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Cancer is one of the leading causes of death and a major public health problem all over

the world. Immunotherapy is becoming a revolutionary clinical management for various

cancer types. Restoration of aberrant immune surveillance on cancers has achieved

markable progress in the past years by either in vivo or ex vivo engineering of the immune

cells. Here, we summarized the central roles of immune cells in tumor progression and

regression, and the existing and emerging strategies for different immune cell-based

immunotherapies. In addition, the current challenges and the potential solutions in

translating the immunotherapies into the clinic are also discussed.
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INTRODUCTION

Cancer incidence and mortality have been increasing since 2010, making cancer the leading
cause of death and a major public health problem all over the world (1, 2). The traditional
cancer therapies, such as surgery, radiotherapy, and chemotherapy, have difficulty in completely
eradicating cancer cells. The emerging immunotherapy is revolutionizing the clinical management
of multiple tumors (3).

Tumor microenvironment (TME) is infiltrated by immune cells, which together with stromal
cells, contribute to tumor escape from host immune surveillance and its progression (4, 5).
Generally, the immune cells in TME can be divided into two types: tumor-antagonizing and tumor-
promoting immune cells. The tumor-antagonizing immune cells consist of CD8+ cytotoxic T cells,
effector CD4+ T cells, natural killer (NK) cells, dendritic cells (DCs), M1-polarized macrophages,
and N1-polarized neutrophils. In contrast, the tumor-promoting immune cells mainly consist of
regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). MDSCs could be further
divided into two subtypes: the polymorphonuclear MDSCs (PMN-MDSCs) and the monocytic
MDSCs (M-MDSCs). The PMN-MDSCs are morphologically similar to N2-polarized neutrophils,
whereas M-MDSCs are similar to M2-polarized macrophages. Notably, the role of B cells in TME is
relatively unclear and controversial, with both tumor-antagonizing and protumorigenic roles being
reported (6).

Aberrant innate and adaptive immune responses are closely related to immunosuppression and
tumorigenesis (7). During the early stages of tumor progression, natural killer (NK) cells and CD8+

T cells act as cytotoxic immune cells to recognize and kill tumor cells (8). However, there remains
a subset of less immunogenic tumor cells that survived as the dominant cells afterward, which
escaped immune surveillance (9, 10). As the tumor continuously grows, different kinds of immune
cells adopt various ways to form the immune-suppressive microenvironment, which eventually
weakens the tumoricidal effects (11).
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The main mechanism of immunotherapy is to change the
tumor microenvironment or the immune cells so that the
immune system can achieve the purpose of killing tumors
(5). Immunotherapies targeting accessory immune cells are
considered as promising strategies against a variety of cancers
(5, 11, 12). Here, we summarize the key roles of different
immune cells in the tumor microenvironment and emerging
immunotherapy strategies based on modulation of different
immune cells. Future challenges and the possible solutions
that translate the immunotherapies into clinical reality are
also discussed.

CHIMERIC ANTIGEN RECEPTOR
T-CELL-BASED IMMUNOTHERAPY

Malignant progression stimulates adaptive immune responses
and creates a subset of specific T cells that can precisely
eliminate tumor cells (13, 14). However, with the development of
tumors, tumor cells become less immunogenic and lose specific
tumor antigens that activate adaptive response at the beginning
of malignant progression (15, 16). Besides, low expression
of class I MHC molecules on tumor cells also leads to the
downregulation of CD8+ cytotoxic T lymphocytes (CTLs) and
thus immunosuppression (17). Immune checkpoints, CTLA-4
and PD-1/PD-L1 are also blamed to suppress T-cell activity when
bound by the corresponding ligands on tumor cells (18–20).

Chimeric antigen receptor (CAR) T cell technology is an
innovative therapy, which harness the inherent capacity of
the immune system to fight cancer selectively in an MHC-
independent way. CARs are synthetic antigen receptors that
include both antigen recognition moieties and T-cell activation
signaling domains (21). A CAR consists of three major domains:
ectodomain, transmembrane domain, and endodomain (22, 23).
The ectodomain is exposed to the extracellular space with signal
peptide, antigen recognition region, and spacer. The antigen
recognition region is usually a single chain variable fragment
(scFv) formed by fusing the variable portions of heavy and light
chains of a monoclonal antibody with a flexible linker (24, 25).
The scFv presents the function of identifying and binding tumor
antigens with high affinity. A spacer functions as a connection
between the antigen-binding domain and the transmembrane
domain (26). The transmembrane domain is derived from most
of the membrane-proximal components of the endodomain and
consists of a hydrophobic alpha helix spanning the membrane,
which is related to the stability of the receptor. CD3ζ serves as the
most common component of the endodomain, which activates T
cells after CAR binds the target antigen. Additionally, the CAR
internal domain undergoes intergenerational changes, including
one or more costimulatory domains, such as the commonly used
CD28 and 41BB, to enhance the persistence and cytotoxicity of
CAR-expressing cells (27, 28).

Based on the structure of the endodomain, CAR-T cells can be
roughly divided into four generations (29). The first generation
CARs mimicked the signals from endogenous T-cell receptor
(TCR), which contains only one activating domain (usually a
portion of the ζ chain in the TCR complex). Additional activating

domains are then added in the next two generations, with more
CAR-T-cell proliferation, stronger killing ability, and higher
cytokine production. The fourth-generation CARs were typically
characterized by the addition of IL-12 to the second generation of
CAR-T (30). Currently, CAR-T have been tried to various types of
cancer, including leukemia and solid tumors. Moreover, CAR-T
could be even engineered to eradicate the cancer stem cells.

CAR-T for Leukemia
CAR-T immunotherapy has produced a particularly successful
clinical response in the treatment of hematologic malignancies.
Up to now, three CAR-T cell products have been approved
by the U.S. Food and Drug Administration, which all target
CD19 antigen. CD19 is a cell-surface component of the B-cell
receptor complex involved in B-cell activation, which expressed
at high and stable levels on tumor tissue frommost patients with-
B cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin’s
lymphoma (NHL), and chronic lymphocytic leukemia (CLL).
CAR-T cells targeting CD19 have emerged to present a marked
efficacy to directly eradicate liquid tumors and induce sustained
tumor regression of B lineage cell malignancies (31, 32). It is
worth noting that cytokines released by CD19 CAR-T cells also
demonstrated the ability to activate both innate and adaptive
immune systems and enhance tumor rejection.

Besides CD19-targeted CAR-T, CD22 and CD123 targeted
CAR-T were also developed to treat leukemia. CD22-targeted
CAR-T cells have a potent antileukemic activity and modest off-
target toxicity (33). Since CD123 is expressed on a range of
hematological malignancies, CAR-T targeting CD123 has also a
potential role in the prevention of tumor progression and with
additional therapeutic effects on eradicating the central nervous
system in hematological malignancies (34). In general, all these
different targeting CAR-T therapies provide rapid, efficient, and
uninhibited regression and destruction of B-cell cancers.

Chimeric Antigen Receptor-T Cell for Solid
Tumors
Besides leukemia, CAR-T-cell therapy has been demonstrated
to be effective against several kinds of solid tumors recently,
including melanoma, colon cancer, non-small cell lung cancer,
ovarian cancer, mesothelioma, and neuroblastoma (35).
Mesothelin, epidermal growth factor receptor (EGFR), and
human epidermal growth factor receptor 2 (HER2) are the most
commonly focused antigen targets in CAR-T therapy to solid
malignancies (Table 1).

Mesothelin is a 40-kDa cell-surface glycoprotein. The
precursor protein is proteolytically processed into two proteins,
a 30-kDa soluble megakaryocyte potentiation factor and a
40-kDa GPI-anchored plasma membrane protein mesothelin
(36). Mesothelin is limitedly expressed on mesothelial cells in
different types of tissues including pleura, peritoneum, and
pericardium but is highly expressed as a tumor-differentiation
antigen in a broad spectrum of solid tumors, which make
mesothelin as an attractive target for cancer immunotherapy
(37). Mesothelin-specific CAR-T-cell therapy also has attracted
widespread interest. Commonly, mesothelin-CAR-T-cells consist
of anti-mesothelin scFv SS1 fused to TCRzeta signaling and
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TABLE 1 | Engineering strategies for effector chimeric antigen receptor-T (CAR)-T

cell.

Specific

antigens for

engineered

receptors

Treated cancer types Function/effects

CD19 B-NHL (DLBCL, follicular lymphoma,

mantle cell lymphoma), CLL, B-ALL

Leukemia-specific

targeting

CD22 B-ALL

CD123 AML

B-ALL

Mesothelin Mesothelioma, TNBC, pancreatic cancer,

lung cancer, gastric cancer, ovarian

cancer, bile duct carcinoma

Cancer-specific

targeting in solid

tumor

EGFR/EGFRvIII NSCLC, glioblastoma

HER2 Ovarian cancer, breast cancer,

osteosarcoma, HER2-positive sarcoma,

glioblastoma

CD133 Glioblastoma, lung cancer, breast cancer,

liver cancer, gastric cancer, ovarian cancer,

pancreatic cancer, colorectal cancer,

prostate cancer

Cancer stem

cell-specific

targeting

CD90

EpCAM

ALDH

PSCA Prostate cancer

ALDH, aldehyde dehydrogenases; AML, acute myeloid leukemia; B-ALL, acute

B lymphoblastic leukemia; B-NHL, B cell non-Hodgkin’s lymphoma; CLL, chronic

lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; EGFR, epidermal growth

factor receptor; EGFRvIII, the epidermal growth factor receptor variant III; EpCAM,

epithelial cell adhesion molecule; HER2, human epidermal growth factor receptor 2;

NSCLC, non-small-cell lung carcinoma; PSCA, prostate stem cell antigen; TNBC, triple-

negative breast cancer.

costimulatory domains. There are various clinical studies to
investigate the safety and feasibility of mesothelin-specific CAR-
T in mesothelioma, lung cancer, breast cancer with pleural
metastases (38). All of these trials demonstrated that the
application of mesothelin-specific CAR-T-cell therapy is a
promising strategy for mesothelin-expressing malignancies.

EGFR is a 170-kDa transmembrane glycoprotein belonging
to the ErbB oncogene family of tyrosine kinase receptors.
Aberrant activation of EGFR leads to autophosphorylation of
receptor tyrosine kinase that ultimately drives cell proliferation
and metastasis in various types of tumors (39). Anti-EGFR
CAR-T therapy is considered as an alternative way for EGFR-
overexpressed solid malignancies (40).

Human epidermal growth factor 2 (HER2) is a membrane
tyrosine of the EGFR family. HER2 promotes oncogenesis
of several cancers and is found to be amplified in multiple
tumors. An αHER2/CD3 RNA-engineered CAR-T-like T cells
have achieved success in treating HER2+ malignancies (41).
Furthermore, HER2-specific CAR-T cells present a prominent
effect in targeting and killing HER2-positive cancers such as
GBM, ovarian cancer, and breast cancer (42). HER2-specific
CAR-T cells along with PD1 blockade was demonstrated to
have a significant therapeutic potential for glioblastoma (43).

In addition to preclinical studies, clinical trials also revealed
the safety, feasibility, and activity of CAR-T immunotherapy
targeting HER2 in patients with advanced biliary tract cancers
(BTCs) and pancreatic cancer (PCs) (44).

Chimeric Antigen Receptor-T Cell
Targeting Cancer Stem Cells
Cancer stem cells (CSCs) are a subpopulation of tumor cells
that mimic self-renewal and multilineage differentiation capacity
of normal tissues and are responsible for maintaining tumor
heterogeneity, enhancing tumor growth, therapeutic resistance,
immune evasion, invasion, and metastasis (45–47). Thus,
specifically targeting CSCs is crucial for developing effective
therapeutics. Numerous surface markers expressed on CSCs,
namely, CD133, are applied to identify CSCs and thus provide
potential targets for CAR-T cell therapy. A study demonstrated
that anti-CD133 CAR-T cells efficiently eliminate glioblastoma
stem cells in vitro and in vivo (48). Meanwhile, a case report
indicated the safety and feasibility of the combination treatment
of anti-EGFR CAR-T cells and anti-CD133 CAR-T cells in
patients with cholangiocarcinoma (49). Besides CD133, prostate
stem cell antigen (PSCA), CD90, EpCAM, and ALDH also can be
considered as important target antigens for CAR-T-cell therapy
in cancer treatment, which needs further study in both preclinical
and clinical settings (50, 51).

Challenges and Solutions of Chimeric
Antigen Receptor-T Cell Therapy
Adverse Effects
Adverse effects are accompanied by all cancer therapies and
sometimes can be a big challenge. The toxicities of CAR-T cell
therapy include cytokine release syndrome (CRS), immune
effector cell-associated neurotoxicity syndrome (ICANS),
cytopenias, and B-cell aplasia (related to CD19 targeting CART
cells). CRS and ICANS have emerged as dominant CAR-T-
cell-mediated toxicities. The onset of the CRS correlates with
T-cell activation and high levels of cytokines, which have no
target preference as it can be observed in both CD19 and other
novel CARs. The choice of costimulation domain can be a
major predictor of toxicity. For 4-1BB incorporated CARs, there
were 58% patients who had CRS of any grade at a median of 5
days from infusion (52). Compared with 4-1BB costimulation
domain, incorporation of CD28 leads to more rapid and higher
peak expansion of CAR-T cells (53), leading to a 93% incidence
of any grade CRS at a median of 2 days from CAR-T-cell infusion
(54). The severity of the CRS is also associated with tumor
burden at the time of treatment (55), as heavy tumor burden
can provide more stimulation for CAR-T cell expansion. The
cause of ICANS remains poorly understood. Potential causes
include direct central nervous system toxicity by the CAR-T cells,
diffusion of inflammatory cytokines through the blood–brain
barrier (BBB), and the dysfunction of the BBB caused by CAR-T
cells and/or cytokines.

The safety of CAR-T-cell therapies can be improved by early
drug intervention such as using glucocorticoids and tocilizumab,
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an anti-IL6 receptor antagonist, for CRS treatment, and optimal
genetic engineering strategies to reduce CAR-T cell toxicity (56).

Low Efficacy in Solid Tumors
Unlike hematological malignancies, solid tumors present several
barriers that affect the safety and clinical outcomes of CAR-
T-cell therapy. Target antigen specificity and heterogeneity,
lymphocyte trafficking, and tumor-induced immunosuppression
are three major factors that hindered the efficacy of CAR-T
immunotherapy in solid tumors. Types of approaches are
currently explored to address these challenges to enhance
treatment efficacy (Table 1).

Selection of an optimal tumor-associated antigen (TAA) is
considered as one of the most significant steps for CAR-T
targeting. TAA should be highly expressed on all tumor cells but
hopefully not expressed on the normal tissues. Although various
tumor antigens including neoantigens, oncofetal antigens, and
tumor-selective antigens are investigated for CAR-T-cell therapy,
there remain no ideal ones meeting the criteria of specificity
(57). Another major limitation to TAAs of solid tumors is
antigen heterogeneity, which is a variable of the expression of
antigen on the cells within a given tumor. To date, employing
more targets, targeting multiple tumor antigens at once, and
exploring new antigen-activated T-cell killing pathways are three
approaches to address the problem of tumor antigen specificity
and heterogeneity (58).

Insufficient migration and infiltration to tumor sites is the
additional challenge of CAR-T-cell treatment to solid tumors. It
is demonstrated that persistence and intratumoral accumulation
of CAR-T is inevitably limited after adoptive transfer especially
in the liver, lung, and spleen (59). It could be partially
attributed to downregulation of cellular adhesion molecules,
which inhibits T-cell transmigration. Besides, solid tumors have
the capacity of modifying the structure of the adjacent tissue
that hinders intratumoral lymphocyte accumulation. Plenty of
strategies have been applied to increase lymphocyte migrating
and infiltrating to tumor sites (60). Local administration can
enhance the accumulation of engineered CAR-T cells at tumor
sites and superior control of tumor growth compared with
systemic administration, as shown by several preclinical solid
tumor models (61, 62). Chemokine receptor–ligand interactions
plays an important role in mediating endogenous immune cell
trafficking. CAR-T cells can be modified to express certain
cytokine receptors to enhance trafficking into tumor tissue. For
example, expression of a functional CCR2 receptor can enhance
tumor localization and tumor eradication of the mesothelin-
CAR-T cells (63).

Tumor immunosuppressive microenvironment hinders the
efficacy of CAR-T therapy even if the T cell is successfully
trafficking the tumor sites. The anatomical structure generated
by tumor stroma and the associated high tissue pressure
provide natural barriers for CAR-T therapy, while hypoxia
and nutrient starvation are two factors of metabolic barriers
(64). Limiting the numbers of tumor stroma cells, exposed
to a hyperoxia environment, and manipulating key cellular
regulators of nutrients, have shown the attractive outcomes
to augment antitumor immunity and repress tumor growth

(65, 66). Additionally, tumor-derived cytokines, namely, TGFβ,
might reduce the antitumor response of CAR-T therapy (67).
Theoretically, engineering novel CAR-T cells expressing negative
TGFβ receptor might be beneficial. Furthermore, inhibitory
leukocytes like regulatory T cells, tumor-associated macrophages
(TAMs), and myeloid-derived suppressor cells (MDSCs) present
as potent barriers of CAR-T therapy (68, 69). Reprogramming
of the immunosuppressive nature of the TME by genetically
engineering CAR-T cells with immune-modulating cytokines is
the most commonly used strategy to address this problem, which
should be explored in future studies.

Chimeric Antigen Receptor-T-Cell Therapy

Resistance
CAR-T therapy resistance is also a challenge in the field.
Various CD19 mutations and alternative splicing have been
the dominant cause of CAR-T-cell resistance. In this setting,
multivalent targeting CARs or serial manipulation with multiple
different CAR-T cells may prevent single-agent resistance. The
combination of CD19 and BCMA targeted CAR-T cells, either
combined infusion of both anti-CD19 and anti-BCMA CAR-T
cells or a tan-CAR with both a scFv-CD19 and scFv-BCMA in
tandem orientation, may help to reduce the rate of relapse in
the treatment with single scFv-CAR-T cells (70, 71). The same
strategy can be explored for solid tumors.

Altogether, CAR-T cell therapy has proven to be an inspiring
strategy for cancer treatment. Various studies have highlighted
that CAR-T cells have achieved encouraging outcomes in various
malignancies, while several barriers including the selection of
TAA, lymphocyte trafficking, and tumor immunosuppression in
solid tumors restrict the effects. There remains much for us to
explore to enhance the therapeutic effects of CAR-T cells in
cancer treatment (72).

THERAPEUTIC STRATEGIES TARGETING
BONE MARROW-DERIVED SUPPRESSOR
CELLS

Bone marrow-derived suppressor cells (MDSCs) consist
of a cluster of highly heterogeneous cells generated from
myeloid progenitors, which protect a tumor from the immune
system and restrain the efficacy of immunotherapy (73, 74).
The immunosuppressive cytokines caused by tumor-related
chronic inflammation induce normal myeloid cell precursors
to proliferate and differentiate into MDSCs, which suppress
the antitumor effect and promote tumor progression (75).
Therefore, targeted numerous enzymes, growth factors, and
cytokines regulating the lifecycle of MDSCs may serve as efficient
ways to eliminate cancer (76). For instance, neutralizing antibody
to KIT significantly reduced MDSC expansion and unleash anti-
tumor efficacy of T cells in colon carcinoma (77). Antagonists
of CXCR2 (S-265610) and CXCR4 (AMD3100) altered the
recruitment of immature myeloid cells (iMCs) to the tumor and
thus reverted the environment that favors tumor progression
(78). Besides, anti-IL-6R mAb could eliminate the accumulation
of MDSCs, subsequently upregulating IFNγ and enhancing
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antitumor T-cell response (79). In summary, eliminating MDSCs
is a promising way to unleash immunosuppression in a tumor
microenvironment and kill cancer.

THERAPEUTIC STRATEGIES TARGETING
TUMOR-ASSOCIATED MACROPHAGES

Tumor-associated macrophages (TAMs) are the most abundant
MDSCs in the TME. They secrete various cytokines, growth
factors, chemokines as well as inflammatory mediators that
promote key processes in tumor progression (80–82). TAMs
function in the processes of angiogenesis, invasion, and
metastasis. TAM-induced immunosuppression is mediated by
the expression of inhibitory checkpoints, including PD-L1, PD-
L2, and the non-classical major histocompatibility complex
(MHC) class I (MHC-I) molecules (83). Meanwhile, TAMs
secrete several cytokines including IL-10, TGFβ, and CCL5,
maintaining a strong immunosuppressive microenvironment by
inducing regulatory T (Treg) cell expansion. TAMs also release
arginase I to deplete L-arginine, which directly inhibits T-cell
cytotoxicity (84).

TAMs exhibit roles of promoting tumor or inhibiting tumor
upon different stimuli, which depend on the status of the
polarization of macrophage (85). M1-like TAMs accumulating at
very early phases of oncogenesis stimulate antitumor immunity
and hold the capacity of tumoricidal effect. However, the
persistence of M1-like TAMs can induce chronic inflammation,
hence, enhancing genomic instability in tumor cells and acts as
a driver of oncogenesis in the early oncogenesis (86). Various
studies have demonstrated that M2-like TAMs present as the
dominant subtype through the progress of “re-education” by
contexture changes of immune cells and metabolic factors
in TME (87, 88). With the characterization of plasticity and
heterogeneity, reprogramming macrophage fromM2- toM1-like
may provide a viable strategy to eliminate tumor cells (89, 90).
Accumulating researches are devoted to reversing the pro-tumor
effect of TAMs (Table 2).

Currently, depletion, recruitment inhibition, and
reprogramming are three commonly used strategies of
TAM targeting under clinical trial investigation (91). First,
the most advanced approaches of TAM depletion depends
on inhibition of colony-stimulating factor 1 and its receptor
(CSF1/CSF1R) signaling. CSF1 binds with CSF1R, a class III
receptor tyrosine kinase, regulating differentiation, migration,
and survival of macrophage and its precursors (92). Various
small molecules inhibiting CSF1R tyrosine kinase have been
investigated in several researches. Preclinical researches revealed
that PLX3397 inhibited tumor-associated microglia and
enhances sensitivity to chemotherapy of glioma, c-kit-mutated
melanoma, prostate cancer, and classical Hodgkin lymphoma
(cHL) (93–95). In addition, CSF1R targeting small molecules,
including ARRY-382, PLX7486, BLZ945, and JNJ-40346527,
which target the intracellular tyrosine kinase of CSF1R, are
in completed or ongoing studies in solid tumors and classical
Hodgkin lymphoma (96). Antibodies also play an essential role
in targeting CSF1/CSF1R. A study showed that a monoclonal

antibody RG7155 strongly reduces TAMs with an increase
in T-cell ratio in diffuse-type giant cell tumor patients (97).
Furthermore, the compounds MCS110 and PD-0360324
targeting the ligand CSF1 are also found to have the capacity
to effectively clear TAMs (95). Compared with the inhibitors
of CSF1/CSF1R, bisphosphonates in liposomes seems to be a
more directed approach of TAM depletion. Evidence was shown
in lung cancer, melanoma, hepatocellular carcinoma, and lung
metastasis from breast cancer that bisphosphonates significantly
reduced TAM infiltration (98–100). However, there are plenty
of side effects remaining in the strategy of TAM depletion.
Anti-CSF1R antibodies also non-selectively target non-tumor
macrophages with many safety concerns especially accompanied
by complications. The increased expression of IFNγ and IFNα

after CSF1R inhibition directly leads to upregulation of immune
checkpoint molecules, such as PD-1 and CTLA-4, possibly
restraining its therapeutic effects (101).

Second, blockade of monocyte recruitment to tumors serves
as an alternative approach to hinder TAMs, namely, the
application of CCL2/CCR2 inhibitors. CCR2, which is highly
expressed in monocytes/TAMs, is the only known receptor
for chemokine CCL2 (102). It is reported that employing
CCR2 antagonist inhibits monocyte/TAM recruitment and M2
polarization in hepatocellular carcinoma (HCC) (102). Carlumab
is the most representative CCL2-targeted antibody, which
successfully represses macrophage infiltration and thus reduces
tumor growth (103). Recently, PF-04136309, a small molecule
targeting CCR2, was investigated in a clinical trial of pancreatic
cancer, which could enhance sensitivity to chemotherapy (104).
However, anti-CCL2/CCR2 therapy might have a notable side
effect that the antitumor immune cells might be unable to target
the tumors (105). Generally, both depletion and recruitment
inhibition present inevitable toxicity and side effects.

Functional reprogramming of TAMs is an attractive way
for cancer therapy and holds the capacity of providing an
opportunity to rebalance the microenvironment immune
infiltrate therapeutically from a pro-tumoral one to an
antitumoral one (92, 106, 107). Anti-CD47 antibodies block
the binding of CD47 to SIRPα, and thus increase phagocytosis
of cancer cells, representing an efficient strategy of TAM
reprogramming (83, 108). Inhibition of IL-10, a TAM-derived
cytokine with the ability to block IL-12 and suppress T-cell
tumoricidal function, was identified to improve the efficacy of
chemotherapy (109). As Toll-like receptors (TLRs) act a critical
role in innate immune response and polarize macrophages
into a pro-inflammatory subtype, studies investigate different
ligands to change the subtype of TAMs to an antitumoral
one (110). The results indicated that agonists of TLR7, TLR8,
and TLR9 induced macrophage repolarization and increased
tumoricidal activity in several cancers (111–113). Additionally,
CD40, a receptor commonly expressed in antigen-presenting
cells, interacts with CD40L expressed by T cells to increase
pro-inflammatory cytokines. Agonists of CD40/CD40L were
identified to affect the protumoral effects in several cancers.
Furthermore, strategies targeting crucial processes especially
epigenetic regulation in gene expression also obtain effective
outcomes to reprogramming TAMs (114). Studies revealed that
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TABLE 2 | In vivo or in vitro engineering strategies for macrophage-based immune therapy.

Aims Targets Delivery strategy Treated cancer type Effects/function

Recognition CD47/SIRPα Ex vivo and in vivo engineering AML, pediatric brain cancer, B cell lymphoma,

lung cancer, ovarian cancer

Enhancing phagocytosis

CD40/CD40L Activation via drug delivery

(antibody, adenovirus vector)

Melanoma, mesothelioma, pancreatic ductal

adenocarcinoma,

Activating antigen-presenting; substituting

function of CD4+ T cells; apoptosis induction

Inhibition CSF1/CSF1R Drug delivery (antibody and

small molecules)

Glioblastoma, tenosynovial giant cell tumors,

Hodgkin lymphoma, colorectal cancer,

fibrosarcoma, breast cancer

TAM depletion

Phagocytosis Delivery of bisphosphonates Teratocarcinoma, rhabdomyosarcoma, breast

cancer, lung cancer, melanoma, liver cancer,

prostate cancer

CCL2/CCR2 Drug delivery (antibody and

small molecules)

Ovarian cancer, lung cancer, melanoma,

prostate cancer, liver cancer, breast cancer,

pancreatic cancer

Blocking TAM recruitment

IL-10 In vivo delivery of inhibitors Lung cancer, ovarian cancer Unleashing expression of IL-12

DICER NA Lung cancer, colorectal cancer Enhancing expression of IFNγ-STAT1 and

repolarizing TAMs via miRNA biosynthesis

inhibition

HDACs Delivery of TMP195 Breast cancer Repolarizing TAMs, activating CCL1 and CCL2

expression via epigenetic remodeling

LDHA NA Lung cancer Downregulation of VEGF and PD-L1; reducing

glycolysis and reversing TAM-driven

immunosuppression

PIK3γ In vivo drug delivery (IPI-549) Lung cancer, head and neck cancer Reducing glycolysis and reversing TAM-driven

immunosuppression; upregulation of MHC-II

and IL-12; recruitment of antitumor immune

cells

Activation TLRs Delivery of small molecules Melanoma, breast cancer, ovarian cancer, lung

cancer, head and neck cancer, renal cancer,

endometrial cancer, cervical cancer, and types

of leukemia

Activation of innate immune response

AML, acute myeloid leukemia; CCL1, chemokine (C-C motif) ligand 1; CCL2, chemokine (C–C motif) ligand 2; CCR2, C–C chemokine receptor type 2; CSF1, colony-stimulating factor

1; CSF1R, colony-stimulating factor 1 receptor; HDACs, histone deacetylases; IFNγ, interferon gamma; IL-10, interleukin 10; IL-12, interleukin 12; LDHA, lactate dehydrogenase A;

MHC-II, major histocompatibility complex class II; PD-L1, programmed death-ligand 1; PIK3γ, phosphoinositide 3-kinases gamma; SIRPα, signal regulatory protein α; STAT1, signal

transducer and activator of transcription 1; TAM, tumor-associated macrophage; TLRs, Toll-like receptors; VEGF, vascular endothelial growth factor.

inhibition of DICER, a key enzyme for microRNA synthesis
in macrophages switches the subtype accompanied by tumor
regression and infiltration of effective immune cells (115).
Inhibitors of histone deacetylase (HDACs) can repolarize the
phenotype of TAMs and alter CCL1 expression in monocytes
(116). Besides, metabolic reprogramming also plays a significant
role in functional modifying of TAMs. Deletion of LDHA
and inhibition of phosphatidylinositol-4, 5-bisphosphate 3-
kinase catalytic subunit gamma (PIK3γ) aimed to reduce
glycolysis and hence relieved TAM-driven immunosuppression
(117, 118). What is more, lactic acid produced by aerobic
or anaerobic glycolysis has an essential function in inducing
M2-like polarization of TAMs, suggesting the possibilities
to reprogram TAMs by suppressing the production of lactic
acid (119). However, TAM reprogramming via depleting
M2-like TAMs and/or favoring their repolarization toward
an M1-like phenotype is limited by innate and acquired
resistance, compensation by alternative immunosuppressive
cells, and relapse during treatment discontinuation. Besides, side
effects including anemia and autoimmunity disease are hard
to overcome.

Similar to CAR-T-cell therapy, a recent study engineered the
macrophage to express CARs (CAR-Ms) to have antigen-specific
phagocytosis capacity, which induced a pro-inflammatory
tumor environment, enhanced antitumor T-cell activity, and
alleviated tumor burden (120). Another study generated
induced pluripotent stem cell (iPSC)-derived, CAR-expressing
macrophage cells (CAR-iMac) with antigen-dependent
macrophage function and antitumor effects both in vitro
and in vivo (121). In general, these studies provided potent
strategies for reprogramming tumor microenvironment and
set good examples reverting immunosuppression for cancer
immunotherapy, though the persistence and efficacy of the CAR
macrophage may be further modified.

THERAPEUTIC STRATEGIES TARGETING
REGULATORY T CELLS

Regulatory T (Treg) cells suppress abnormal/excessive immune
responses to self- and non-self-antigens to prevent chronic
inflammatory, allergic, and autoimmune diseases and maintain
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immune homeostasis (122, 123). Infiltration of Treg cells into
the TME occurs in various murine and human tumors (124).
Treg-induced immune homeostasis can significantly limit the
efficacy of antitumor effect as many tumor antigens are either
overexpressed or mutated self-antigens. Notably, increasing
expression of Tregs regulator forkhead box protein 3 (FOXP3)
is identified in many tumors such as breast cancer, melanoma,
and pancreatic cancer with a complicated function and cell
type-related manner (125). It is reported that FOXP3 plays
two key roles: (1) the tumor suppressor in prostate, ovarian,
and breast cancers via activating tumor-suppressor genes and
inhibiting several oncogenes; (2) a biomarker related with
poor prognosis in melanoma, non-small cell lung cancer,
urinary bladder cancer, and esophageal cancer (126). Besides,
FOXP3 is also involved in immune functions of Tregs via
inhibition of APC function mediated by CTLA-4, an increase in
immunosuppressive cytokines and metabolites, IL-2 exhaustion
(127). There are mainly three strategies to reprogram Treg
function based on the immune-suppressive mechanisms of Treg
cells (Table 3).

High expression of several cell surface receptors makes them
attractive targets to selectively deplete Treg cells. Interruption
of costimulatory molecule CD28 in Tregs impairs their
differentiation and function selectively within tumors, reducing
their capacity to suppress antitumor immune responses and
promoting tumor control (128). Similarly, targeting surface
receptor CD25 successfully represses Treg cells with antitumor
immune response (129–131). Moreover, since cytotoxic T-
lymphocyte antigen-4 (CTLA4) is expressed by Treg cells and
increased after activation of effective T cells, mAbs targeting
CTLA4 was applied to antagonize inhibitory signal and activate
effective T cells to regain tumoricidal activity (132). Other
antibodies against GITR, OX40, and molecules predominantly
expressed by Treg cells have long been used to selectively
deplete Tregs and inhibit their suppressive capacity (133, 134).
Additionally, blocking chemokine and chemokine receptors
(CCL22-CCR4, CCL28-CCR10, and CCL1-CCR8) associated
with Treg chemotaxis into TME could reduce the number of
Tregs and increase antitumor immune responses (135–137).
In murine cancer models, deletion of neuropilin 1 (Nrp-1)
specifically in Tregs leads to enhanced immunity to many
transplantable tumors (138).

Reprogramming metabolic profiles including glycolysis and
lipid oxidation has been considered as another strategy to
suppress Treg cells and change the fate of immunotherapy.
Recent studies suggest that metabolic regulations are actively
involved in Treg differentiation, Foxp3 expression, and Treg
stability. Studies showed that inhibiting Akt–mTORmay regulate
metabolic programs to facilitate the suppression of Treg
cells (139). Besides, low oxygen tension combined with TCR
activation, can stabilize hypoxia-inducible factor 1a (HIF1a) and
promote Foxp3 expression (140). TLR1 and TLR2 signaling
activation in Treg cells enhances Treg glycolysis and proliferation
and unleash the immunosuppressive capacity (141). TLR8
signaling selectively inhibits glucose uptake and glycolysis in
human Treg cells, resulting in reversal of Treg suppression in
melanoma (142).

Modulation of critical factors and chromatin regulators
associated with transcription can also transform the function
of Treg cells. Foxp3 serves as the most significant transcription
factor in Tregs, which is involved in the differentiation and
stability of Tregs. Loss of Foxp3 results in autoimmunity
in the normal situation, while deficiency of Foxp3 unleashes
immunosuppressive capacities and, hence, improves tumoricidal
activities (143, 144). In addition, epigenetical inhibition of Foxp3
via interruption of histone acetylation [histone acetyltransferase
(HAT) EP300] and DNA methylation [ten-eleven translocation
(TET)] reduces the immunosuppressive function of Tregs and
leaves effective T cells to regain their antitumor function (145,
146). Foxp3 also regulates Tregs by interacting with other
transcription factors; disruption of these factors provides an
alternative way to reprogram Tregs with antitumor ability. It is
reported that the disruption of the CARMA1–BCL10–MALT1
(CBM) signalosome complex and induction of IFNγ secretion
suppress Tregs, activate the adaptive immune response, hinder
tumor growth, and improve the efficacy of immune checkpoint
therapy (147). Moreover, genetic or pharmacologic disruption
of transcription factors Eos, Helios, Foxo1/Foxo3, and EZH2
reprograms Tregs to enhance cancer immunity and improve
tumoricidal activity (148–151). However, while there is some
success through the treatment of targeted Tregs, there are still
some obstacles that need to be addressed. First, specific targets
for reprogramming Tregs are limited, especially for tumor-
infiltrating Tregs. Second, while an immune-related adverse
effect resulting from systemic depletion of Treg cells becomes a
risk for patients, strategies specifically tuning Treg cell function
in TME are needed.

THERAPEUTIC STRATEGIES TARGETING
NATURAL KILLER CELLS

Natural killer (NK) cells, which present in the peripheral blood,
lymph nodes, spleen, and bone marrow, are innate immune cells
involved in cytotoxicity and cytokine production (152). Tumor
necrosis factor alpha (TNF-α), granulocyte–macrophage colony-
stimulating factor (GM-CSF), and IFN-γ are the main cytokines
activated by NK cells (153). In addition, a complicated network of
activating and inhibitory receptors regulates the function of NK
cells. C-type lectin receptors (CD94/NKG2C, NKG2D), killer cell
C-type lectin-like receptor (NKp65, NKp80), natural cytotoxicity
receptors (NKp30, NKp44, and NKp46), SLAM family receptors
(2B4, SLAM6, and SLAM7, function in the recognition of
hematopoietic cells), Fc receptor FcγR (function in antibody-
dependent cell cytotoxicity), killer cell immunoglobulin-like
receptors (KIR) (KIR-2DS and KIR-3DS), DNAM-1, and CD137
(41BB) serve as activating receptors, while KIR-2DL and C-type
lectin receptors CD94/NKG2A/B serve as inhibitory receptors
of NK cells (154, 155). NK cells play an important role in
initiating and promoting cancer with effective capacity at the
first-line defense for tumor elimination. The major functions of
NK include cytotoxicity and cytokine production, which help
in killing tumor cells. Higher infiltration of NK cells usually
associates with a good prognosis in various cancers. However,
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TABLE 3 | Therapeutic strategies targeting regulatory T cell (Treg) for cancer therapy.

Targets Treated cancer type Effects/function

CD28* NA Inhibiting stability and function of Treg

CD25* Breast cancer Depleting Treg

CTLA4* Melanoma, colorectal cancer, fibrosarcoma Depleting CTLA4 expressing Treg through ADCC

GITR# Bladder cancer, sarcoma, melanoma, lung cancer Inhibiting the suppressive activity of Tregs; activating effector T cells

OX40# Glioma, breast cancer, colon carcinoma, prostate cancer, sarcoma,

melanoma, lung cancer

CCL22/CCR4* Lung cancer, esophageal cancer Attenuating Treg accumulation

CCL28/CCR10* Ovarian cancer

CCL1/CCR8* Breast cancer

Nrp1* Melanoma, CLL, cervical cancer Preventing Treg recruitment; downregulating VEGF, and producing IFNγ

Akt-mTOR Melanoma, ovarian cancer Increasing glucose uptake and glycolysis; destabilizing Treg

TLR1# AML, metastatic colorectal cancer, mantle cell lymphoma Enhancing Treg glycolysis and proliferation

TLR2# Melanoma, AML, metastatic colorectal cancer, mantle cell lymphoma

TLR8# Melanoma Inhibiting glucose uptake and glycolysis

HIF1α* Metastatic melanoma in lungs Impairing Treg stability and driving Foxp3 degradation

HAT* Breast cancer, prostate cancer, pancreatic cancer, ovarian cancer Epigenetical inhibition of Foxp3

TET*

Foxp3* Inhibiting function of Tregs

CBM complex* Melanoma, colorectal cancer Enhancing IFNγ and suppressing tumor growth

Eos* Lung cancer Reprogramming Treg to gain immune-stimulating capacity; decreasing

expression of Foxp3

Helios* Melanoma, colorectal cancer Decreasing expression of Foxp3

Foxo1/Foxo3*

EZH2*

*Inhibition via drug delivery, decoys, siRNA, and others.
#Activation via mimics or ligands.

ADCC, antibody-dependent cellular cytotoxicity; Akt, protein kinase B; AML, acute myeloid leukemia; CBM complex, CARMA1–BCL10–MALT1 signalosome complex; CCL, chemokine

(C-C motif) ligand; CCR, C-C chemokine receptor; CLL, chronic lymphocytic leukemia; CTLA4, cytotoxic T-lymphocyte-associated protein 4; EZH2, enhancer of zeste homolog 2;

Foxo1, forkhead box O1; Foxo3, forkhead box O3; Foxp3, forkhead box P3; GITR, glucocorticoid-induced tumor necrosis factor receptor; HAT, histone acetyltransferase; HIF1α,

hypoxia-inducible factor 1-alpha; IFNγ, interferon gamma; mTOR, mammalian target of rapamycin; Nrp1, neuropilin 1; TET, Ten-eleven translocation methylcytosine dioxygenase; TLRs,

toll-like receptors; VEGF, vascular endothelial growth factor.

due to the limited ability of homing and immunosuppressive
tumor microenvironment, solid cancers commonly present a
poor NK cell infiltration with increasing inhibitory signals.
Therefore, targeting with an inhibition signal may serve as a
meaningful approach to restore cytotoxic function of NK cells
against cancer cells (154, 156, 157).

To date, NK-cell-based immunotherapy is roughly divided
into two types: directly targeting cytokines and receptors
involved in NK cell proliferation and function; and chimeric
antigen receptor (CAR)-engineered NK cells (Table 4). IL-2 and
IL-15 are two of the most commonly employed cytokines in
targeting NK cells. IL-2 was applied to produce lymphokine-
activated killer (LAK) cells with unsatisfactory outcomes, which
is probably attributed to the expansion of Treg cells at the same
time. Compared with IL-2, IL-15 met a great success in targeting
NK cells for tumor treatment. Expansion of NK cells and CD8
effector memory T cells after IL-15 therapy was identified in both
mouse model and clinical studies (158, 159). Other cytokines,
including IL-18 and IL-21, have also been shown to promote NK
cell functions (158, 160). What is more, it is worth concerning

that a combination therapy of cytokine and other traditional
therapy can elevate NK cell proliferation, cytotoxicity, and
memory, which is more effective than single cytokine treatment.
Additionally, antibodies targeting activating receptors involved
in antibody-dependent cell-mediated cytotoxicity (ADCC) can
also improve cytotoxicity of NK cells to tumor cells. Similarly,
blocking of inhibitory receptors like KIR reverse the suppressive
state of NK cells (161).

CAR-NK cell therapy has largely been investigated. CAR-
NK cell therapy exhibits enhanced tumoricidal capacity with
advantages that are not responsible for GVHD and do not
induce cytokine storms (162). In addition, the sources of CAR-
NK cells can be generated from cord blood (CB), peripheral
blood (PB), adult hematopoietic stem cells (HSCs), embryonic
stem cells (ESCs), and induced pluripotent stem cells (iPSCs)
(163, 164). Similar as in CAR-T cells, an intracellular signaling
domain-like CD3ζ and costimulatory signaling domain (CD28,
4-1BB) are basic structures for a CAR. Other molecules like
DNAX-activation protein 12 (DAP12), DAP10, and NKG2D
can also be selected as intracellular or ectodomain (162). For
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TABLE 4 | Natural killer (NK) cell-based immune therapy.

Targeted genes Delivery strategy Treated cancer type Effects/function

IL-2* Delivery of superkine or fusion protein AML Promoting NK cell proliferation and

activating NK cells

IL-15* Delivery of fusion protein Ovarian cancer, myeloid leukemia Enhancing cytotoxicity of NK cells

IL-18* Delivery of cIAP2 and TRAF1 Triple-negative breast cancer, lung cancer,

melanoma

Sustaining NK cell survival

IL-21* Delivery of rIL-21 Pancreatic cancer, mantle cell lymphoma,

melanoma

NKG2D* Inhibition via antibody Lung cancer, colon cancer, prostate cancer, ovarian

cancer, CLL

Triggering cytokine production and NK cell

cytotoxicity

CD19# Ex vivo engineering NK AML, ALL, multiple myeloma Specific targeting via the CAR engineered

CD20#

HER2# Neuroblastoma, ovarian cancer, colon cancer, renal

cell cancer, osteosarcoma

EpCAM#

GD2#

PSCA# Prostate cancer

*Inhibition via drug delivery, decoys, siRNA, and others.
#Recognition targets for ex vivo engineering.

NKG2D, natural-killer group 2, member D. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CARs, chimeric antigen receptors; CLL, chronic lymphoblastic leukemia;

EpCAM, epithelial cell adhesion molecule; HER2, human epidermal growth factor receptor 2; IL, interleukin; PSCA, prostate stem cell antigen.

FIGURE 1 | Graphic summarization of the immunocyte-based cancer therapy. Chimeric antigen receptor-T (CAR-T) cells, macrophages, regulatory T cells (Tregs), and

natural killer (NK) cells are engineered or educated either ex vivo or in vivo to reactivate the immunity against cancer.

antigen selection, most CAR-NK cells target CD19 and CD20
in hematological malignancies, and HER2, EpCAM, GD2, and
PSCA in solid cancers. Recent studies suggested that the most

effective responses of CAR-NK cells were observed in ALL,
prostate carcinoma, and osteosarcoma, while the effects in other
cancers tested were not that satisfactory (165–167).
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To sum up, the development of NK cell-based cancer
immunotherapy is a fast-evolving field. Unleashing NK
cell antitumor responses by harnessing surface receptors
and involved cytokines depict potentially successful
immunotherapeutic strategies for cancer. The foremost challenge
of CAR-NK cell therapy is expansion of primary NK cells ex
vivo. Additionally, limited transfection efficacy in NK cells to
express CARs is also notable. Selection of a suitable method,
such as viral infection, electroporation, and nanoparticles,
is a prerequisite for successful CAR-NK therapy. Although
there remain pressing obstacles of CAR-NK cells, the striking
outcomes in several cancers make it a promising new strategy for
cancer immunotherapy.

CONCLUSIONS AND PERSPECTIVES

With the advances in the knowledge in the cross-talk between
different immune cells and tumor cells, the techniques in cell
engineering and drug delivery, and immunotherapies targeting
accessory immune cells either ex vivo or in vivo have been
intensively studied (Figure 1). Some of them have been widely

used in clinics; some have been already under phase 2/3
clinical trial. Generally, immunotherapy is emerging as a
promising strategy against a variety of cancers and might be
the final therapeutic tool. Translational researches using different
strategies for various types of cancers are intensive studies
worldwide. Future challenges rely on improvement of the safety,
efficacy, and convenience in personalization and customization.
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