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Benzene, toluene, ethylbenzene and xylene, also known as BTEX, are released into
environmental media by petroleum product exploratory and exploitative activities and
are harmful to humans and animals. Testing the effects of these chemicals on a
significantly large scale requires an inexpensive, rapidly developing model organism such
as Drosophila melanogaster. In this study, the toxicological profile of benzene, toluene,
ethylbenzene, p-xylene, m-xylene, and o-xylene in D. melanogaster was evaluated.
Adult animals were monitored for acute toxicity effects. Similarly, first instar larvae reared
separately on the same compounds were monitored for the ability to develop into adult
flies (eclosion). Further, the impact of fixed concentrations of benzene and xylene on
apoptosis and mitosis were investigated in adult progenitor tissues found in third instar
larvae. Toluene is the most toxic to adult flies with an LC50 of 0.166 mM, while a
significant and dose-dependent decrease in fly eclosion was observed with benzene,
p-xylene, and o-xylene. An increase in apoptosis and mitosis was also observed
in animals exposed to benzene and p-xylene. Through Genome Wide Association
Screening (GWAS), 38 regions of the D. melanogaster genome were identified as critical
for responses to p-xylene. This study reveals the strength of D. Melanogaster genetics
as an accessible approach to study BTEX compounds.
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INTRODUCTION

Volatile organic aromatic compounds (mainly BTEX) have experienced a surge in their
environmental presence as a result of increased industrial combustions, vehicular movement,
and petroleum operations (Ojiodu, 2013; Cheng et al., 2018). Several years of oil exploration by
Multinational Corporations as well as the spillage and gas flaring associated with such activities has
led to a degraded environment (Ebegbulem et al., 2013). Release of petroleum hydrocarbons into
the environment, whether by accident or due to anthropogenic activities, impacts water and soil
and may contribute to regional or atmospheric pollution (Ite et al., 2013). Aside from oil spills and
accidents, petroleum pollutant sources could be due to lack of maintenance culture, deliberate acts
of violence, bunkering evaporative emission in gas stations, and release of volatile components of
gasoline through automobile exhausts (McInnes, 1996; Nwilo and Badejo, 2005). Benzene, toluene,
ethylbenzene, and xylene (BTEX) and other aromatic hydrocarbons are predominant components
of emissions from gasoline and diesel-powered engines (Friedrich and Obermeier, 1999). Leading
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producers of petroleum products are now characterized by large
scale oil utilization and industrial processes, leading to high
pollution and release of volatile organic compounds (Olumayede
and Okuo, 2012). Benzene and its alkylated derivatives are
well-known for their mutagenicity and carcinogenicity in living
organisms and are threat to public health. The United States
Environmental Protection Agency (EPA) has classified benzene
as a group A carcinogen (Snyder and Hedli, 1996; Thammakhet
et al., 2004). Xylene in particular has been recommended
to be listed in the National Priorities List (NPL) by the
EPA (HHS, 2007).

Occupational exposures to BTEX occur at work places via
inhalation or adsorption through the skin. Exposure levels to
these compounds at the industrial level have been established
through many monitoring and risk assessment studies (Moolla
et al., 2015; Ruchirawat et al., 2010; Ciarrocca et al., 2012).
Workers and drivers at refueling stations are exposed to
high concentrations of BTEX in vehicles and in gas station
environments (Esteve-Turrillas et al., 2007; Hazrati et al.,
2016; Mosaddegh Mehrjerdi et al., 2014). Histopathological
technicians are a high-risk group because they constantly come
in contact with solvents already contaminated with xylene
(Kandyala et al., 2010).

Benzene, toluene, ethylbenzene, and xylene compounds are
not exclusively important in industrial areas. These compounds
also pose a threat to household environments as samples of
BTEX have been discovered in residential areas and other
locations distant from gas stations and other major sources
(Correa et al., 2012; Liu et al., 2013). Deliberate inhalation of
paint or glue by solvent abusers may lead to a high level of
exposure to toluene and other chemicals (Dorsey, 2000). Toluene
exposure values at newsstands and at home during the use of
magazines adds to the total human health impact originally
produced during production and retail stages (Walser et al.,
2013). Exposure to these toxicants presents health effects at the
organismal level that are due to direct or indirect impact on
the DNA at the subcellular level (Mandani et al., 2013; Shaikh
et al., 2018; Warden et al., 2018). Experiments conducted with
earthworms and Drosophila melanogaster indicate a relationship
between BTEX exposure and DNA damage/fragmentation (Liu
et al., 2010; Singh et al., 2011). Researchers have also linked
neurotoxicity and loss of reflexes in factory workers to exposure
to certain concentrations of benzene (Mandiracioglu et al.,
2011). Pumo et al. (2006) reported behavioral, motor, and
cognitive changes in the neonates of pregnant animals acutely
exposed to benzene. In rats, toluene, ethylbenzene and the three
isomers of xylene caused reduced body weights at birth and
developmental delay (Thiel and Chahoud, 1997; Saillenfait et al.,
2003). There is also an association between benzene exposure
and the presence of micronuclei as well as other forms of DNA
damage (Kim et al., 2010; Bucker et al., 2012; Salem et al.,
2018). Toluene exposure is linked to induction of repression
of genes in pathways associated with synaptic plasticity and
mitochondria function (Hester et al., 2011). Altered expression
of genes associated with stress has been reported with benzene,
toluene and xylene exposure in D. melanogaster (Singh et al.,
2009, 2010). Benzene exposure in adult flies also resulted in

upregulation of transporter proteins involved in the sequestration
of the conjugation product of the phase II detoxification reaction
(Sharma et al., 2018).

One of the major challenges to advancement in the field of
toxicology is to be able to correlate variation at the molecular
level with phenotypic variation in quantitative traits such as
susceptibility to disease and resistance to toxins (Mackay et al.,
2012; Mackay and Huang, 2018). Genome Wide Association
Studies (GWAS) can serve as an effective means to pull putative
information from Single Nucleotide Polymorphisms (SNPs) to
further learn about certain genes and the influence they have on
phenotypic expression (Weeger, 2018).

This study utilizes the exposure of a model organism,
D. melanogaster, to assess effects on both animal development
and acute toxicity (in adults) of BTEX environmental pollutants.
D. melanogaster, also known as the fruit or vinegar fly, is
a reliable model organism due to its rapid life cycle and
wide array of genetic reagents that are available (Gilbert,
2008; Pandey and Nichols, 2011; Ruden et al., 2012). Adult
D. melanogaster contain numerous organs that are functionally
equivalent to mammalian organs, including a heart, a respiratory
organ system (trachea), and a gut (Rothenfluh and Heberlein,
2002). This study also takes advantage of the Drosophila
Genetic Resource Panel (DGRP), consisting of 200 wild-derived
inbred fly strains. This collection is a powerful community
resource for interrogating heritable, natural variation and
linking complex traits to underlying genotypes (Huang et al.,
2014). The panel presents an excellent genetic model system
for quantitative genetic analyses of complex traits, and has
resulted in the identification of genetic networks that underlie
several stress responses, such as starvation resistance, chill
coma recovery, startle behavior, oxidative stress sensitivity,
radiation resistance, and exposure to alcohol (Morgan and
Mackay, 2006; Jordan et al., 2012; Vaisnav et al., 2014; Weber
et al., 2012). Our goal here was to determine the acute,
genotoxic and developmental effect of BTEX compounds on D.
melanogaster, and to identify genetic regions that may impact
BTEX susceptibility.

MATERIALS AND METHODS

Test Chemicals
The test chemicals benzene, toluene, ethylbenzene and xylene
(p-xylene, m-xylene, and o-xylene) were supplied by VWR
(us.vwr.com). Different concentrations of test chemicals were
prepared using serial dilution in dimethyl sulfoxide (DMSO).
Absolute ethanol ≥99.5% and glacial acetic acid (Millipore
Sigma) were used in the preparation of grape juice agar.

Drosophila melanogaster Culturing
The D. melanogaster strains used in most experiments were
white1118 (w1118) with the exception of the GWAS study, which
used the DGRP strains. The flies were reared in fly vials (diameter
25 mm × 90 mm) at a constant temperature of 25 ± 1◦C
in darkness except when they were transferred to a fresh
medium. The flies were raised under a standard D. melanogaster
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media using molasses with other recipes as prepared by Archon
Scientific; Durham, NC, United States1.

Adult Acute Exposure Studies
w1118 adult flies, aged 0–3 days old, were maintained in standard
D. melanogaster food. Ten flies were placed in each replicate vial
containing D. melanogaster molasses-based food (n = 10 per trial,
2 trials total). The flies were treated at different concentrations
obtained from range finding experiments of benzene (0, 0.11,
0.23, 0.34, 0.45, 0.56, and 1.13 mM), toluene (0, 0.11, 0.16, 0.24,
0.33, and 0.65 mM), p-xylene, m-xylene (0, 0.11, 0.16, 0.27,
0.32, and 0.65 mM), and 0.3% DMSO (Nazir et al., 2003). The
BTEX compounds were mixed into the food which was melted
using a microwave. The flies were exposed to the compounds
for 4 days and the mortality of flies was recorded on each
day during that time period. The flies were fed in new vials
containing fresh concentrations of the test compounds daily. The
experiment was conducted at 25◦C, eliminating heat stress as a
potential confounder.

Larval Development Studies
The developmental toxicity experiment was conducted using a
grape juice gel agar recipe developed by Salvaterra et al. (2006)
and was modified in this study using standardized proportions
for the laboratory. A liter of grape juice agar was prepared using
250 ml 100% frozen grape juice, 18 g agar, 12 ml acetic acid,
750 ml distilled water, and 12 ml 95% ethanol.

A population of flies containing 20 females and 10 males
collected under light CO2 anesthesia were placed in standard
egg collection cages covered with grape juice agar petri-dishes
(Durham et al., 2014). The grape juice gel agar was supplemented
with a 0.1 ml of yeast paste which increases egg laying by the flies.
The flies were left in the cages overnight to ensure enough eggs
have been laid on the surface of the embryo gel agar. The adult
flies are subsequently removed from their cages. The embryo gel
plates containing the laid eggs were left for 24 h after which the
first instar larvae (L1) hatched. Upon emergence of the first instar
larva, a soft pointed brush was used to pick up 25 L1 larvae,
which were transferred to grape juice agar petri-dishes containing
varying concentrations of the test chemicals. The L1 larvae were
left to develop into adults over a period of 2 weeks.

The doses of different concentrations of BTEX that were
used are as follows: benzene- 0.226 mM, 0.451 mM, 0.903
mM, 1.806 Mm, and 2.226 mM; toluene- 0.189 mM, 0.337 mM,
0.754 mM, 1.509 mM, 1.886 mM; ethylbenzene- 0.163 mM,
0.326 mM, 0.651 mM,1.303 mM, 1.6 mM; xylene- 0.08
mM, 0.160 mM, 0.320 mM, 0.640 mM, 1.290 mM, and 1.600 mM.
These compounds were quickly added to 5 ml of grape juice
agar and immediately covered. This is particularly important
because the actual concentration of BTEX is expected to decrease
as a function of time due to their volatile nature. Grape juice
agar with and without DMSO added were used as control
for this experiment. The experimental design made use of
DMSO as the solvent.

1http://archonscientific.com/recipes/

Newly eclosed flies were counted on the 14th day through
the 16th day at 25◦C, after hatching, at which point it is
presumed that all flies would have eclosed into adults under
control conditions (Montgomery et al., 2014). Survival of flies in
each vial group was recorded against concentration. Survival was
defined as the ability of flies to eclose as adults before 16 days
post-exposure to BTEX.

Initially for the DGRP lines, seven lines were randomly
selected (RAL-832, RAL-38, RAL-41, RAL-882, RAL-509, RAL-
859, and RAL-181) to test the suitability of the BTEX-assay for
the entire panel of 200 lines. The methodology for harvesting
L1 larvae in flies raised in cages as described above was adopted
for all of the DGRP lines. From each of these lines a total
of 75 L1 larvae were selected and raised in embryo gel plates
containing a fixed concentration of p-xylene (1.068 mM) which
is the LC50 value and were left to develop into adults over a
period of 2 weeks. Only p-xylene was selected for the GWAS
study because it resulted in the most reliable dose-response
relationship in exposed flies. Due to the large number of
animals utilized during the experiment, the assay was designed
in batches and in triplicates of 25 L1 larvae per vial. To rule out
batch effects in the panel, one strain (RAL-38) was repeated in
all the batches.

Immunohistochemistry
Effect of Benzene and p-Xylene Exposure on Cell
Viability and Mitosis in Imaginal Disk Cells
We examined apoptosis and mitosis during wing imaginal disk
development using Dcp-1 and Phospho-Histone H3 antibody
staining, respectively. The cellular effect of benzene a known
mutagen and p-xylene which produced the most amenable dose-
response data were evaluated. Flies were fed with 1.068 mM
each of p-xylene and benzene, for 3 days followed by the
dissection of 3rd instar larva to harvest the wing disks. In
controls, the larvae were fed with 0.1% DMSO (Nazir et al., 2003)
in distilled water. Immunohistochemistry of third instar larval
imaginal disks was done according to the methods described
by Roberts (1998) and Sarkissian et al. (2014). Mouse anti-
Death caspase-1- (Dcp-1) and Rabbit anti- Phospho-Histone
H3 (PH3) were the primary antibodies (1 µL of primary
antibody in 500 µL of block buffer). Fixation and staining were
as in Stormo and Fox (2016). Images were obtained using a
ZEISS ApoTome.2 fluorescent microscope by ZEISS Research
Microscopy Solutions and imaging data was collected using the
associated Zen 2 Pro software.

Statistical Analysis
Statistical analyses for the results were obtained using SPSS 20.0
software. To be able to determine the statistical significance
of the results, the data was analyzed by One-way ANOVA and
the Tukey’s Honest Significant Difference (HSD) was used in
the Post hoc. The differences between groups were considered
significant at p > 0.05. The resulting data from the analysis were
expressed as mean ± standard error of the larval emergence.
Lethal concentration of the test chemicals were arrived at using
Regression Probit Transformed Responses.
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Genome Wide Association Study (GWAS)
To identify candidate SNPs that contribute to variation in animal
phenotypes, we submitted the least squares line means of the
trait (eclosion of flies 16 days post exposure to 1.068 mM of
p-xylene) to the DGRP analysis pipeline2, GWA was completed
on 144 of the 200 lines assayed, based on the sequence data
available within the pipeline at the time of analysis. The
DGRP Freeze 2 Release 5.46 GWA analysis uses simple linear
model ANOVAs on approximately 2.49 million SNPs using
the model Y = µ + M + g + ε, where Y is the line
means adjusted for Wolbachia pipientis infection and five major
inversion polymorphisms (In(2L)t, In(2R)NS, In(3R)Y, In(3R)P,
and In(3R)Mo) in the DGRP, µ is the overall population mean,
M is the effect of DNA (the effect of the SNP) variant being
tested, and g is a polygenic component with covariance between
lines determined by their genomic relationship and ε is the error
variance (Huang et al., 2014).

In addition, we performed GWA analysis for survival
with p-xylene, calculated as the difference of line means
between flies that were reared on control medium and those
that were reared on p-xylene supplemented medium, using
the same pipeline. We report the top associations with
P < 10−5, based on quantile-quantile plots, which showed
deviations of observed p-values from expected values at this
threshold. The polymorphism identified at the threshold of
P < 10−5 could possibly contain false positives, but has come
to be recognized as a standard in DGRP studies. Pairwise
linkage disequilibrium was assessed between polymorphic
variants using the r2 parameterization (Huang et al., 2014)
to help evaluate to what extent clustered SNPs segregate
independently. We categorized the lines that had fewer eclosion
on p-xylene medium “poor performer” and the rest into
“good performer.”

Furthermore, the DGRP output provided information on site
class for each SNP: SNPs more than 5,000 base pairs from any
known gene were identified as such; SNPs in coding regions were
identified as synonymous, non-synonymous, downstream, UTR-
3-prime or intron SNP variants, as appropriate.

2http://dgrp.gnets.ncsu.edu/

When a phenotype file is submitted on the DGRP2 pipeline,
the phenotype is adjusted for the effects of W. pipientis infection
and five major inversions (In(2L)t, In(2R)NS, In(3R)K, In(3R)P,
and In(3R)Mo) (Mackay et al., 2012). Because this infection is
known to affect various fitness traits in D. melanogaster (Fry
et al., 2004), we tested the effect of the infection on p-xylene
(1.068 mM) exposure. For W. pipientis infection adjustment
we fit a linear model with the infection status and major
inversion genotypes as covariates and the raw phenotypes as the
response variable.

RESULTS

Acute Toxicity of Adult Flies to BTEX
We first determined the LC50 (the concentration which resulted
in 50% mortality) in adult D. melanogaster following 96 h of
BTEX exposure (96 h LC50). We also extrapolated the LC5
and LC95 (the concentrations which resulted in 5% and 95%
mortality, respectively). We determined this value by generating
dose response curves for concentrations of each of the test
chemicals (Supplementary Figure 1). The LC50 of benzene,
p-xylene, Toluene, and m-xylene was 0.807 mM, 0.168 mM,
0.166 mM, and 0.288 mM, respectively. Thus, it can be inferred
that toluene is the most toxic at 4.86, 1.73, and 1.01 times
more toxic than benzene, m-xylene and p-xylene in w1118 flies,
respectively (Table 1). Extrapolation of LC5, LC50, and LC95
value for ethylbenzene and o-xylene was not possible following
96 h exposure due to extreme mortality at all doses tested.
These results highlight the impact of BTEX compounds on adult
D. melanogaster survival.

Developmental Progression Analysis in
Animals Exposed to BTEX
We next examined the impact of BTEX compounds on
developmental progression. We did so by examining the
ability of newly hatched larvae to progress into adulthood
in the presence of BTEX compounds. Animals fed DMSO +
m-xylene, benzene, toluene, or ethylbenzene all exhibited
some additional lethality relative to DMSO alone, though

TABLE 1 | Toxicity profile of benzene, toluene, ethylbenzene, and xylene in adult w1118 mutant Drosophila melanogaster in 4 days renewal exposure.

Treatments Number of
animals
exposed

LC5 C.L. (mM) LC50 C.L. (mM) LC95 C.L. (mM) Slope ± S.E. D.F. T.F.

benzene 20 0.058 0.807 11.252 Y = 0.134 + 1.437X ± 0.324 5 4.86

p-xylene 20 0.053
(0.097–0.001)

0.168 (0.570–0.088) 0.528 (114.232–0.260) Y = 2.559 + 3.298X ± 0.514 4 1.01

toluene 20 0.002
(0.019–0.000)

0.166 (0.347–0.00) 16.451
(4.229E + 32–1.984)

Y = 0.642 + 0.824 X ± 0.397 4 1

m-xylene 20 0.100
(0.162–0.022)

0.288 (0.652–0.184) 0.831 (9.224–0.445) Y = 1.933 + 3.579X ± 0.519 4 1.73

o-xylene** 20 – – – – – –

ethylbenzene** 20 – – – – – –

C.L., confidence limit; L.C., lethal concentration; D.F., degree of freedom; T.F., toxicity factor. ** 100% mortality.
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TABLE 2 | Survival of w1118 larvae exposed to BTEX in grape juice concentrate
and 100% grape juice.

Test chemical Experimental
group (mM)

Total number of
larvae exposed

per replicate

Mean number
eclosed ± SE

p-xylene dH2O 25 21.5 ± 0.50

DMSO 25 21 ± 1.00

0.08 25 18.5 ± 0.50

0.16 25 18.5 ± 1.50

0.32 25 16 ± 0.00**

0.64 25 14.5 ± 0.50**

1.29 25 10.0 ± 0.0**

1.6 25 2.0 ± 1.0**

o-xylene dH2O 25 21.5 ± 0.50

DMSO 25 21 ± 1.00

0.16 25 17.5 ± 0.50

0.32 25 17.0 ± 2.00

0.64 25 13.0 ± 2.00**

1.29 25 10.0 ± 0.00**

1.6 25 9.0 ± 1.00**

benzene dH2O 25 21.5 ± 0.50

DMSO 25 21.0 ± 1.00

0.226 25 21.5 ± 1.50

0.451 25 20.0 ± 0.00

0.903 25 18.0 ± 2.00

1.806 25 17.0 ± 2.00

2.226 25 17.5 ± 0.5

toluene dH2O 25 21.5 ± 0.50

DMSO 25 21.0 ± 1.00

0.189 25 20.0 ± 1.00

0.377 25 15.5 ± 0.50

0.754 25 15.50 ± 2.50

1.509 25 18.0 ± 0.00

1.886 25 15.5 ± 0.50

ethylbenzene dH2O 25 21.5 ± 0.50

DMSO 25 21.0 ± 1.00

0.163 25 19.0 ± 1.00

0.326 25 18.5 ± 0.50

0.651 25 18.0 ± 1.00

1.303 25 18.0 ± 0.00

1.6 25 17.5 ± 0.50

m-xylene dH2O 25 21.0 ± 1.00

DMSO 25 19.5 ± 0.50

0.16 25 19.0 ± 2.00

0.32 25 16.0 ± 0.00

0.64 25 19.0 ± 0.00**

1.29 25 17.0 ± 1.00

1.6 25 21.0 ± 1.00

Statistical significance, treated versus control group: **(p < 0.05) Results are
expressed as means ± standard error. N = 3.

not in a dose-dependent manner (Table 2). However,
we did observe consistent dose-dependent reductions
(p < 0.05) in survival of animals fed p-xylene and o-xylene
(Table 2). Overall, our results highlight an impact of
BTEX compounds on animal development, with two

xylene family compounds showing the most consistently
detrimental effects.

P-Xylene Exposure Increase Both
Apoptosis and Mitosis in Imaginal Disks
To examine the impact of BTEX compounds on animal
development at a cellular resolution, we examined rates of cell
death (apoptosis) and cell division. We first examined apoptosis
using Dcp-1 antibody staining. After feeding with 1.068 mM
of p-xylene for 3 days, the number of dying cells on the wing
disk epithelia was significantly increased by a magnitude of 3-
fold when compared to controls. Dcp-1 activity was increased in
benzene-fed animals, but it was not significant (Figures 1A, 2). In
controls, the larvae were fed with 0.1% DMSO. Thus, an effect of
the acute ingestion of p-xylene is a large increase in cell death in
the cells of the D. melanogaster wing disk epithelium. In contrast,
apoptosis in the benzene-treated wing disks was only increased
up to about 2 times of that in controls. These data indicate that
p-xylene markedly increases the number of apoptotic cells in the
wing disk of D. melanogaster and reflects the general toxicity of
this compound during larval development.

To determine if apoptosis caused by benzene and p-xylene
treatment can result in signaling of the surrounding cells of dying
epithelial cells to initiate tissue regeneration processes (Fox et al.,
2020), wing imaginal disks were stained with an antibody against
phospho-histone H3 (PH3), a specific marker of mitotic cells.
In wing disks that were treated with 1.068 mM of p-xylene,
there was a 2-fold increase in the number of the PH3-positive
cells (Figures 1B, 2) which was significantly higher than those
in control and DMSO. Similarly, animals that were fed with
1.068 mM of benzene for 3 days exhibited a significant 2-fold
increase in the number of the PH3-positive cells in comparison
with those in control and DMSO (Figures 1, 2). Together, these
results suggest that exposure to p-xylene, and potentially benzene,
kills D. melanogaster wing disk epithelial cells and stimulates
compensatory cell division as part of an injury response.

GWAS Screen for BTEX Susceptibility
Given our findings that D. melanogaster is a convenient model
system to study the impact of BTEX compounds, we next
leveraged the ability of this system to reveal genetic regulation
of BTEX responses. We used the DGRP collection, a sequenced
and inbred library of lines used in GWAS studies (Mackay
et al., 2012; Mackay and Huang, 2018). We determined the
LC50 and also extrapolated the LC5 and LC95 using dose
response curves generated from concentrations of the test
compound. Randomly selected DGRP flies exposed to Benzene,
m-xylene, ethylbenzene and toluene did not respond in a
dose dependent manner and therefore the extrapolation of
their LC50 is not predictive of the effect of the toxins against
the flies. However, for p-xylene, we saw a reproducible dose
dependent effect, and chose an LC50 of 1.068 mM (Table 3)
p-xylene to further use in GWAS analysis, using the eclosion
assay described in sections “Larval Development Studies”
and “Developmental Progression Analysis in Animals Exposed
to BTEX.”
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FIGURE 1 | Quantitation of Dcp-1 and PH3 staining in wing imaginal disks following p-xylene and benzene feeding. (A) Summary of data showing activity of cleaved
Dcp-1 in wing disks of w1118 3rd instar larva. Data are represented by mean antibody-positive cell count ± SE (N = 8). (B): Summary of data showing activity of PH3
in wing disks of w1118 3rd instar larva. Data are represented by mean cell count ± SE (N = 6). Statistical significance, treated versus control group: * (p < 0.05).

To examine the suitability of the BTEX-assay for the DGRP
lines and in order to arrive at a fixed dose for GWAS exposure,
a panel of seven DGRP lines were selected (RAL-832, RAL-38,
RAL-41, RAL-882, RAL-509, RAL-859, and RAL-181) at random.
First instar larva were selected from these DGRP lines and
allowed to feed on p-xylene treated plates for 24 h. Eclosion was
recorded in each of the different concentrations. Only p-xylene
was toxic in a dose dependent manner and showed variation in
toxicity with the animals. To characterize natural variation in
p-xylene response in 200 DGRP lines, a fixed dose of 1.068 mM
p-xylene was selected. The animals were screened for survival
post-p-xylene exposure, and we found extensive phenotypic and
genetic variation in p-xylene exposure response across the tested
DGRP panel (Figure 3). It was found that the lines fell into
two distinct groups: one group of 56 lines with no survivors at
all in the control (i.e., RAL line + DMSO) and p-xylene (i.e.,
RAL line + p-xylene) exposure, another group of 144 lines with
survivors. The 144 lines were further grouped into 10 lines that
showed resistance to p-xylene exposure, while the remaining 134
ranged from mildly susceptible to highly susceptible to p-xylene
treatment and thus are sensitive. While lines such as RAL-189,
RAL-857, RAL- 28, RAL-531, and RAL-195 did exceptionally
well on a fixed concentration of p-xylene, RAL-790, RAL-443,
RAL-142, RAL-774, and RAL-340 rarely eclosed 2 weeks post
exposure in the presence of a fixed concentration of the test
compound. We define performance as the mean difference of
eclosion between control and of p-xylene treated media. Results
for most lines were reproducible, with the exception of five highly
variable lines (RAL-357, RAL-812, RAL-85, RAL-843, and RAL-
362). Our results show that, for p-xylene, we identified differences
in susceptibility within the DGRP collection. Importantly, it was
observed that RAL-38 did not move from susceptible to resistant
throughout the period of the experiment, suggesting there were
minimal batch effects.

Next, we performed a case-control GWA analysis of the
phenotype using SNPs from the DGRP freeze 1 sequencing
data in order to identify genes that contain alleles conferring

differences that correlate with p-xylene exposure susceptibility
(Mackay et al., 2012). A total of 1,886,036 SNPs met the
quality control thresholds and they were tested for association
with p-xylene susceptibility using a linear mixed model
(Supplementary Tables 1A,B). Using the Mackay lab GWAS
protocol (Mackay et al., 2012), we identified SNPs that were
significantly correlated with increased or decreased p-xylene
susceptibility. A total of 38 SNPs were associated with both
increased and decreased p-xylene susceptibility at p < 10−5,
among which 34 were at p > 10−6, three (3) at p < 10−5, and
one (1) at p > 10−7 (Supplementary Table 2 and Figure 4).
The majority of the 38 SNPs were common variants, having a
minor allele frequency of ≥5%. According to genomic site class,
of the 38 SNPs, 10 were intronic, 4 fell in coding regions (one
non-synonymous, four synonymous), three (3) occurred in the
3′ UTR, and nineteen (19) were intergenic or downstream of a
gene. The heatmap of the pairwise Linkage Disequilibrium (LD)
measurement generated by the call for the 38 SNPs reveals that
the rate of LD decay is substantially lower on the X chromosome
when compared to the autosomes (Figure 5).

Excluding the intergenic regions, the remaining SNPs
implicated 16 genes, 14 of which have human homologs. In
particular, these data highlight the importance of chaff (cha) with
respect to p-xylene susceptibility: a total of 5 polymorphisms
(5 SNPs) were found in the first intron of this gene, and they are
associated with natural variation in p-xylene in this analysis. chaff
is a known maternal effect lethal and female sterile gene (Lindsley
and Zimm, 1992). Besides the chaff gene with 5 hits, three
other genes had multiple hits: toutatis (tou), which is primarily
involved in transcription factor binding activities and regulation
of chromatin structure (Fauvargue et al., 2001), had three SNPs
located on the gene; defective proboscis extension response (dpr6)
gene had two SNPs and it is known to form complexes that
specify synaptic connections between neurons and target cells
(Carrillo et al., 2015); phosphoglucomutase 2b (CG10202) had
two SNPs and it is a protein coding gene that is predicted to be
involved in carbohydrate metabolic process. Overall, we mapped
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FIGURE 2 | Visualization of Dcp-1 and PH3 staining in wing imaginal disks following p-xylene and benzene feeding. Wing disks of 3rd instar larvae immunostained
for cleaved Dcp-1 (red), PH3 (green), and DAPI to visualize DNA (white). (A–D). Representative images of cell division and apoptosis in wing disk of control flies. First
instar larvae were treated with 4 µL of deionized water for 72 h as described in “Materials and Methods” section. (E–H) Representative images of cell death and
apoptosis in DMSO treatment. First instar larvae were treated with 0.1% of DMSO for 72 h as described in “Materials and Methods” section. (I–L) Representative
images of cell division and apoptosis in p-xylene. First instar larvae were treated with 1.068 mM of p-xylene for 72 h as described in “Materials and Methods”
section. (M–P) First instar larvae were treated with 1.068 mM of benzene for 72 h as described in “Materials and Methods” section. Dashed lines indicate shape of
Drosophila melanogaster wing disk. Scale bar = 100 µm.

TABLE 3 | Toxicity profile of BTEX against larvae of randomly selected DGRP lines.

Treatment Number exposed
per petri dish

LC5 C.L. (mM) LC50 C.L. (mM) LC95 C.L. (mM) Slope ± S.E. D.F.

benzene 25 6.03E + 8 0.00 0.00 Y = −0.490–
0.131X ± 0.273

3

p-xylene 25 0.016 (0.082–0.00) 1.068 (100.928–0.553) 69.75
(2.060E + 13 –6.809)

Y = −0.026–
0.906X ± 0.389

2

toluene 25 4.98E + 9 0.00 0.00 Y = −0.545–
0.132X ± 0.273

3

m-xylene 25 0.00 1136.71 2.61E + 18 Y = −0.327 + 0.223
X ± 0.269

3

o-xylene – – – – – –

ethylbenzene 25 0.00 293.42 4.45E + 11 Y = −0.442
+ 0.179X ± 0.278

3

C.L., confidence limit; L.C., lethal concentration; D.F., degree of freedom.
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FIGURE 3 | Variation in p-xylene eclosion rates among 144 DGRP lines.

SNPs in sixteen (16) genes in the GWA analyses for exposure
to p-xylene using a significant criterion of p < 10−5. The genes
are mdh2, pnt, tweek, CG13532, CG33970, CG10202, Irk1, DmsR-
1, Meltrin, CG32112, Nckx30C, tou, dpr6, Dys, CR43451, and
cha. All but two of the genes namely CR43451 and CG13532
have human homologs (Supplementary Table 3). We note that
the cha and Dys genes are involved in biosynthesis of the
neurotransmitter acetylcholine and the modulation of chemical
synaptic transmission, respectively. While many of the candidate
genes have primary functions and activities to which they are
associated, for CG13532, CG32112, and CR43451, the molecular
functions and the biological processes in which they are involved
are not known, suggesting our analysis may reveal novel gene
functions. All genes found in our screen are novel candidates in
p-xylene susceptibility and resistance (Supplementary Table 3).

DISCUSSION

In this study, our results show that, despite the volatility of most
BTEX compounds, both larval and adult stage D. melanogaster

can be used to study effects on developmental and acute toxicity.
Our results reveal compound and dose-dependent effects on both
adult animal survival and progression through larval and pupal
development. Further, we find effects at the cellular level on both
apoptosis and mitosis, and reveal genome regions that regulate
BTEX susceptibility.

Toluene and p-xylene were extremely toxic to adult
D. melanogaster in the adult toxicity assay. The data revealed an
order of toxicity of toluene ≥ p-xylene > m-xylene > benzene.
It must be noted that in all exposed groups, the toxicity of
the BTEX compounds followed a dose-dependent response,
except in o-xylene and ethylbenzene, where there was no clear
response pattern for mortality. It is possible that toluene and
p-xylene might be metabolized more slowly and thus may
require a more prolonged exposure as compared to a rapidly
metabolizing benzene and m-xylene (Avramov et al., 2013).
On the other hand, it is also possible that the duration of
exposure to the test chemicals could have favored the toxicity
of toluene and p-xylene (Niaz et al., 2015). Toluene also
promotes differential gene expression in D. melanogaster as
described by Moskalev et al. (2014).
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FIGURE 4 | Quantile-Quantile plot of association analyses of p-xylene
resistance and susceptibility among 144 DGRP lines. The red line indicates
the expected and the black line the observed p values. Six top performing
lines are highlighted.

FIGURE 5 | Heatmap of linkage disequilibrium (LD) values (R2) between
candidate SNPs. The heat map depicts the degree of LD, r2, between
variants. The five major chromosome arms are defined by the black lines. Red
corresponds to complete LD and blue to absence of LD. A nominal P ≤ 10-5

is indicated with a red line for each trait.

The acute effect of BTEX compounds in different organisms
is well documented in the literature (Pumo et al., 2006;
Gao et al., 2014; Camara-Lemarroy et al., 2015). In African

earthworms (Eudrilus eugeniae), 96 h LC50 values for exposure to
xylene, toluene, ethylbenzene and benzene were 0.011 mmol/kg,
0.014 mmol/kg, 0.013 mmol/kg, and 0.024 mmol/kg, respectively
(Doherty et al., 2019). In Asian earthworms (Perionyx excavatus),
toluene was acutely toxic with LC50 value of 0.5 µmol/cm2 after
a 48 h exposure (An and Lee, 2008).

Results from our exposure of first instar larvae to benzene,
ethylbenzene, o-, m-, p- xylene and toluene reveals that lower
concentrations of the test substance has a milder effect on animal
development when compared with the higher concentrations
that resulted in developmental delays beyond 16 days post
exposure. This effect was more significant in o-, m-, and p-
xylene. It is possible that these toxicants act in a different way,
other than direct effect on survival, to cause developmental
delay in the exposed animals. Although the mechanism of
the developmental toxicity of technical xylene components is
unknown, it is possible that modulation of their metabolism
may affect their toxicities. The response observed may be
a result of environmental and genetic factors rather than
from the toxicant themselves. Congruent to this study, a
previous inhalation study in rats found that the three isomers
of xylene produced developmental toxicity at concentrations
between 500 and 2000 ppm (Ungvary et al., 1980; Saillenfait
et al., 2003). In D. melanogaster in particular, exposure to
benzene, xylene and toluene induced a delay in the number
of flies that emerged into adult (Singh et al., 2009). In
Xenopus laevis, treatment of tadpoles with p-xylene resulted
in a significantly higher mortality, malformed tadpoles and
developmental delay, in embryonic toxicity studies (Gao et al.,
2016). In humans, there is also a relationship between high
concentration of BTEX and neural tube defects in pregnant
women (Lupo et al., 2011).

In addition to the developmental defects we observed at
an organismal level, we also observed BTEX associated death
(apoptosis) at the cellular level. Apoptosis is dependent on
activation of caspases and is triggered during embryogenesis and
normal tissue homeostasis in response to certain physiological
changes. These changes are initiated by the activation of
specific pathways, followed by changes in morphology such as
nuclear and cytoplasmic condensation, cell shrinkage, increase
or decrease in cellular ion concentration, DNA fragmentation
and the release of a cellular component known as apoptotic
bodies (Ai et al., 2011; Singh et al., 2011; Favaloro et al.,
2012). Our study shows that the number of apoptotic cells
was significantly increased in wing disks exposed to p-xylene
compared to control media. Benzene, also induced an increase
in apoptosis, but our results suggest it does not produce a
significant effect on the number of dying cells, though we did
observe an increased rate of mitosis in these animals. It is well
documented that Reactive Oxygen Species (ROS) are generated
during the metabolism of benzene and xylene (Singh et al.,
2009) and availability of excessive free radicals is a culprit
in cellular damage (Sarma et al., 2011). It has recently been
found that xylene toxicity in human lymphocytes is stimulated
through the generation of ROS (Salimi et al., 2017). These highly
reactive radicals that are generated by benzene and p-xylene
may have triggered a series of protein-protein interaction that
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then leads to an increase in membrane permeability of the cells.
The ROS generated-effects may have moved from one cell to
another through apoptotic signaling and thereby propagating
there production in surrounding cells (Santabarbara-Ruiz et al.,
2015). The results obtained could also be as a result of the
induction of caspase-dependent cell death pathways mediated by
mitochondria (Singh et al., 2011).

We observed increased cell division in developing tissues
exposed to some BTEX compounds. Cell proliferation is a known
mechanism by which a number of tissues in D. melanogaster
respond to death of cells (Sun and Irvine, 2011; Yang
et al., 2014). Administration of benzene in cultured porcine
ovarian granulosa cells stimulates cell proliferation (Tarko
et al., 2019). Similar to this study, benzene was confirmed
to have the ability to induce chromosomal loss in wing
primordial cells of D. melanogaster (Soós and Szabad, 2014).
The increase in cell proliferation could be attributed to the
activation of a cell death induced pathway that is required
for regenerative growth in the wing disks of D. melanogaster
in response to the increase in the number of dying cells
(Bergantiños et al., 2010).

Our findings also represent a large-scale effort to identify
genome wide associations that impact p-xylene exposure.
One of the advantages of the DGRP collection is that it
relies on freely occurring genetic variation. All strains in
the DGRP panel were caught in the wild and inbred over
twenty generations until isogenic (Mackay et al., 2012). This
provides us with an opportunity to assess the magnitude
of genotype by natural variation and their genetic basis,
since complex behavior varies from individual to individual.
Multiple studies have already utilized GWAS to generate
novel interactors in complex traits such as aggression, stress
response, and longevity, studies that were made possible
by the intensive sequencing of all lines included in the
DGRP (Shorter et al., 2015; Durham et al., 2014; Weber
et al., 2012). It was then natural to leverage this tool to
attempt a similar process in the field of toxicology. This
type of study has been demonstrated with some range of
toxicants including methylmercury, (Montgomery et al., 2014),
radiation exposure (Vaisnav et al., 2014) and lead toxicity
(Zhou et al., 2016).

This study identified a list of candidate genes that might
play a role in modifying the phenotypic effect of p-xylene
exposure. With the exception of two genes (CR43451
and CG13532), all the top candidate genes have human
orthologs (14/16) (Supplementary Table 3). This high level
of conservation suggests that the findings in this study could
be highly informative as human candidates in translational
studies. Our p-xylene GWA analysis reveals candidate
genes that were enriched for functions in nervous system
development, neuromuscular synaptic transmission, membrane
signaling factors, carbohydrate metabolism, imaginal wing
disk development, transcription factor binding sites (TFBS)
and apoptotic processes (Supplementary Table 3). The
representation of these candidate genes shows that 3 of the
top 16 candidates have human homologs that are linked to
increased risk of certain human diseases such as Alzheimer’s

disease, asthma, and chronic obstructive pulmonary disease
(Meyer et al., 2010; Dey and Ray, 2018). There may be common
pathways or mechanisms shared between these human diseases
and exposure to p-xylene. There may well be an interaction
between apoptotic genes and those responsible for development
of the imaginal wing disks, these could explain the increase
apoptosis and mitosis observed with p-xylene exposure in
D. melanogaster.

Among the genes represented by the significant
SNP hits, four contain multiple SNPs (cha, tou, dpr6,
and CG10202). This is in concordance with Moskalev
et al. (2014) whose study demonstrated that cha was
downregulated in toluene treated flies. Future studies will
be required to ascertain if truly the biological selectivity
of these genes is representative enough or they are
simply in linkage disequilibrium with causative variants
found in other loci.

Two SNPs (3L_10034780_SNP and 3L_10034781_SNP)
both downstream, mapped to the gene dpr6, are significantly
associated with p-xylene resistance (p = 1.94 × 10−6 and
2.24 × 10−6). This result is particularly very interesting
because a different GWAS study had mapped a SNP to the
gene Dpr6 that was associated with variation in Providencia
rettgeri load in flies reared on different glucose diet (Unckless
et al., 2015). Dpr6 belongs to a family of genes thought
to be involved in synapse organization and that localizes
to the neuron projection membrane, including gustatory
perception of food, and contains an immunoglobulin
domain that may be involved in cell-cell recognition. The
gene is expressed in the medulla and ventral nerve cord
(Nakamura et al., 2002; Carrillo et al., 2015). This genetic
correlation could mean that resistance to p-xylene is linked
in some way to the metabolic uptake and conversion of
glucose, but a full characterization of this mechanism will
require future study.

The cha gene is responsible for the synthesis of the
neurotransmitter acetylcholine (ACh) and this is typical of
the cholinergic neurons present in the peripheral and central
nervous system. In a reversible reaction cha catalyzes synthesis
of ACh from acetyl-CoA and choline, ACh then stimulates
muscle contraction in the central nervous system and learning
in the central nervous system (Cai et al., 2004). Due to the high
number of SNPs that were mapped to this gene relative to all
other top annotations, p-xylene could have a major modulatory
effect on the regulation of the cha gene and by extension
a defect in synaptic transmission. This was demonstrated in
zebrafish where a missense mutation in the homolog of the
cha gene chata shows a strong reduction in embryo motility
(Joshi et al., 2018).

Although it has been reported that xylene can induce DNA
damage and candidate gene studies have linked xylene with
chronic myeloid leukemia and cancer (Lim et al., 2016), none
of our top 16 candidate genes from the 38 significant hits are
associated with DNA damage. This could be due to the fact that
the mode of toxic action of p-xylene in in vitro and in whole
animal conditions is quite different from what is observed at the
genome-wide level studies.
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In summary, our study reveals 38 SNPs associated with
p-xylene resistance and susceptibility in D. melanogaster
developmental and toxicity experiments involving benzene,
toluene, ethylbenzene, p-xylene, m-xylene, and o-xylene. The
study also suggests that benzene and p-xylene are capable of
eliciting apoptotic and cell proliferative responses in imaginal
wing disk of D. melanogaster. The GWA analyses in this study
has demonstrated the strength of the DGRP in revealing a
highly polygenic genetic architecture that underlies variation
in susceptibility to p-xylene toxicity, which may give rise to
subtle variations in neuromuscular synaptic transmission during
early development. The study further reveals genes 15 genes,
some of which are associated with p-xylene exposure and
whose human homologs have been linked with increased risk
of certain human diseases. Future functional studies involving
p-xylene exposure should consider looking at the absence or
presence of these genetic variants using existing mutant or RNAi
strains. Such studies could lead to future work involving critical
gene expression or proteomic responses to BTEX compounds.
Additionally, our findings here can serve as a guide for future
population-based studies in humans.
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