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Abstract

Background: The genetic background of atherosclerosis in type 2 diabetes mellitus (T2DM) is complex and poorly
understood. Studying genetic components of intermediate phenotypes, such as endothelial dysfunction and oxidative
stress, may aid in identifying novel genetic components for atherosclerosis in diabetic patients.

Methods: Five polymorphisms forming two haplotype blocks within the GTP cyclohydrolase 1 gene, encoding a rate
limiting enzyme in tetrahydrobiopterin synthesis, were studied in the context of flow and nitroglycerin mediated dilation
(FMD and NMD), intima-media thickness (IMT), and plasma concentrations of von Willebrand factor (vWF) and
malondialdehyde (MDA).

Results: Rs841 was associated with FMD (p = 0.01), while polymorphisms Rs10483639, Rs841, Rs3783641 (which form a
single haplotype) were associated with both MDA (p = 0.012, p = 0.0015 and p = 0.003, respectively) and vWF concentrations
(p = 0.016, p = 0.03 and p = 0.045, respectively). In addition, polymorphism Rs8007267 was also associated with MDA
(p = 0.006). Haplotype analysis confirmed the association of both haplotypes with studied variables.

Conclusions: Genetic variation of the GCH1 gene is associated with endothelial dysfunction and oxidative stress in T2DM
patients.
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Introduction

Atherosclerosis and its clinical manifestations, such as myocar-

dial infarction and stroke, are the major causes of mortality in type

2 diabetes mellitus (T2DM) patients [1]. While major clinical and

biochemical risk factors are well known, several large randomized

clinical trials show ineffectiveness of intensive therapies in the

prevention of cardiovascular mortality in T2DM [2–4], suggesting

that not all therapeutic options have already been exploited. This

may be related to the complexity of the pathogenesis of

atherosclerosis, which is initiated and modified by numerous

genetic and environmental risk factors, many of which remain

unknown. Use of quantitative phenotypes, rather than dichoto-

mized presence of atherosclerosis or its clinical complications as

outcome variables, may increase the power to detect significant

genetic associations. In addition, intermediate quantitative phe-

notypes are usually associated with a single predominant

pathomechanism of atherosclerosis [5]. Thus, studies involving

such phenotypes are less prone to confounding by concomitant

factors [6]. The most important mechanisms of atherosclerosis

include lipid accumulation in the arterial wall [7], endothelial

dysfunction [8], imbalance in redox homeostasis [9] and chronic

inflammation [10]. While all of these mechanisms are important,

endothelial dysfunction seems to precede the development of

atherosclerotic plaque both locally [11] and systemically [12].

More importantly, endothelial dysfunction in human vessels from

diabetic subjects is primarily caused by increased oxidative stress,

which results primarily from the uncoupling of endothelial nitric
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oxide synthase (eNOS) [13]. In T2DM patients, uncoupled eNOS

contributes to net superoxide excess, rather than producing

protective nitric oxide (NO). This phenomenon is caused by the

loss of bioavailability of the eNOS co-factor - tetrahydrobiopterin

(BH4) and can be reversed by BH4 supplementation [13]. The

mechanism for decreased bioavailability of BH4 in T2DM is not

known. Several recent studies have shown that BH4 levels may be

modified by genetic variability of the GTP-cyclohydrolase 1

(GCH1) gene located on chromosome 14 in humans and encoding

a rate limiting enzyme in the complex process of tetrahydrobiop-

terin synthesis [14–16]. In the present study, we searched for the

association between the polymorphisms within the GCH1 gene

and selected intermediate, quantitative phenotypes related to

atherosclerosis in T2DM patients. These included endothelial

dysfunction (flow mediated dilation – FMD) and its biochemical

parameter (von Willebrand factor – vWF), measures of oxidative

stress (malondialdehyde levels – MDA), and subclinical athero-

sclerosis (intima-media thickness – IMT).

Materials and Methods

Study population
The study population consisted of 182 consecutive patients

diagnosed with T2DM and followed up in an outpatient setting at

the Department of Metabolic Diseases, University Hospital,

Krakow, Poland. During patient recruitment, the WHO defini-

tions and criteria of diabetes diagnosis were used [17]. All patients

were white Caucasians and inhabitants of southeastern Poland.

Upon examination, demographic data and information about the

course of their disease, family history, past and current treatments

and lifestyle habits were obtained. Only patients with clinical

diagnosis of T2DM and no insulin therapy, within the first year of

initial diagnosis, were included in this study. Blood for DNA

isolation and biochemical measurements, including MDA and

vWF plasma concentrations, was obtained by antecubital

venipuncture. Vasodilation and IMT were measured ultrasono-

graphically with an 8 MHz probe by a single researcher, blinded

to other data. Diagnosis of diabetic complications and biochemical

measurements were performed as previously described [17]. The

study was approved by the Bioethics Committee of the

Jagiellonian University. All patients provided informed consent.

Assessment of endothelial function
Endothelial function was assessed by flow mediated dilation

(FMD) measurement as described and validated by our laboratory

before [17,18]. Measurements were performed with the Toshiba

Xario Diagnostic Ultrasound System and an 8MHz linear

transducer. Briefly, measurements were recorded before 5 min-

ute-long brachial artery occlusion and then subsequently 1, 2 and

5 minutes after cuff deflation. Measurements during diastole were

recorded and maximal dilation (usually detected within ca. 60–

120 sec) was analyzed and reported. Maximal nitroglycerine

mediated dilation (NMD) was measured to study non-endothelium

dependent vasodilations. vWF concentration in plasma was

analyzed using a commercial ELISA kit from DAKO (Glostrup,

Denmark).

Measurement of IMT
Measurement of IMT was performed as previously described

[17,18] at 12 different points along the right and left common

carotid artery. Mean (IMTmean) and maximal IMT (IMTmax)

were calculated.

MDA determination
MDA in plasma was determined using liquid chromatography

with mass detection (HPLC/MS, LCQ Finnigan Matt). These

tests were performed at the Department of Pharmacology JUMC

by a modified method described by Sim et al. [19]. Plasma samples

were incubated with NaOH to liberate bound MDA and

perchloric acid to precipitate proteins. The supernatant was then

subjected to extraction twice with n-hexane. The separated

organic phase was analyzed by HPLC/MS.

Genotyping
Polymorphisms in the GCH1 gene were selected for genotyping

based on the existing literature [20,21]. The GCH1 gene spans

slightly over 60 kb on human chromosome 14 (physical location

54,378,474–54,439,292 on March 2006 build of human genome

according to UCSC genome browser). Linkage disequilibrium

(LD) in a European (Tuscany, Italy) and European descent (Utah,

USA) populations (CEU + TSI) from HapMap data [22] is shown

in Figure 1A. These populations combined are probably the best

available approximation of LD extent for White Caucasians, such

as a Polish population from Central Europe. Data show the

existence of two haplotype blocks of very tight LD, extending

beyond the gene boundaries. The boundary between these two

blocks is localized in the second intron, dividing the gene into two

thirds in the 59-end block and one third in the 39-end block.

Therefore, the polymorphisms for this association study were

selected from both haplotype blocks (Figure 1B). DNA was

isolated from peripheral blood leukocytes using a guanidinium

thiocyanate method (DNAzol, Life Technologies).

Polymorphisms rs10483639, rs841, rs3783641, rs10137071,

and rs8007267 were determined using commercially available kits

ABI TaqMan SNP Genotyping pre-designed assays (Applied

Biosystems, USA). End-point fluorescence was determined using

Applied Biosystems 7900HT Fast Real-Time PCR System

(Applied Biosystems, USA).

Statistical analysis
Data for statistical analysis were analyzed with SAS ver. 9.3

(Cary, USA). Deviations of genotype frequencies of studied

polymorphisms from Hardy-Weinberg equilibrium were tested

using a modified Chi-square test, implemented in the SAS

Genetics module. An extent of LD between the studied

polymorphisms was calculated and presented graphically with

Haploview ver. 4.1. Patients with different genotypes were

compared for differences in continuous variables using the

Wilcoxon test and in categorical variables using Chi-square or

Fisher’s exact test. To compare the effect of polymorphisms and

haplotype blocks on quantitative outcome variables, we used

PLINK ver. 1.06 with association tests based on Wald statistic.

Univariate tests of association were used for individual polymor-

phisms and haplotype blocks, multivariate tests for combinations

of polymorphisms and clinical variables. The following clinical

variables, potential confounders of association between genetic

factors and outcome variables, were tested: age and sex of patients,

characteristics of T2DM, risk factors of atherosclerosis and

medication used. P values of less than 0.05 were considered

statistically significant.

Results

Study population
Clinical characteristics of patients are summarized in Table 1.

These data include demographic characteristics (sex and age),

major risk factors for atherosclerosis, current therapies, history of
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diabetes and its complications, cardiovascular diseases, lipid

profile, and outcome phenotypes (FMD, NMD, vWF, and MDA).

LD in GCH1 gene in T2DM patients in Poland
The physical location of 5 genotyped polymorphisms on

chromosome 14 is described in Figure 1B. Linkage analysis of

genotyping data obtained in our study population revealed the

existence of 2 haplotype blocks, similar to the results obtained

using analysis of HapMap data (Figure 1A–C). Polymorphisms

rs10483639, rs841, and rs3783641 belong to the first haplotype

block while polymorphisms rs10137071 and rs8007267 belong to

the second haplotype block.

GCH1 genetic polymorphisms and vascular outcome
variables

We next studied the associations between each of the 5

genotyped SNPs, as well as each of the 2 haplotype blocks formed

by these SNPs, with outcome variables (Table 2). Polymorphism

rs841 was associated with endothelial function measured as

maximal FMD (Figure 2A), while no association was found with

control NMD (Figure 2B). Three polymorphisms belonging to the

same haplotype block (rs10483639, rs841, and rs3783641) were

associated with vWF concentration, a plasma biomarker of

endothelial function - (Figure 3A and B). In the case of the last

polymorphism, rs3783641, for the genotype mean value of vWF

concentration we observed no progression from Aa to aa

genotypes. This may suggest either a non-additive model of

association or simply reflect the fact that there were only 6 people

with the aa genotype in our study. Interestingly, 4 polymorphisms

(rs10483639, rs841, rs3783641, and rs8007267) were also associ-

ated with plasma MDA concentration, a systemic oxidative stress

marker (Figure 4A and B).

Figure 1. LD within GCH1 gene locus. (A) Extent of LD between polymorphisms at the GCH1 gene locus, based on HapMap Phase II data. Two
black triangles designate two haplotype blocks of tight LD. (B) Physical location and minor allele frequency of 5 genotyped polymorphisms from
GCH1 locus according to UCSC Genome Browser (Feb 2009 assembly). (C) LD analysis between 5 polymorphisms, genotyped in T2DM subjects from
the Polish population, forms two separate haplotype blocks. Data were analyzed and visualized with Haploview ver. 4.2. Haplotype blocks were
defined based on the solid spine of LD rule. Numeric values represent Lewontin’s D9 between pairs of polymorphisms.
doi:10.1371/journal.pone.0108587.g001
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Table 1. Clinical characteristics of the studied T2DM patients.

Clinical feature Value in 182 patients *

Female sex (%) 50

Age at examination (years) 56.5 [37–72]

Characteristics of T2DM

Use of oral antidiabetic drugs (%) 63.2 **

Use of insulin (%) 52.8 **

Any form of retinopathy (%) 39

Nephropathy (%) 16.5

Neuropathy (%) 34.1

Age at diagnosis (years) 47 [26–68]

Duration of diabetes (years) 9 [1–31]

Current blood glucose (mmol/L) 9.2 [4.3–34]

Hemoglobin A1c (%) 7.6 [5.1–14.2]

Peptide C (ng/mL) 3 [0.15–11.5]

Serum creatinine (mmol/L) 75.3 [47–386.4]

Renal dysfunction; serum creatinine.155 mmol/L (%) 5.0

ALAT (IU/L) 20 [8–90]

Risk factors for atherosclerosis

Hypertension (%) 88.5

Ever smoking status (%) 59.1

Current smoking status (%) 21.6

Overweight/Obesity (%) Overweight –29.7; Obese –59.9

BMI (kg/m2) 31.4 [21–56.4]

Total cholesterol (mmol/L) 5.1 [2.7–19.6]

LDL cholesterol (mmol/L) 2.9 [0.5–7.3]

HDL cholesterol (mmol/L) 1.1 [0.4–2.5]

Triglycerides (mmol/L) 1.9 [0.6–14.1]

Atherosclerosis and CAD

Ischaemic heart disease (%) 47.8

CCS classification (%) 0–50; 1–24.7; 2–17.6; 3–7.7

PTCA performed in the past (%) 11.5

Myocardial infarction in the past (%) 12.1

Presence of atherosclerotic plaque (%) 60.4

Medications

ACE inhibitors (%) 76.9

diuretics (%) 50

beta – blockers (%) 37

calcium blockers (%) 23.6

alpha – blockers (%) 7.7

nitrates (%) 14.8

aspirin (%) 43.4

statins (%) 49.7

Studied vascular endpoints

IMT (mm, average of 12 measurements) 0.84 [0.55–1.1]

IMT (mm, maximum of 12 measurements) 1 [0.7–1.5]

FMD (ratio to baseline at 5 minutes) 1.03 [1–1.24]

NMD (ratio to baseline at 5 minutes) 1.12 [1–1.31]

MDA (mmol/L) 3.32 [0.16–22.3]

vWF (% of normal population) 101.3 [37.5–144.1]

* Frequency of occurrence among patients for categorical variables or median [minimum; maximum] value for continuous variables.
** At the time of examination 42 T2DM patients use both insulin and oral hypoglycemic drugs, 54 use only insulin, 73 use only oral hypoglycemic drugs, 13 use neither
insulin nor oral hypoglycemic drugs (diet and physical exercises only).
doi:10.1371/journal.pone.0108587.t001
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Association of haplotypes with outcome variables
Association of each of the two described above haplotype blocks

with studied outcome variables was determined using omnibus

haplotype association tests with studied variables (Table 3).

Haplotype analysis showed that MDA concentration was

associated with both haplotype blocks while vWF concentration

was associated only with the first haplotype block. This is in line

with the analysis of associations of individual polymorphisms with

outcome variables. In addition, we observed that association of

both haplotype blocks with MDA concentration was less

significant than the ones of individual polymorphisms. However,

in case the of vWF concentration, the association of the first

haplotype block was more significant than that of any individual

polymorphism. There was no significant association between the

haplotype blocks and FMD values.

Clinical variables as potential confounders of GCH1
polymorphisms associations

In addition to single polymorphism analyses and haplotype

block analyses, we have also tested whether clinical covariates,

described in the Statistical Analysis paragraph of the Materials and

Methods section, changed the association between GCH1

polymorphisms and the outcome variables – FMD as well as

MDA and vWF concentrations. The only covariate that signifi-

cantly associated on its own with the outcome variables was

current smoking status. However, we also forced in kidney

dysfunction (defined as creatinine concentration above 155 ml/

L) and duration of diabetes into the multivariate models, as these

are known to particularly affect endothelial function in diabetes

(Table 4). The relationships between polymorphisms and outcome

variables were independent of the confounding variable of current

smoking status. Changes in beta coefficients of association for any

studied SNP were less than 10% upon addition of current smoking

as a covariate in the model. Thus, covariates did not confound this

relationship.

Discussion

In the present study we have found that polymorphisms in the

GCH1 gene, that can affect tetrahydrobiopterin synthesis, are

associated with markers of endothelial dysfunction and oxidative

Table 2. Association of individual GCH1 gene polymorphisms with outcome variables.

Outcome variable SNP P value

FMD (max) Rs10483639 0.056

Rs841 0.01

Rs3783641 0.09

Rs10137071 0.63

Rs8007267 0.47

NMD (max) Rs10483639 0.24

Rs841 0.25

Rs3783641 0.19

Rs10137071 0.29

Rs8007267 0.07

IMT (mean) Rs10483639 0.15

Rs841 0.22

Rs3783641 0.08

Rs10137071 0.28

Rs8007267 0.11

IMT (max) Rs10483639 0.21

Rs841 0.09

Rs3783641 0.06

Rs10137071 0.40

Rs8007267 0.13

MDA Rs10483639 0.012

Rs841 0.0015

Rs3783641 0.003

Rs10137071 0.51

Rs8007267 0.006

vWF Rs10483639 0.016

Rs841 0.03

Rs3783641 0.045

Rs10137071 0.75

Rs8007267 0.055

doi:10.1371/journal.pone.0108587.t002
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stress. This is important, as both endothelial dysfunction and

oxidative stress in T2DM patients are the major mechanisms for

the development of both micro- and macro-angiopathy. Further

studies are required to determine if the same association of

polymorphisms is true for patients with type 1 diabetes. Expanding

this study to include a group of healthy, non-diabetic control

subjects could also verify whether the described associations of

polymorphisms with endothelial dysfunction and oxidative stress

also remain significant during normoglycemia or are specific to

diabetic patients only.

Functional effects of polymorphisms located in the GCH1 gene

locus have been initially shown in relation to the role of BH4 in

catecholamine and serotonin synthesis [23]. Rare mutations in

GCH1 lead to hyperphenylalaninemia [24] or DOPA-responsive

dystonia [25]. However, the association of sequence differences in

this gene with NO biology have been quickly established. For

example, the GCH1 haplotype with population frequency of

15.4% has been linked to lower pain sensitivity due to decreased

NO production [15]. Although this association has not been

replicated [26], recent interest has focused on the relationship with

cardiovascular disease. Importantly, Lotsch et al. [27] demon-

strated that the pain-protective haplotype can be inferred by

genotyping just three polymorphisms, which we have included in

our analysis.

A number of studies have looked at cardiovascular disease in

relation to the GCH1 genetic variation. Zhang et al. [20] reported

that a GCH1 polymorphism in the 39-UTR is associated with

cardiovascular risk, due to decreased NO production and higher

Figure 3. Relationship between studied polymorphisms and plasma vWF concentration. Relationship to polymorphisms forming
haplotype block 1 (panel A) and haplotype block 2 (panel B) is demonstrated. Statistical significance of linear regression: * p,0.05.
doi:10.1371/journal.pone.0108587.g003

Figure 2. Relationship between rs841 polymorphism in the 3’-UTR of GCH1 gene and vascular function measured as endothelium
dependent FMD (panel A) and endothelium independent NMD) (panel B). AA indicates frequent homozygote, Aa - heterozygote, aa - rare
homozygote.
doi:10.1371/journal.pone.0108587.g002
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blood pressure in carriers of one of the alleles. Subsequently,

Doehring et al. [21] showed that this 39-UTR polymorphism is in

complete LD with the pain-modulating haplotype. Polymorphisms

rs1049255 and rs841 were independently associated with coronary

artery disease [28]. According to this study, epistatic interactions

with other polymorphisms of the NO biosynthesis pathway

contribute additionally to the risk of coronary artery disease.

The first direct link of genetic variation with BH4 levels was

described by Antoniades et al. [16]. They observed lower BH4

levels in carriers of the deleterious GCH1 haplotype, which results

in increased production of vascular superoxide and decreased

acetylcholine mediated vasodilation in saphenous vein fragments.

Considering this evidence and the role BH4 plays in diabetic

vascular disease, the importance of genetic variation of the GCH1

gene in T2DM patients is particularly interesting. Polymorphism

rs841, which forms a part of the first haplotype block, has been

implicated in macrovascular disease in the Chinese cohort of

T2DM patients [29]. In this earlier study, carriers of the

deleterious genotype were characterized by lower plasma NOx

concentrations and lower FMD but higher MDA level and IMT.

In the present project, we have studied 5 polymorphisms spread

throughout the gene, which has allowed us to look at variation in

the GCH1 gene. Careful examination of the structure of LD in the

Polish cohort of T2DM patients showed that these polymorphisms

belong to two separate haplotype blocks, in agreement with our

analysis of HapMap data. A previous study reported the existence

of various numbers of haplotype blocks in the GCH1 locus,

depending on the population studied [15]. Two earlier papers

suggested tight LD across the whole GCH1 locus [16,21].

However, Zhang and et al. [20], who performed a resequencing

Table 3. Association of two GCH1 gene haplotype blocks, formed by 5 studied polymorphisms with outcome variables.

Studied variable Haplotype block * P value for association

FMD max 1 0.27

2 0.72

NMD 1 0.6

2 0.16

IMT (average) 1 0.5

2 0.1

IMT (max) 1 0.44

2 0.16

MDA 1 0.0253

2 0.0145

vWF 1 0.00285

2 0.12

* Haplotype block 1 consists of the following SNPs: Rs10483639, Rs841, Rs3783641 (estimated haplotype frequencies: GAT 79.9%; CGA 15.4%; GAA 2%; CGT 2%.
Haplotype block 2 consists of the following SNPs: Rs10137071, Rs8007267 (estimated haplotype frequencies: AC 75.5%; AT 16.8%; GC 7.7%).
doi:10.1371/journal.pone.0108587.t003

Figure 4. Relationship between studied polymorphisms and plasma MDA concentration measured by mass-spec analysis.
Relationship to polymorphisms forming haplotype block 1 (panel A) and haplotype block 2 (panel B) is demonstrated. Statistical significance of linear
regression: * p,0.05; ** p,0.01.
doi:10.1371/journal.pone.0108587.g004
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study, report two distinct haplotype blocks in subjects from Sub-

Saharan Africa and a lack of LD of the 39-end polymorphism with

other areas of the gene in subjects of European ancestry.

Therefore, our careful examination of the structure of LD in the

Polish population in the context of HapMap data is of great

interest.

We found that only one of the polymorphisms, rs841, was

associated with impaired endothelium dependent vascular dilata-

tion while no relationship was observed with non-endothelium

dependent responses. This is in agreement with previous reports of

the functional effects of this polymorphism on vascular function in

T2DM. Subsequently, we found that three polymorphisms, which

form the first haplotype block, were also associated with biomarker

Table 4. Models of association of GCH1 gene polymorphisms with outcome variables, accounting for current smoking, kidney
dysfunction* and diabetes duration covariates.

Outcome variable Model including single SNP Model including SNP and covariates Beta coefficient P value

FMD max rs841 20.018 0.01

rs841 20.017 0.015

Current smoking 20.011 0.2

Renal dysfunction 20.0009 0.17

Diabetes duration 20.0022 0.93

MDA rs10483639 1.216 0.01

rs10483639 1.042 0.03

Current smoking 20.84 0.15

Renal dysfunction 0.06 0.23

Diabetes duration 20.8 0.42

rs841 1.583 0.001

rs841 20.755 0.19

Current smoking 0.04 0.35

Renal dysfunction 21.341 0.44

Diabetes duration 1.431 0.005

rs3783641 1.457 0.003

rs3783641 1.298 0.01

Current smoking 20.931 0.10

Renal dysfunction 0.0412 0.35

Diabetes duration 21.068 0.50

rs8007267 1.337 0.006

rs8007267 1.136 0.024

Current smoking 20.862 0.14

Renal dysfunction 0.05 0.28

Diabetes duration 21.243 0.44

vWF rs10483639 26.453 0.016

rs10483639 25.706 0.033

Current smoking 24.99 0.12

Renal dysfunction 0.098 0.69

Diabetes duration 16.91 0.03

rs841 25.839 0.031

rs841 25.371 0.047

Current smoking 24.546 0.13

Renal dysfunction 20.069 0.78

Diabetes duration 15.47 0.065

rs3783641 25.445 0.045

rs3783641 24.728 0.081

Current smoking 24.486 0.15

Renal dysfunction 20.0389 0.87

Diabetes duration 16.8 0.03

* Renal dysfunction is defined as patients having creatinine concentration above 155 mmol/L.
doi:10.1371/journal.pone.0108587.t004

Genetic Variability and Endothelial Dysfunction in Diabetes

PLOS ONE | www.plosone.org 8 November 2014 | Volume 9 | Issue 11 | e108587



plasma vWF concentration, which clearly confirms the functional

importance of the GCH1 gene variability in the regulation of

vascular function in T2DM.

The major mechanism through which the GCH1 gene could

affect endothelial function is eNOS uncoupling, which is directly

linked to oxidative stress. Four polymorphisms, three constituting

the first haplotype block and one from the second haplotype block,

are associated with MDA plasma concentration. Moreover, the

first haplotype block was even more strongly associated with this

variable than any of the analyzed SNPs. This finding suggests that

the first haplotype block may contain a non-genotyped polymor-

phism affecting MDA concentration. Therefore, this would be a

stronger association than any of the polymorphisms previously

genotyped by our group. An alternative explanation to this finding

could be an epigenetic interaction between studied polymorphisms

or other polymorphisms in haplotype block 1, modifying the

presence of CpG islands in this locus, thereby affecting methyl-

ation pattern and expression of GCH1. Such a possibility was

demonstrated at other loci [30]. In the case of vWF, association of

the first haplotype block with this variable was less significant than

with individual SNPs.

We also tested whether associations defined in this study could

have been confounded by clinical factors. The only clinical

variable associated with the outcome variables of MDA and vWF

concentrations (but not with FMD), was the current smoking

status. However, further statistical analysis has shown that the

association of SNPs with outcome variables was not confounded

by smoking, renal dysfunction, or diabetes duration. In summary,

GCH1 polymorphisms or haplotype blocks are associated with

FMD, malondialdehyde, and von Willebrand factor concentra-

tions, independently of other clinical characteristics in Polish

T2DM patients.

Interestingly, in our T2DM study group we did not observe an

association between GCH1 genetic variation and IMT, which has

been reported previously [29]. It is possible that our patients were

younger and their IMT was overall not substantially increased

(mean IMT below 0.9 mm). This could have implicated that we

studied a population of T2DM patients at early stage of the

development of atherosclerotic disease in whom an increase of

IMT not yet developed. However, as discussed above, our data

show that the functional polymorphisms, which may affect NO

production, can also influence intermediate phenotypes of

endothelial dysfunction and imbalanced redox homeostasis [31].

We cannot exclude an alternative explanation that slight

interindividual differences in IMT, measured in fraction of

millimeters are harder to associate with effects of polymorphism.

Such a relationship would be easier to find in a larger population.

Macrovascular complications are responsible for mortality

excess and lower quality of life in T2DM patients. Their

occurrence may be accelerated and exacerbated by a deficiency

in NO production [32]. While NO donors (such as nitrates) are

widely used in some clinical situations, their protective efficacy in

coronary artery disease has been questioned in numerous clinical

trials [33]. Therefore, they do not constitute a first line treatment

any longer. Correction of BH4 deficiency might be a better

therapeutic option correcting not only NO deficiency but

oxidative stress as well. For example, it has been postulated that

in carriers of susceptibility GCH1 gene polymorphisms with

elevated MDA, BH4 may be oxidized to BH2 and uncouple NO

synthase, which leads to further production of reactive oxygen

species by eNOS, rather than NO itself [34–36]. The findings of

our study together with published evidence of the functional

importance in GCH1 gene variation may in future form a basis for

diagnostic screening tests to stratify the risk of early development

of macrovascular complications in newly diagnosed T2DM

patients. This also presents potential therapeutic implications that

will need to be clinically tested. An interesting question would be

whether supplementation of BH4 might improve the clinical

course of T2DM macrovascular complications in relation to

stratification based on GCH1 gene polymorphisms. Stratification

of patients’ therapy according to their genotype is an important

aspect of personalized medicine, which becomes even more

possible with the advent of new, genome-wide laboratory tools.

Apart from the correction of NO availability, another important

strategy for preventing complications in diabetic patients could be

to reverse endothelial progenitor cell dysfunction [37]. GCH1was

demonstrated to effectively reverse such dysfunction and promote

re-endothelization, which may be important for wound healing

[37,38]. A group of patients who are particularly prone to

complications due to endothelial dysfunction, and might therefore

especially benefit from genotype-based BH4 correction, are

patients with kidney-pancreas transplantation [39–41].

In summary, the results of our study indicate that functional

polymorphisms of the GTP cyclohydrolase I gene, which directly

affect tetrahydrobiopterin synthesis, are associated with endothe-

lial dysfunction and oxidative stress in T2DM patients.
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24. Thöny B, Blau N (1997) Mutations in the GTP cyclohydrolase I and 6-pyruvoyl-

tetrahydropterin synthase genes. Hum Mutat 10: 11–20.

25. Steinberger D, Weber Y, Korinthenberg R, Deuschl G, Benecke R, et al. (1998)

High penetrance and pronounced variation in expressivity of GCH1 mutations

in five families with dopa-responsive dystonia. Ann Neurol 43: 634–639.

26. Kim H, Dionne RA (2007) Lack of influence of GTP cyclohydrolase gene

(GCH1) variations on pain sensitivity in humans. Mol Pain 3: 6.
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