).This ends the proof ofTheorem 10.

Theorem 11. Consider the classifiers’ set H from Definition 5
with ∑

𝑖=1,...,𝑘
‖w
𝑖
‖ = 1 on the inner product space 𝑋, where

ℎ : R𝑑+1 → {1, . . . , 𝑘} and fix margin 𝑟 ∈ R+. For any
probability distributionD on 𝑋 × {1, . . . , 𝑘} with support in a
ball of radius𝑅 around the origin, with probability 1−𝛿 over𝑚
random samples 𝑆, any hypothesis ℎ ∈H with margin

𝑆
(ℎ) ≥ 𝑟

on 𝑆 has error more than

errD (ℎ) = 𝜀 (𝑟, 𝑚, 𝛿, 𝑅, 𝑘)

=
4 (𝑘 − 1)

𝑚
(
256𝑅
2

𝑟2
log emr

32𝑅2
log 32𝑚

𝑟2
+ log 4

𝛿
)

(19)

provided𝑚 > 2/𝜀, 64𝑅2/𝑟2 < 𝑚.

Proof. Because the sample in 𝑃(𝑆) is not independent,
the generalization error bound cannot be attained from
Theorem 9. Theorem 9 is independent of the sample dis-
tribution, so we can construct a new sample distribution
D. According to the new distribution and dataset 𝑆 to
generate the independent sample set 𝑃(𝑆) with 𝑚 samples,
that is, for every (x, 𝑦) ∈ 𝑆, define 𝑃(x, 𝑦) as the point
sampled uniformly and randomly from 𝑃(𝑆) according to
the distribution D; then, we have 𝑃(𝑆) = ⋃

(x,𝑦)∈𝑆 𝑃

(x, 𝑦).

From Theorem 8, the data radius 𝜍(𝑃(𝑆)) of 𝑃(𝑆) satisfies
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𝜍(𝑃

(𝑆)) ≤ 2𝑅. The generalization error of hypothesis ℎ over

𝑃

(𝑆) fromTheorem 9 can be calculated as follows:

errD (ℎ) = 𝜀 (𝑟, 𝑚, 𝛿, 𝑅)

=
2

𝑚
(
256𝑅
2

𝑟2
log emr

32𝑅2
log 32𝑚

𝑟2
+ log 4

𝛿
) .

(20)

Event 𝐸
𝑖
which denotes a sample in 𝑃(𝑆) is wrongly

classified and event 𝐶 which denotes the misclassification
occurs in𝑃(𝑆). From the above analysis, themisclassification
of any sample in 𝑃(𝑆) causes the misclassification of the point
in 𝑃(𝑆), so that the probability of events 𝐸

𝑖
and𝐶 satisfies the

following inequality:

𝑃 (𝐸
𝑖
) ≤ 𝑃 (𝐶) . (21)

Because the cardinality of𝑃(𝑆) equals 2(𝑘−1), the probability
of sample misclassification in 𝑃(𝑆) is written as follows:

𝑃(

2(𝑘−1)

⋃

𝑖=1

𝐸
𝑖
) . (22)

From union bound theorem, we have the following inequal-
ity:

𝑃(

2(𝑘−1)

⋃

𝑖=1

𝐸
𝑖
) ≤

2(𝑘−1)

∑

𝑖=1

𝑃 (𝐸
𝑖
) ≤

2(𝑘−1)

∑

𝑖=1

𝑃 (𝐶) . (23)

So the generalization error of hypothesis ℎ over 𝑆 is

errD (ℎ) = 𝜀 (𝑟, 𝑚, 𝛿, 𝑅, 𝑘)

=

2(𝑘−1)

∑

𝑖=1

2

𝑚
(
256𝑅
2

𝑟2
log emr

32𝑅2
log 32𝑚

𝑟2
+ log 4

𝛿
)

=
4 (𝑘 − 1)

𝑚
(
256𝑅
2

𝑟2
log emr

32𝑅2
log 32𝑚

𝑟2
+ log 4

𝛿
) .

(24)

This ends the proof of Theorem 11.

4. Computational Experiments

In this section, we present the computational results compar-
ing multiclass analytical center classifier (MACM) and mul-
ticlass support vector machine (MSVM) [12]. A description
of each of the datasets follows this paragraph. The kernel
function for the piecewise nonlinear MACM and MSVM
methods is 𝑘(x, x

𝑖
) = (xx

𝑖
/𝑁 + 1)

𝑛, where 𝑛 is the desired
polynomial.

Wine Recognition Data. The wine dataset uses the chemical
analysis of wine to determine the cultivar.There are 178 points
with 13 features. This is a three class dataset distributed as
follows: 59 points in class 1, 71 points in class 2, and 48 points
in class 3.

Glass Identification Database. The Glass dataset is used to
identify the origin of a sample of glass through chemical

Table 1: The generalization error of MACM and MSVM.

Dataset Classifier Degree of polynomial
1 3

Wine M-ACM 97.74 98.65
M-SVM 97.19 97.75

Glass M-ACM 56.46 69.38
M-SVM 55.14 66.15

analysis. This dataset is comprised of six classes of 214
points with 9 features. The distribution of points by class
is as follows: 70 float processed building windows, 17 float
processed vehicle windows, 76 nonfloat processed building
windows, 13 containers, 9 tableware, and 29 headlamps.

Table 1 contains the results for MACM and MSVM on
wine and glass datasets. As anticipated, MACM produces
better testing generalization than MSVM.

5. Summary

In this paper, the multiclass analytical center classifier based
on the analytical center of feasible space, which corresponds
to a simple quadratic constrained linear optimization, is
proposed. At the same time, in order to validate its generaliza-
tion performance theoretically, its generalization error upper
bound is formulated and proved. By the experiments on
wine recognition and glass identification dataset, it is shown
that the multiclass analytical center classifier outperforms
multiclass support vector machine in generalization error.
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