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Abstract
Discrete (qualitative) data segregation analysis may be performed assuming the liability model,
which involves an underlying normally distributed quantitative phenotype. The appropriateness of
the liability model for complex traits is unclear. The Genetic Analysis Workshop 13 simulated data
provides measures on systolic blood pressure, a highly complex trait, which may be dichotomized
into a discrete trait (hypertension). We perform segregation analysis under the liability model of
hypertensive status as a qualitative trait and compare this with results using systolic blood pressure
as a quantitative trait (without prior knowledge at that stage of the true underlying simulation
model) using 1050 pedigrees ascertained from four replicates on the basis of at least one affected
member. Both analyses identify models with major genes and polygenic components to explain the
family aggregation of systolic blood pressure. Neither of the methods estimates the true
parameters well (as the true model is considerably more complicated than those considered for
the analysis), but both identified the most complicated model evaluated as the preferred model.
Segregation analysis of complex diseases using relatively simple models is unlikely to provide
accurate parameter estimates but is able to indicate major gene and/or polygenic components in
familial aggregation of complex diseases.

Background
Liability models for the segregation analysis of discrete
traits assume an underlying normally distributed quanti-
tative phenotype [1]. For relatively simple disease models
this method performs well in terms of identifying the
underlying genetic models [2-4]. The appropriateness of
the liability model for complex diseases is less clear; few
substantial studies have included a measured underlying
quantitative trait with which discrete data can be naturally
compared. The Genetic Analysis Workshop 13 simulated
data provide measures on a quantitative trait, systolic

blood pressure (sbp), which may also be dichotomized to
form a discrete trait (hypertension). This is a suitably large
and realistic set of data on which comparisons of quanti-
tative and discrete trait models may be made.

The aims of this study were to use both quantitative and
qualitative phenotypes in segregation analysis (blind to
the simulated model) and compare results with respect to
1) best fitting models (one or two major genes, polygenic
and mixed models) and 2) parameter estimates. After ini-
tial analysis, the simulated model was examined and
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found to be highly complex, possibly too complex for seg-
regation analyses to determine whether gene(s) segregate
with the trait. Height was chosen as an alternative trait,
based on a simpler genetic model within the simulation,
as a comparison.

Methods
Phenotypic data
For each replicate the phenotypic data for Cohorts 1 and
2 were merged with the pedigree data to form families, the
pedigree structures of which are the same for each repli-
cate, and the complete data set was used (no missing
data). The variables selected are famid, id, dadid, momid, sex
merged with phenotypic data in Cohort 1 age (time-
points 1–21), exam at death, hypertensive treatment (1–21),
sbp (1–21), height (1,5,10,13–21) and in Cohort 2 age (1–
5), exam at death,hypertensive treatment (1–5), sbp (1–5)
and height (1–5). For each individual the exam used in the
analysis was randomly selected from the first exam
through to the last exam or the exam prior to the exam at
death, thereby simulating the ascertainment of individu-
als with a range of histories and ages.

For the quantitative trait, if treatment starts prior to the
selected exam, then sbp was taken as the last pre-treatment
sbp and age is taken as the corresponding age (using the
complete data at least one pre-treatment sbp was always
available). The distribution of the quantitative trait was
positively skewed, but after log-transformation it was
approximately normally distributed (lnsbp). Sbp is age
dependent. Adjusting for age for sbp removes 14% of the
variance. The residual lnsbp is the focus of the analysis.

The sbp recorded in exams up to and including the ran-
domly selected exam were used to determine the qualita-
tive trait, hypertensive status. Individuals are regarded as
affected if they have sbp > 140 mm Hg, or receive treat-
ment for high blood pressure, at any of these exams, and
the earliest such exam gives the age at disease onset. Cur-
rent age is age at the randomly selected exam.

Examination of the simulation model for sbp revealed a
complex mode of inheritance. In order to compare results
for a simpler trait, height was also analyzed. Height was
adjusted for sex ([height - sex specific mean height]/sex-
specific standard deviation in height), and where height is
not recorded in the exam selected (first cohort only) the
sex-adjusted height from the exam closest to the selected
one is used.

Segregation analysis
Segregation analysis was performed on 1050 families
ascertained from four randomly selected replicates (055,
079, 093 and 097). Families were ascertained on the basis
of having at least one affected member (sbp > 140 or on

treatment for hypertension). In families with only one
affected member, this individual was designated as the
proband. In families with more than one affected individ-
ual, a proband was randomly selected from among the
affected individuals in the family. Ascertainment correc-
tion was performed on all families using the designated
probands.

Quantitative trait models were fitted allowing for no
familial effects (sporadic), a single major gene (dominant,
recessive, or codominant), two major genes, polygenes
only, or major genes plus polygenic effects (mixed mod-
els). The models allowing for a major gene assume that
the phenotype is normally distributed within each geno-
type, with mean varying according to genotype but equal
within-genotype variances.

Variance-components analysis is used to estimate herita-
bility. Random mating and Hardy-Weinberg equilibrium
are assumed.

Qualitative trait analysis mirroring the quantitative analy-
ses was performed using a liability model. This model
assumes a higher liability threshold needs to be exceeded
for younger age at onset. The analysis was carried out with
age-specific incidence rates constraining affection proba-
bilities. Age- and sex-specific incidence rates were calcu-
lated from all individuals from both cohorts in the full set
of 100 replicates, using age at last exam for those still alive
and unaffected, age at exam prior to death for those who
died, or age at first exam with either sbp > 140 or treatment
for hypertension for those affected. Analyses using age-
and sex-specific incidence data showed very similar
parameter estimates for males and females, so for simplic-
ity we report here the results of analyses based on com-
bined incidence data entered as 18 liability classes of 5-
year intervals 1–5, 6–10, 11–16, ..., 81–85, and 86–90.

Quantitative trait analysis for sex-adjusted height using all
pedigrees in the four replicates was performed using sim-
ilar models to those for sbp. In addition, a three-allele sin-
gle locus model was considered, since the most important
gene in the model underlying the simulation had three
alleles.

Analyses were carried out using PAPv5 [5]. Maximizations
were determined from several starting values and those at
boundary values were scrutinized further to confirm as far
as possible that the true maxima were achieved. Tabulated
results report differences in twice the log likelihood for
each fitted model compared to the baseline sporadic
model. Nested models are compared using the likelihood
ratio test and non-nested models using the Akaike infor-
mation criterion [6].
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Results
The 1050 pedigrees ascertained for at least one person
with hypertension range in size from 7 family members to
84 with 50% of the pedigrees having 12 or fewer members
and 90% having 26 or fewer members. There are only 27
pedigrees with 40 or more members. Families with only
the proband affected account for 28%, while those with 3

or more affected account for 50%. Families with 8 or more
cases account for 5% of all families, the maximum
number affected being 21. Systolic blood pressure was
measured on 9776 family members aged 20 to 88.

Table 1: Parameter estimates for quantitative trait segregation analyses of age-adjusted sbp

Model Allele frequency Dominance Displacement Heritability 2lnLA Number of 
parameters

Sporadic (-) (-) (-) (0) 0 0
Polygenic (-) (-) (-) 0.78 2203.63 1
Single genes

Dominant 0.30 (1) 1.71 (0) 1237.16 2
Recessive 0.73 (0) 1.76 (0) 1248.84 2
Codominant 0.51 0.51 3.39 (0) 1899.80 3

Mixed models
Dominant 0.23 (1) 0.00 0.78 2203.63 3
Recessive 0.13 (0) 1.74 0.80 2230.07 3
Codominant 0.13 0.07 1.85 0.80 2230.74 4

2-locus model
Locus 1 0.56 0.56 3.88
Locus 2 0.22 0.32 3.81 (0) 2279.30 6

2-locus mixed 
model

Locus 1 0.53 0.59 3.20
Locus 2 0.19 0.26 3.31 0.41 2339.49 7

ATwice log likelihood difference from sporadic model. Parameters in parentheses fixed.

Table 2: Parameter estimates from qualitative trait segregation analyses of hypertension (including incidence data)

Model Allele frequency Dominance Displacement Heritability 2lnLA Number of 
parameters

Sporadic (-) (-) (-) (0) 0 0
Polygenic (-) (-) (-) 1.00 3623.09 1
Single genes

Dominant 0.05 (1) 2.98 (0) 3208.07 2
Recessive 0.33 (0) 3.47 (0) 3130.10 2
Codominant 0.07 0.66 4.63 (0) 3421.01 3

Mixed models
Dominant 0.21 (1) 77.4 1.00 3848.22 3
Recessive 0.73 (0) 5.51 1.00 3779.37 3
Codominant 0.20 0.99 76.9 1.00 3988.55 4

2-locus model
Locus 1 0.15 0.76 2.94
Locus 2 0.07 0.75 6.10 (0) 3620.38 6

2-locus mixed 
model

Locus 1 0.07 0.02 3.08
Locus 2 0.18 0.99 102.41 1.00 4002.82 7

A Twice log likelihood difference from sporadic model. Parameters in parentheses fixed. Maximizations at parameter boundaries (heritability 1.0) 
were further evaluated confirming that the true maximum was attained.
Page 3 of 5
(page number not for citation purposes)



BMC Genetics 2003, 4 http://www.biomedcentral.com/1471-2156/4/s1/S79
Quantitative trait analysis in Table 1 shows that the model
with two major genes plus polygenes is the best fitting
model of those evaluated. For this model the two major
genes are codominant and the within-genotype heritabil-
ity is 41%.

For the qualitative trait analysis the best fitting model of
those evaluated is again the mixed model with two major
genes. The parameter estimates define a rare recessive and
a dominant locus (Table 2). Each of the models including
polygenic effects maximize on or near a boundary value
(heritability of 1.0). Subsequent analyses confirm (as far
as possible) that global maxima have been reached. The
program did not converge to a global maximum when try-
ing to fit the single-gene codominant mixed model: the
model reported in Table 2, with dominance 0.99, was
found by fixing all other parameters.

Modelling height as a simpler trait using the same four
replicates with no ascertainment selection, 11,346 indi-
viduals had data available on height. The best fitting
model for sex-adjusted height is a mixed two-locus model
and is significantly better than any single-locus, pure poly-
genic, or two-locus model (Table 3). The model estimates
heritability to be 48%, a codominant (dominance 0.52)
locus with allele frequency 0.4 and a recessive (domi-
nance 0.26) locus with allele frequency 0.3. These are rea-
sonable estimates of the true parameters for the first two
major genes (disease allele frequencies each 0.3 with
codominant and recessive transmission), which account
for 40% and 20% of the variance. This leaves 40% of the
variance unexplained, and according to the underlying
model a further 24% of the total variance is explained by

genes. This equates to a residual heritability of 60% (24/
40), consistent with the estimate of 48% from the model.

Although a three-allele single-locus mixed model has a
better likelihood than any single-locus model, it is costly
in terms of the number of parameters required (13 esti-
mated for genotypic means and standard deviations and
heritability, plus 3 fixed for known allele frequencies).
The likelihood of this model is not significantly better
than the two-locus model but the estimate of heritability
is comparable (55% estimated when 73% expected based
on the residual heritability in the true model).

Discussion
Both the quantitative and qualitative analyses identified
the most complex models considered (two-locus mixed
models) as the preferred models, but the model parameter
estimates are quite different from each other. In neither
case do the parameter estimates match those of the major
genes that explain the majority of the genetic variation in
the underlying model. All models fitted are much simpler
than the highly complex "true" model for sbp. Compari-
sons modeling the simpler quantitative trait of height
worked better than sbp and retrieved reasonably accurate
parameter estimates.

The effect of age is allowed for in the models either by
adjusting for age (in the quantitative analysis) or using
age-specific incidence data (qualitative analysis) to con-
strain affection probabilities. It is possible that these con-
straints may be the source of different parameter estimates
for the two methods and in particular heritability esti-
mates of 1.0 in qualitative analyses. Parameter estimates

Table 3: Parameter estimates for quantitative trait segregation analyses of sex-adjusted height

Model Allele frequency Dominance Displacement Heritability 2lnLa Number of 
parameters

Sporadic (-) (-) (-) (0) 0 0
Polygenic (-) (-) (-) 0.77 2607.39 1
Single genes

Codominant 0.39 0.45 3.58 (0) 2394.36 3
Mixed models

Codominant 0.35 0.34 2.53 0.64 2810.17 4
2-locus models

Locus 1 0.53 0.49 3.25
Locus 2 0.34 0.35 3.19 (0) 2792.91 6

2-locus mixed 
model

Locus 1 0.38 0.52 2.61
Locus 2 0.33 0.26 2.92 0.48 2842.52 7

A Twice log likelihood difference from sporadic model. Parameters in parentheses fixed. For a single locus model with three alleles at fixed 
frequencies (0.4, 0.3, and 0.3), 12 parameters were estimated (genotypic means and standard deviations) which maximize at 2lnL = 2750.89; with 
the additional heritability parameter (13 parameters estimated) 2lnL = 2849.08 and h2 = 0.552.
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are more closely aligned between the two methods when
simpler models without incidence data and age adjust-
ment were investigated (data not shown).

The underlying model for sbp includes baseline genes,
slope genes, and genetic effects mediated through other
factors such as height, weight, and smoking status. The
complexity of the model may therefore be such that one-
or two-locus segregation analyses will be unable to give a
good indication of mode of inheritance. The simulated
data provided information on height as a simpler trait,
based on 10 baseline genes of which 3 account for most
of the sex-specific variation. Our analyses, although lim-
ited by the extra complexity of the three-allele locus in the
true model, found that the two-locus mixed models pro-
vided reasonable estimates of the allele frequencies and
dominance of the first two loci and of residual heritabil-
ity. A three-allele single locus mixed model using the
known allele frequencies was not preferred to the best fit-
ting two-locus mixed model. Using two alleles when
modeling complex traits with more than one locus seems
a reasonable compromise in terms of model accuracy
when there are unknown parameters.

The complexity of the simulated model (and possibly
reality) inevitably means that simple models will be una-
ble to provide reliable parameter estimates, but such mod-
els may indicate the likely components of inheritance. As
such, these methods may be useful in studying complex
diseases when one or more causative genes have already
been identified in combined linkage-segregation analyses.

References
1. Morton NE, MacLean CJ: Analysis of family resemblance. 3.

Complex segregation of quantitative traits. Am J Hum Genet
1974, 26:489-503.

2. Goldin LR, Cox NJ, Pauls DL, Gershon ES, Kidd KK: The detection
of major loci by segregation and linkage analysis: a simula-
tion study. Genet Epidemiol 1984, 1:285-296.

3. Olshen AB, Wijsman EM: Pedigree analysis package vs MIXD:
fitting the mixed model on a large pedigree. Genet Epidemiol
1996, 13:91-106.

4. Snow GL, Wijsman EM: Pedigree analysis package (PAP) vs.
MORGAN: model selection and hypothesis testing on a large
pedigree. Genet Epidemiol 1998, 15:355-369.

5. Hasstedt S: Variance components/major locus likelihood
approximation for quantitative, polychotomous, and multi-
variate data. Genet Epidemiol 1993, 10:145-158.

6. Akaike H: A new look at the statistical model identification.
IEEE trans Automat Control 1974, 19:716-772.
Page 5 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4842773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4842773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6599402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6599402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6599402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1098-2272(1996)13:1<91::AID-GEPI8>3.0.CO;2-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1098-2272(1996)13:1<91::AID-GEPI8>3.0.CO;2-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8647381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1098-2272(1998)15:4<355::AID-GEPI3>3.0.CO;2-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1098-2272(1998)15:4<355::AID-GEPI3>3.0.CO;2-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1098-2272(1998)15:4<355::AID-GEPI3>3.0.CO;2-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9671986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8349098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8349098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8349098
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

