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Abstract

We examined the patelliform snails of the subfamily Lancinae, endemic to northwestern North America,
to test whether morphological variation correlated with genetic and anatomical differences. Molecular
analyses using cox1, 16S, calmodulin intron, and 28S rDNA partial sequences and anatomical data sup-
ported recognition of four species in three genera. The relationships of lancines within Lymnaeidae are not
yet well-resolved. The federally endangered Banbury Springs lanx is described as a new genus and species,
Idaholanx fresti, confirming its distinctiveness and narrow endemicity.
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Introduction

The lancines are relatively large freshwater limpets (up to 20 mm in length), found
from the upper Sacramento and Pit Rivers of northern California, north to the Co-
lumbia River system in the states of Idaho, Oregon, Washington and Montana in the
United States and the province of British Columbia, Canada. Some freshwater lim-
pets in related families have been shown to have high morphological variation within
relatively few, widespread species (Walther et al. 2006a, b), but no previous study has
analyzed the lancines in detail.

Because of their larger size and color pattern, Tryon (1870) incorrectly suspected
that some lancines were mislabeled marine forms. Despite the differences, lancines were
generally classified along with other freshwater limpets in Ancylinae until Pilsbry (1925)
and H. B. Baker (1925) examined the anatomy and showed that they were lymnaeids.
Further studies (Morrison 1955, Walter 1969) have confirmed the lymnaeid anatomy.
Although several lymnaeids tend towards few whorls and wide apertures, these are the
only truly patelliform members extant in the family. Within the Lancinae, three generic
names have been proposed: Lanx Clessin, 1880, Fisherola Hannibal, 1912, and Walk-
erola Hannibal 1912, but whether they should be recognized as genera, subgenera, or
synonyms has varied between authors. Current classification typically recognizes Lanx
and Fisherola but treats Walkerola as a subgenus or synonym of Lanx (Burch & Totten-
ham, 1980). Nine names (plus one unpublished name cited in the literature) have been
proposed for extant species (Table 1). However, there is little agreement in the literature
as to whether the variation in shell shape, height, color, and anatomy between popula-
tions provide an adequate basis for recognizing all of these taxa (Morrison 1955).

Of particular importance are the questions relating to the status of the Banbury
Springs lanx. Banbury Springs lanx was discovered by Terry Frest in 1988 and thought
to be a new, undescribed species within the genus Lanx. It is listed as federally en-
dangered in the United States (U.S. Fish and Wildlife Service 1992). Although the
small size and different shape distinguish it from other lancines, normal Fisherola oc-
cur nearby in the Snake River, raising the possibility that it is just a local ecomorph.
However, no populations of Fisherola are known from any other springs (U.S. Fish and
Wildlife Service 2006).

The primary objective of this study was to determine the taxonomic status of the
United States federally endangered Banbury Springs lanx. We describe it as a new genus
and species based on molecular and anatomical data. Secondly, we examine the phy-
logenetic relationships of the Lancinae using mitochondrial and nuclear gene regions.

Materials and methods

We sampled populations from throughout the geographic range of Lanx and Fisherola,
emphasizing morphologically or geographically distinct populations (Table 2). A few
additional lymnaeids were sampled as outgroups. Specimens were preserved in ethanol
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Table |. Nominal Recent species names in Lancinae.

Species name Type locality Assignment in present study

Ancylus altus Tryon, 1865 Klamath River Lanx alta (Tryon, 1865)

. . Fisherola nuttallii
Ancylus crassus Haldeman, 1844 Columbia drainage (Haldeman, 1841)
Lanx hannai Walker, 1925 upper Sacramento River | Lanx patelloides (Lea, 1856 )
Lanx (Walkerola) klamathensis Hannibal, 1912 Klamath River Lanx alta (Tryon, 1865)
Ancylus kootaniensis Baird, 1863 [kootenaiensis KOOteflal River probably Fisherola nuttalli
. invalid emendation] (restricted by (Haldeman, 1841) but not
s an nva Morrison 1955) directly sampled

Fisherola nuttallii

Fisherola lancides Hannibal, 1912 Snake River (Haldeman, 1841)

upper Sacramento
Ancylus newberryi Lea, 1858 (correction by Pilsbry Lanx patelloides (Lea, 1856)
1925)

Fisherola nuttallii

Ancylus (Velletea) nuttallii Haldeman, 1841 Columbia drainage (Haldeman, 1841)
Ancylus patelloides Lea, 1856 upper Sacramento River |  Lanx patelloides (Lea, 1856)
not validly proposed; Lea stated
Ancylus praeclarus Stimpson ms. cited in Lea, 1867 unstated that newberryi differs frox.n e
several ways but never directly
said anything about praeclarus
Ancylus subrotundatus Tryon, 1865 Umpqua River Lanx alta (Tryon, 1865)

in the field. Dissections were carried out using a stereomicroscope fitted with a camera
lucida. Typically at least two specimens per population were dissected; in some cases
only one specimen was available. DNA extraction used digestion in CTAB overnight
at 37°C, followed by chloroform-isoamyl alcohol separation, isopropanol precipita-
tion, and washing with 70% ethanol before drying and dissolving in TE (Campbell
etal. 2005). PCR amplification was often difficult, so several genes were attempted in
an effort to find genes with suitable variation that amplified consistently. ITS failed
to amplify. 16S (using the primers from Krebs et al. 2003) amplified for few popula-
tions. Cox! (using primers LCO1490 from Folmer et al. 1994 and the external primer
from Carpenter and Wheeler 1999) amplified for several but not all samples. The best
amplification was obtained for 28S (primers 2/3F and 6R from Park and O Foighil
2000) and calmodulin intron (primers from Schilthuizen et al. 1999 and new prim-
ers ATGAAGTGGATGCTGAYGG and ATTCTGGGAARTCTATYG). However, as
observed for other gastropods (Simpson et al. 2005), multiple highly divergent calmo-
dulin intron alleles were obtained, suggesting that multiple copies of calmodulin exist
in basommatophorans. The sequence length variation was sufficient to make selection
of a single copy straightforward using gel extraction (QIAquick gel extraction kit, Qia-
gen). The band of about 420 bp (including primers) was selected because it consist-
ently amplified strongly. Because the key variable region in 18S is in the first part of the
gene, we used the 1F-4R primers (Giribet et al. 1996) to amplify that portion of the
gene. PCR cycles used were 95°C, 3 min; 5 cycles at 92°C for 30 sec, 40°C for 30 sec,
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65°C for 2 min; and 40 cycles with at 92°C for 30 sec, x°C for 30 sec, 65°C for 2 min,
where x is about 2°C below the lower primer annealing temperature; finishing with 10
min at 72°C before cooling to 4°C. In some cases with weak amplification, nested PCR
for calmodulin intron using the Schilthuizen et al. (1999) primers followed by the new
primers was used. PCR products were purified using DyeEx 2.0 kits (Qiagen). Se-
quencing used ABI BigDye 3.1 with cycle sequencing reactions of 4 minutes at 96°C,
followed by 40 cycles with 15 sec at 96°C, 15 sec at about 2°C below the lower primer
annealing temperature, and 4 min at 65°C, followed by 10 min at 72°C before cooling
to 4°C. Sequences were aligned in BioEdit 7.0.5.3 (Hall 1999). Preliminary align-
ments made use of CLUSTAL W (Larkin et al. 2007), followed by manual editing to
eliminate unnecessary gaps, inconsistent alignment of identical sequences, and other
problems. Outgroups were selected based on the availability of 28S sequence data and
at least one of the other included genes. To obtain more complete genetic coverage,
three outgroups (Carinifex sp., Polyrhytis emarginata s.l., and Galba modicella s.l.) com-
bined sequences from more than one nominal species, but the species in question are
closely related and have sometimes been synonymized.

DNA data were analyzed in PAUP* 4.0a152 (Swofford 1998), TNT (Golobof et
al. 2008) and MrBayes3.2 (Ronquist et al. 2011). Duplicate sequences were eliminated
from the phylogenetic analyses. Partition-homogeneity tests (P, , of Dowton and Austin
2002) were run in PAUP*4.0a152 with 100 replicates of 10 random addition replicates
each. This test is sensitive to other factors, such as partition size and evolutionary model,
besides data compatibility (Dowton and Austin 2002), but may provide a rough idea of
agreement between data sets. Despite the problems of the ILD type of tests, no better
alternative has gained wide acceptance. The test requires data for each included taxon
and partition, so pairwise comparisons were made between all genes. The only signifi-
cantly incompatible gene was 16S data, so it was analyzed separately, but the others were
concatenated. Indels were coded as missing data. Parsimony analyses in PAUP* used
500 replicates of TBR swapping, with random taxon addition sequence and holding 10
trees at each addition step. Parsimony bootstrapping used 500 replicates, each replicate
being a random-addition heuristic search with 10 random replicates. MrModeltest 2.2
(Nylander 2004) was used to select a maximum likelihood model for the nucleic acid se-
quences that was then input into MrBayes. Bayesian analyses used 2,000,000 generations
and 8 chains, with revmat, shape, pinvar, and statefreq unlinked, and the concatenated
sequence had the genes identified as partitions. Duplicate sequences were excluded.

Abbreviations

FMNH Field Museum of Natural History, Chicago, Illinois, U.S.A.

SAC Invertebrate Identification’s invertebrate reference collection, Chicago,
Illinois, U.S.A.
DCS Deixis Consultants mollusc reference collection, Seattle, Washington,

US.A.
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Table 3. Outgroup sequences analyzed. Source gives locality for new specimens and literature citation for

published sequences. * indicates newly generated sequences.

Taxon Gene | Accessions Sources

Acroloxus lacustris (Linnaeus, 1758) 16S | AY577462 Jorgensen et al. 2004

Acroloxus lacustris (Linnaeus, 1758) 28S | DQ328296 Walther et al. 2006b

Acroloxus lacustris (Linnaeus, 1758) cox] | DQ328271 Walther et al. 2006b

Ancylus fluviatilis Miiller, 1774 16S | AY577466 Jorgensen et al. 2004

Ancylus fluviatilis Miiller, 1774 285 | DQ328295 Walther et al. 2006b

Ancylus fluviatilis Miiller, 1774 cox] | DQ328270 Walther et al. 2006b

Austropeplea tomentosa (L. Pfeiffer, 1855) | 16S | EU556238 Puslednik et al. 2009

Austropeplea tomentosa (L. Pfeiffer, 1855) | 28S | HQ156217 Holznagel et al. 2010

Austropeplea tomentosa (L. Pfeiffer, 1855) | coxI | AY227365 Remigio and Hebert 2003

Carinifex newberryi (Lea, 1858) 285 | *HM230312 | Lava Creck E;:gﬁi"é’?' of Hanna

Carinifex ponsonbyi Smith, 1876 165 | *HM230354 | [iagelstein Plzl;n“:t‘ﬁ ;‘j:;‘%f{' side center,

Carinifex ponsonbyi Smith, 1876 cox] | *HM230358 Hagelscein Park, mid c}}annel E. side center
Klamath River, OR

Dilatata dilatata (Gould, 1841) 28S | *HM230313 | Sipsey River near Benevola, Greene Co. AL

Dilatata dilatata (Gould, 1841) cox] | EF012173 Albrecht et al. 2007

Galba modicella (Say, 1825) cox] | KM612000 Dewaard et al. 2015

Galba obrussa (Say, 1825) 16S | AF485658 Remigio 2002

Galba obrussa (Say, 1825) 28S | *HM230317 | Sipsey River near Benevola, Greene Co. AL

Galba obrussa (Say, 1825) cam | *HM230332 | Sipsey River near Benevola, Greene Co. AL

Lymnaea stagnalis (Linnaeus, 1758) 16S | AF485661 Remigio 2002

Lymnaea stagnalis (Linnaeus, 1758) 28S | AY427490 Vonnemann et al. 2005

Lymnaea stagnalis (Linnaeus, 1758) cox] | KT831385 Gordy etal. 2016

Orientogalba ollula (Gould, 1859) 16S U82067 Remigio and Blair 1997

Orientogalba ollula (Gould, 1859) 285 | AY465065 Jung et al., unpublished

Orientogalba ollula (Gould, 1859) cox] | KC135900 Park et al. 2012

Physa acuta (Draparnaud, 1805) 16S JQ390525 Nolan et al. 2014

Physa acuta (Draparnaud, 1805) 28S | DQ256738 Holznagel et al. 2010

Physa acuta (Draparnaud, 1805) cox] | ]JQ390525 Nolan et al. 2014

Planorbella trivolvis (Say, 1817) 16S | AY030234 DeJong et al. 2001

Planorbella trivolvis (Say, 1817) 28S | AF435688 Morgan et al. 2002

Planorbella trivolvis (Say, 1817) cox] | KM612028 Dewaard et al. 2015

Polyrhytis emarginata (Say, 1821) 285 | DQ328299 Walther et al. 2006b

Polyrhytis elodes (Say, 1821) 16S | AF485652 Remigio 2002

Polyrhytis exilis (Lea, 1834) cox] | *HM230364 Ditch along the Stump Lake access road,

Jersey Co., IL

Radix auricularia (Linnaeus, 1758) 16S | JN794284 von Oheimb et al. 2011

Radix auricularia (Linnaeus, 1758) 28S | AY465067 Jung et al., unpublished

Radix auricularia (Linnaeus, 1758) cox] | KP242340 Patel et al. 2015

Radix balthica (Linnaeus, 1758) 16S | HQ330989 Feldmeyer et al. 2010

Radix balthica (Linnaeus, 1758) 28S EF417136 Sonnenberg et al. 2007

Radix balthica (Linnaeus, 1758) cox] | KP098541 Feldmeyer et al. 2015
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Results

Amplification of 28S and calmodulin intron were most successful, but representa-
tives of each species (as recognized herein) also amplified for cox/. Within Lancinae,
interspecies and intergenus percent variation was lowest for 28S and highest for coxI.
However, the calmodulin intron sequence for lancines was more divergent from Gal-
ba obrussa than the maximum variation between lymnaeids for cox/ (26-30% versus
22%) (Table 4). Calmodulin sequences for planorbids generated in ongoing study on
Vorticifex were apparently homologous based on the beginning and end of the intron
sequence, but the middle of the intron was too divergent in sequence and length to ob-
tain a meaningful alignment between the planorbids and lymnaeids. One calmodulin
intron paralog of significantly different length was sequenced, but no homology with
the chosen paralog was evident (GenBank accession number HM230349).

Several populations yielded identical or nearly identical sequences. These are enu-
merated in Table 2. No indels were found in cox within the sampled species, though
other Hygrophila do have insertions (pers. obs.). 28S, 16S, and calmodulin intron
all had several small indels. MrModeltest (Nylander 2004) favored a HKY model for
calmodulin intron and GTR+I+G for 28S, 16S, and cox!. Figures 1-2 show the results
of phylogenetic analyses.

Parameters for the trees from these analyses are in Table 5. All Bayesian analyses
had a final average standard deviation of split frequencies below 0.6%. Roughly 70%
bootstrap support or 95% Bayesian posterior probability are thought to reflect sig-
nificant support, though these empirical estimates are affected by several data and tree
characteristics.

As 18S typically shows little resolution at the species level, it was only sequenced for
two species from different lancine genera, and those sequences were identical. Table 6
gives the E10-1 variable region for lymnaeids (present results and published data). The
sequences are sufficiently variable to make alignment uncertain. Parsimony analyses
using different alignments gave substantially different phylogenetic patterns, so we did

Table 4. Range of percent differences in DNA sequence (raw data, gaps treated as missing).

Gene Lymnaeidae lancine genera Lanx species lancine intraspecies
288 up to 7.6% 1.2-2.8% 0.79-1.2% 0.00-0.40%
CAM intron up to 30.1% 4.8-8.0% 1.3-2.6% 0.00-1.87%
cox1 up to 21.1% 12.9-21.1% 7.9-8.6% 0.15-1.0%
16S up to 21.3% 12.8-16.6 no data 0.00-2.5%
Table 5. Tree statistics.
Gene Parsimony Bayesian
# trees | length | burnin | maximum In likelihood | mean In likelihood
28S, CAM intron, and cox! 18 1670 | 165000 -9578.885 -9602.83
16S 2 719 65000 -3414.11 -3427.56
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Figure 1. Phylogram of the Bayesian majority-rule consensus tree for 28S, coxI, and calmodulin intron

sequence data. Numbers on branches are bootstrap percentages before the slash, then Bayesian posterior

probabilities. - indicates a value under 50% or 0.5 when the other method gave higher values. Taxon

names in bold are lancines; starred taxa are Acellinae.

not use them. The alignment in the table is to facilitate comparison and may not reflect

actual homology. However, several groups of species have closely similar or identical

sequences, supporting a close relationship within these groups.
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Figure 2. Phylogram of the Bayesian majority-rule consensus tree for 16S sequence data. Numbers on
branches are bootstrap percentages before the slash, then Bayesian posterior probabilities. - indicates a
value under 50% or 0.5 when the other method gave higher values. Taxon names in bold are lancines;

starred taxa are Acellinae.

Discussion

In agreement with the anatomical data, molecular data give strong support for placing
Lancinae in Lymnacidae, which favors treating lancines as a subfamily rather than as
a separate family. The relationships of lancines to other lymnaeids are not yet well-
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resolved. Anatomy (Walter 1969) supports an affinity between Lancinae and the pre-
dominantly New World “advanced stagnicoline” group (subfamily Acellinae). Amphi-
pepleinae (Radix, Austropeplea, and Orientogalba) was consistently supported as mono-
phyletic, but the relationships between Amphipepleinae, Lancinae, and the remaining
lymnaeids were not well-resolved, probably a function of the limited number of taxa.
Sampling of additional lymnaeids, as well as additional genetic data (especially 28S)
should greatly improve resolution of the relationships in this diverse and important but
taxonomically problematic family.

The Lancinae appear supported as a monophyletic group, relatively divergent from
other lymnaeids. Most of the analyses, the 18S sequence similarity, and several mor-
phological features all support Lancinae. Morphological synapomorphies include the
fully patelliform shell, shape of the penial complex and C-shaped to circular columellar
muscle (Baker 1925, this work). Patelliform lymnaeids evolved convergently multiple
times in the Miocene Paratethys lakes of southeastern Europe (Harzhauser and Man-
dic 2008), so the molecular data provides a useful test of the morphological similari-
ties. However, the monophyly of Lancinae received low bootstrap support and, in the
16S analysis, low Bayesian posterior probabilities. Within the Lancinae, the present
analyses had Idaholanx more closely related to Fisherola than to Lanx. Some single-
gene analyses (not shown) had other patterns of intergeneric relationships in Lancinae.
The weak resolution may reflect the limited number of available outgroups with 28S
data. Additionally, variation in the cox/ gene may be approaching saturation within
Lancinae, as the maximum percent difference between lancines, the maximum differ-
ence between any two lymnaeids, and the differences between lymnaeids and other
basommatophorans were all about 20%. As a result, convergent effects of multiple
mutations in the variable sites probably obscure higher-level relationships in this data
set. MacNeil (1939) reported Cretaceous lancines, so the subfamily has had enough
time to develop significant genetic variation.

The genetic data consistently support recognition of three major groups within
Lancinae. Two correspond to the presently recognized genera Lanx and Fisherola,
while the third includes only the Banbury lanx. These results suggest that the Ban-
bury lanx deserves recognition as a distinct genus and species (see description below).
Each lancine genus was strongly supported as monophyletic. Genetic variation within
Fisherola and Idabolanx was minimal. Within Lanx, there was one clear division and
one ambiguous division between populations. The Sacramento-Pit system populations
of Lanx (L. patelloides) consistently differed from those from farther west and north.
These western and northern Lanx populations include L. alta in the Klamath and
Umpqua systems and genetically more variable populations from the Smith and Rogue
River systems. The difference between the Smith and Rogue forms and standard L.
alta was less than the difference between L. alta and L. patelloides (in the case of 288,
only a few bases) but greater than the variation within other drainages. One speci-
men from the Rogue River system had both the standard L. a/ra allele and the Smith
River allele for calmodulin intron, and the two calmodulin intron alleles obtained for
Smith River specimens appear paraphyletic relative to the standard L. a/z allele. The
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variation within the Rogue and Smith systems therefore appears infraspecific, and the
populations are assigned to L. a/ta. However, the genetic variation may be evolutionar-
ily significant for the conservation of this species. H. B. Baker (1925) and Morrison
(1955) noted that the Rogue River population did not exactly match described species
from other drainages. Lanx alta, as defined herein, is very plastic in shell shape, so this
may not be significant.

The relatively high genetic differences between lancine species contrasts with many
other lymnaeids. The present results suggest that only one lancine species is present in
each river system, with the exception of Idaholanx fresti in a few springs and Fisherola
nuttallii in the main rivers, both in the Columbia-Snake system. The recognition of only
two species in Lanx contrasts with most previous classifications. In particular, the widely
recognized L. subrotunda and L. klamathensis are synonymized herein with L. alta. Pre-
vious tentative synonymization of L. hannai with L. patelloides and F. lancides with F.
nuttallii are also supported (Morrison 1955, Burch 1982). Although specific popula-
tions assigned to F. kootaniensis and L. newberryi were not sampled in this study, the
observed lack of variation within river systems supports previous synonymization with
F. nuttallii and L. patelloides, respectively (Pilsbry 1925). Pilsbry (1925) also pointed
out that F. crassus is an objective synonym of F. nuttallii, Haldeman having apparently
renamed the same specimen. These synonymies suggest that lancines are relatively vari-
able in shell shape and color pattern, as suspected by Morrison (1955). Similar results
from Walther et al. (20064, b) for the ancylids Ferrissia and Laevapex suggests that lim-
pet-shaped Hygrophila have been taxonomically oversplit due to ecomorphic variation.
Effects of environmental parameters correlate with shell shape in limpets (Basch 1963,
McMahon and Whitehead 1987, Tanaka et al. 2002), and there is also extensive un-
explained variation within populations (McMahon 2004). Additionally, limpet shape
may be affected by the available substrate (Ridgway et al. 1999). Albrecht et al. (2004)
discuss several factors potentially influencing shell shape in freshwater limpets and sug-
gest that waves or currents and predators are the most likely selective pressures. Denny
(2000) found that marine intertidal limpets are not optimized to resist wave-produced
forces, presumably because the grasping force of a stationary marine limpet typically
greatly exceeds observed wave forces. However, the smaller size and thin shells of fresh-
water limpets and the different environmental parameters for a stream with continual
flow versus unpredictably directed waves during tide changes may result in different
environmental pressures. Evolutionary pressures and convergent evolution relating to
the limpet shape are reviewed in Vermeij (2016), including discussion of the lymnaeids.

The potential for self-fertilization in Hygrophila may account for high genetic
divergence. Self-fertilization varies from rare to common in different species (Njiouku
et al. 1993, Dillon et al. 2005, Puurtinen et al. 2007). The ultimate population bot-
tleneck of a single individual would produce extreme founder effects and genetic drift,
while also producing a genetically uniform founding population, thus accounting for
high divergence between taxa and low variation within. Bolotov et al. (2016) found ev-
idence for high divergence due to founder effect in the postglacial invasion of Iceland
by lymnaeids. Although the long geologic history of lancines would allow for plenty
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of time to accumulate changes, if the modern genera diverged fairly early, the lancines
are unusually divergent in cox/ protein sequence relative to the other lymnaeids, sug-
gesting additional factors at work. Variation between populations within a river system
was quite low. The largest difference between any two alleles within a river system was
9 to 10 bases between calmodulin intron alleles in the Smith and Rogue River popula-
tions. Outside of those, there was one individual of L. a/ta from the Klamath River
with a single deletion of 6 bases in the calmodulin intron.

The low species diversity of lancines (four species from the entire Pacific North-
west region) contrasts with freshwater caenogastropods such as Juga and Fluminicola in
the same river systems, which show high local endemicity within drainages (Hershler
et al. 2007, Campbell et al. 2016). The habitat preferences of lancines resemble those
of the associated caenogastropods, primarily in cool, flowing, well-oxygenated water,
often in springs or spring-influenced areas. The potential for a single hermaphroditic
individual to found a new population facilitates dispersal in Hygrophila, in contrast to
the gonochoristic caenogastropods. However, unlike many lymnaeids, lancines have a
poorly developed lung and are not known to survive out of water for extended periods
of time, limiting their potential for dispersal by birds or other overland travel. Disper-
sal therefore likely occurs primarily within drainages, yet somehow lancines maintain
high genetic homogeneity across much larger distances than Juga and Fluminicola,
despite apparently similar ecology.

Thus, the present data supports recognition of the Banbury Springs lanx as a dis-
tinct genus and species. However, variation within Fisherola and Lanx seems to be large-
ly ecophenotypic, giving a total of only four extant species in the subfamily Lancinae.

Systematic descriptions

Family Lymnaeidae Rafinesque, 1815

Idaholanx Clark, Campbell & Lydeard, gen. n.
http://zoobank.org/5E7508F1-1AF1-4051-AFD3-E7733DEF094F

Type species. ldaholanx fresti Clark, Campbell & Lydeard sp. n.

Description. Shell (Figs 3, 5A). Patelliform, 2.0-3.9 mm in height and 4.0-6.7
mm in length and 3.0-5.4 mm in width. Aperture elliptical. Protoconch smooth, apex
positioned posteriorly. Teleoconch sculpture of concentric growth lines. Shell pale to
dark reddish brown. Internal columellar muscle scar C-shaped.

Non-genital anatomy. Columnar muscle C-shaped (Fig. 5B), gap on right side,
roughly central. Digestive gland, kidney and lung typical of Lymnacidae and that seen
for Lanx and Fisherola (Baker 1925, SAC personal observations). Animal colour dark
grey to black.

Genitalia anatomy (Fig. 4): The distinction between the praeputium and penial
sheath is not clearly defined, the praeputium and the penial sheath are both about half
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Figure 3. Shell, holotype of Idaholanx fresti sp. n.

Figure 4. Reproductive anatomy, holotype of Idaholanx fresti sp. n. AG albumen gland BW body wall
NG nidamental gland O oviduct OT ovotestis P penis PB pyriform body PG prostate gland PS penial
sheath S spermatheca SD spermathecal duct SV seminal vesicle U uterus V vagina VD vas deferens.

the length of the penial complex. Penis is short and thick. The prostate is elongate and
tube like, with the vas deferens entering apically. The uterus is strongly folded, and is
surrounded by a large albumen gland. The uterus connects to the proximal part of the
oviduct (oviduct I) by a short tubular duct. A roundish nidamental gland joins here.
The oviduct widens into the pyriform body which is relatively large, with the anterior
portion slightly more swollen than the distal portion. The short oviduct II terminates
with a small vagina. The spermatheca is of moderate size and ovate. The spermathecal
duct is long and widens at its opening to the vagina.
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Figure 5. Comparison of shells and animals of /daholanx n. gen., Fisherola and Lanx. The shells are
oriented with the head of the animal facing right, while the whole animals without shells are dorsal views
with the head up. Idaholanx fresti sp. n. A shell B whole animal. Fisherola nuttalli: C shell D whole ani-
mal. Lanx patelloides. E shell F whole animal. The red arrows indicate the position of the head in A, C; the
position of the gap in the columella muscle in B, D and the narrow connection in F. Images not to scale.

Distribution. /daholanx, as currently recognised, is known from four isolated cold
water springs (Thousand, Banbury, Briggs and Box Canyon Springs) that flow into
eastern side of an 8 km section of the Snake River, in Gooding County, Idaho.
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Remarks. /daholanx gen. n. differs from Fisherola by having a smaller, taller shell
with its apex located towards the middle of the shell and not posteriorly. It differs from
Lanx by being smaller and taller and having an open C-shaped columellar muscle and
not a closed circular columellar muscle (Fig. SC-F).

Etymology. A combination of Idaho, the only state the genus is known to occur
in and Lanx, the genus it has been historically referred to and which is currently only
known from northern California and southern Oregon.

Idaholanx fresti Clark, Campbell & Lydeard, sp. n.
http://zoobank.org/9B243DB3-ABD2-40CC-B9A0-BC4DD1778971

Type locality. 21-24™ runs of the lower outflow of Banbury Springs, Gooding Coun-
ty, Idaho, U.S.A. 42°41'20.5"N, 114°49'18"W, 879m, 4 Sept 2003. Coll: T. Frest &
E. Johannes.

Type material. Holotype Field Museum of Natural History (FMNH) 342894
(dissected), paratypes FMNH 342895, DCS, SAC S.26084; FMNH 342896, DCS,
SAC S§.26085 (shell), 13-15" runs of the lower outflow of Banbury Springs, about
middle of spring complex along trail with wooden bridges, 42°41'21"N, 114°49'18"W,
21 Sept 1989; FMNH 342901, lower outflow of Banbury Springs, 42°41'21.8"N,
114°49'19.4"W, 11 Jan 2006; FMNH 342904, SAC S.23967 (shell), lower out-
flow of Banbury Springs, 42°41'21"N, 114°49'18"W, 6 Aug 2006; FMNH 342897
(shells), SAC §.25699 (shell), lower outflow of Banbury Springs, 42°41'21.8"N,
114°49'18.5"W, 25 May 2016.

Additional material examined. Idaho. Gooding County. FMINH 342905 (shells),
SAC §.25842 (shell) lower outflow of Box Canyon Spring, about 110m below
diversion dam, 42°42'26.5"N, 114°49'02"W, 24 May 2016; FMNH 342898 (shells)
lower outflow of Box Canyon Spring, about 160m below diversion dam, 42°42'27"N,
114°49'04"W, Apr 2016; FMNH 342899 (1 dissected), FMNH 342900 (shell) lower
outflow of Box Canyon Spring, about 400m below diversion dam, 42°42'27.5"N,
114°49'14.5"W, 11 Jan 2006; FMNH 342902 (1 dissected) outflow of Briggs Spring
just below road crossing, 42°40'26.3"N, 114°48'33.4"W/, 24 Jan 2006; FMNH 342906
(shells), SAC §.25707 (shell) outflow of Briggs Spring about 15m below diversion
dam, 42°40'26.9"N, 114°48'39.2"W, 24 May 2016; FMNH 342903 (1 dissected),
outflow of Thousand Springs, 42°44'51.7"N, 114°50'42.3"W, 24 Jan 20006.

Description. Shell and anatomical description as for genus. Holotype 2.8 mm in
height, 4.8 mm in length and 3.6 mm in width.

Etymology. Named for the late Dr Terrence J. Frest, for his significant contribu-
tion to the knowledge of land and freshwater molluscs of North America, especially of
the western states and who was also a colleague and friend.

Ecology. This species is found under and on the sides of stones in cold flowing
water in the range of 12.2-16.7 °C. It is not known exactly when egg laying occurs or
how many eggs are laided at a time. It could be similar to the closely related species
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Figure 6. Distribution of Idaholanx fresti. Insets show location of Idaho in the US and of the springs in
Idaho.

Fisherola nuttallii (Haldeman, 1841) which occurs in the Snake River and other major
tributaries of, as well as the main stem of the Columbia River. Coutant and Becker
(1970) observed Fisherola nuttallii laying transparent, suboval gelatinous egg masses
containing between 1-12 eggs laid from April to June in the Washington, U.S.A. por-
tion of the Columbia River. They noted that growth rates increased as the availability



126 David C. Campbell et al. / ZooKeys 663: 107-132 (2017)

of food and temperature increased and that the life span was about a year, with adult
mortality increasing rapidly after egg laying and after the temperatures increased above
17.3°C.
Distribution. Currently known from four small to large isolated spring complexes
along an eight kilometer stretch of the Snake River in Gooding County, Idaho (Fig. 6).
Conservation status. Listed as endangered under the U.S. Endangered Species
Act of 1973, under the name Banbury Springs lanx, Lanx sp.
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