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Abstract
Bioreactor scale-up and scale-down have always been a topical issue for the
biopharmaceutical industry and despite considerable effort, the identification
of a fail-safe strategy for bioprocess development across scales remains a chal-
lenge. With the ubiquitous growth of digital transformation technologies, new
scaling methods based on computer models may enable more effective scal-
ing. This study aimed to evaluate the potential application of machine learning
(ML) algorithms for bioreactor scale-up, with a specific focus on the prediction
of scaling parameters. Factors critical to the development of such models were
identified and data for bioreactor scale-up studies involving CHO cell-generated
mAb products collated from the literature and public sources for the develop-
ment of unsupervised and supervised ML models. Comparison of bioreactor
performance across scales identified similarities between the different processes
and primary differences between small- and large-scale bioreactors. A series
of three case studies were developed to assess the relationship between cell
growth and scale-sensitive bioreactor features. An embedding layer improved
the capability of artificial neural network models to predict cell growth at a
large-scale, as this approach captured similarities between the processes. Fur-
ther models constructed to predict scaling parameters demonstrated how ML
models may be applied to assist the scaling process. The development of data
sets that include more characterization data with greater variability under dif-
ferent gassing and agitation regimes will also assist the future development of
ML tools for bioreactor scaling.
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1 INTRODUCTION

The global market for therapeutic monoclonal antibody
(mAb) products was ∼$163 billion in 2019, having grown
faster than all other biopharmaceutical products in recent
years; matched by an increase in global manufacturing
capacity from 10 to 25 tonnes between 2013 and 2019 [1].
The ability to scale production of new mAb products is
critical to this expansion and requires novel scale-up solu-
tions, since traditional techniques are not always accurate,
reproducible or transferrable across processes.
The comparison of bioreactors across scales is com-

plex, with biological phenomena linked to a plethora
of interactions among multiple variables. These include
engineering scale-dependent variables, scale-independent
variables, and cell-related variables, along with unknown
reaction kinetics and nonlinear and dynamic behaviors
that feature time-varying parameters [2].
Engineering factors and the design configurations of

bioreactors inevitably vary from small scale to produc-
tion scale. These scale-dependent factors can significantly
influence flow patterns and mixing regimes within a
bioreactor resulting in different:

(i) local distribution profiles (e.g., nutrients,metabolites,
pH, temperature, shear, flow velocity, and energy
dissipation rates) and the degree of homogeneity;

(ii) mass transfer rates and gas solubilities, in particular
O2 transfer rate and CO2 stripping rate; and

(iii) hydrodynamic shear-induced cell damage and
bubble-induced cell damage.

All of whichmakes predicting cell behavior as a function
of bioreactor scale difficult.
Despite much research developing systematic

approaches to facilitate bioreactor scale-up [3–6], no
universal solution has been found to overcome the process
challenges faced in the development and scale-up of new
mAb production processes. It is not possible to maintain
all scaling parameters at constant values between scales.
Methods based on only one scaling parameter, such as
equal power densities, equal oxygen volumetric mass
transfer rates, or equal tip speeds between two scales, are
also at a risk of failure, as other parameters will change
with scale.
A digital approach has the potential to increase our

understanding of the scaling process and not only aid
process development by scaling experts but also to assist
scientists with different expertise to identify suitable
scaling parameters, de-risking process scaling and trou-
bleshooting. A number of studies have examined how
computer-basedmethodologies can assist bioreactor scale-
up, as reviewed recently [2]. Although the techniques vary

widely in terms of their practical application, they can be
classified into three main categories: mechanistic model-
ing, data-driven modeling, and a third category of hybrid
modeling, which combines these former two approaches.
Mechanistic models describing mammalian cell culture

within a bioreactor have been developed in a number stud-
ies [7–11]. These can provide useful insights; however, their
specific application to predict scaling parameters for the
purposes of scaling is still limited, due to the lack of mech-
anistic equations describing the effect of scale-dependent
variables on cell behavior. Moreover, limited knowledge
of the underlying mechanisms, overparameterization, and
the uncertainty associated with parameter estimation,
make this knowledge-based approach restricted when
applied across scales.
Computational Fluid Dynamics (CFD) can also con-

tribute tomechanistic knowledge of cell culture conditions
to assist in scaling and this approach allows scaling fac-
tors to be integrated into the knowledge-based analysis
of cell culture at different bioreactor scales. Several CFD
studies have already predicted a set of suitable scaling
parameters through detailed evaluation of the flow fields
and bioreactor hydrodynamics, ensuring equivalent per-
formance between scales for a specific process [12–14].
These models focus on one process with a particular biore-
actor geometry, although similar governing equations can
be used to model multiphase flows in different scale-up
processeswith differing geometries. A key drawback of this
approach has been the significant knowledge and expertise
associated with the choice of CFD models, as well as the
computational cost involved. Nevertheless, the emergence
of Graphics Processing Unit (GPU) accelerated CFD tools
that can run on a single, reasonably priced desktop GPU
will enhance accessibility by significantly increasing com-
putational performance while lowering costs. Additional
work is also required to build transferable models that can
be used by scientists with different backgrounds.
A further advance has been the development of novel

compartmental modeling frameworks that combine cell
kinetics with CFD in order to incorporate local hydro-
dynamic characteristics derived from CFD simulations
into biokinetic models, rather than assuming an ideally
uniform environment for cellular growth within an agi-
tated vessel [15]. This approach is based on generating
several zones over the entire volume of the bioreactor,
with each zone being treated as a hypothetical well-mixed
bioreactor in which the kinetic model is solved. Although
this approach has shown promising results [16], it is
acknowledged that experimental measurements of local
cell populations for validation purposes is difficult. It is
anticipated, however, that advances in experimental and
modeling techniques will make compartmental models
more applicable to the in-depth evaluation of cell growth
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across scales, in particular at large scales where culture
heterogeneities may be more significant.
The methods discussed above, particularly CFD mod-

els, have been successful in addressing the problem scope,
that is, identifying suitable scaling parameters that can
be applied to assist scaling. The practical evaluation of
data-drivenmodels that can establishmultiparameter scal-
ing tools, however, is limited. Machine learning (ML) can
be considered as a potential complementary approach to
reduce this gap. With the aid of ML models, knowledge
captured in bioprocess data can potentially be transferred
from a smaller scale bioreactor to a larger scale bioreactor.
There is also potential to transfer knowledge across one dif-
ferent process to another. A key advantage of this approach
is the construction of mathematical relationships between
scaling parameters and key performance indicators with-
out the need for the inclusion of underlying mechanisms,
most of which are not well understood. ML algorithms
can also provide scientists with deeper insights into the
interactions among key variables and potential sources of
variation to minimize the risk of failure during bioreactor
scale-up.
Despite the promise of data-based approaches, the appli-

cation of such methods for the prediction of process
performance and scaling factors is still in the early stages
of development. Research is therefore needed to under-
stand the potential of ML models to predict both process
performance and scaling parameters, such as for mAb pro-
duction in CHO cells, to identify potential opportunities
and limitations, as well as future research challenges. This
study therefore sought to collate the available data for
these production processes and to assess the potential of
ML techniques to predict both process performance and
scaling parameters.

2 METHODOLOGY

The overall methodology applied in this study includes the
identification of factors important to scaling, a literature
search, data collection and extraction, data preprocessing,
development of supervised and unsupervised models, and
interpretability analysis that are described in detail in the
following sections.

2.1 Augmented feature selection by
domain knowledge

Knowledge from the bioreactor scale-up domain was
incorporated into the feature selection process. This
involved analyzing the key variables affecting bioreac-
tor scale-up and identifying relevant features that are

technically significant, actionable, and available through
experiments or calculations, as well as being physically
meaningful for real-world industrial application. The
methodology included a comprehensive literature review
and refinement of the feature space.

2.2 Data collection procedure

A thorough study of the published literature was per-
formed to collect bioreactor scale-up data for mammalian
CHO cells expressing antibody products. To this end, dif-
ferent combinations of keywordswere used to find relevant
public sources in Google, Scopus, Web of Science, as well
as reports provided by the biopharmaceutical industry,
including Cytiva, Eppendorf, Merck Millipore, Thermo
Fisher Scientific, Sartorius, Allegro, and Applikon. Rele-
vant reports characterizing bioreactor performance [17–33]
were also used to obtain the details of bioreactor designs
where needed.
A total of 18 different processes, comprising 755 time-

series measurements obtained from 55 bioreactors at
various scales from 250 mL to 5000 L were compiled
into the dataset. The scales included in each process are
shown in Table 1S in the Supplementary Information.
Both scale-dependent factors—including process scale
(volume), aspect ratio, impeller diameter, vessel diame-
ter, power input, impeller tip speed, volumetric oxygen
mass transfer, Kolmogorov length scale, Reynolds num-
ber, mixing time, agitation rate were included. Scale-
independent variables included pH setpoint, temperature
setpoint, dissolved oxygen setpoint, seeding (or inocu-
lation) density, and culture duration. The dataset also
contained cell growth-related parameters, including cell
viability, viable cell density (VCD), lactate concentra-
tion, specific growth rate, and integral viable cell density
(IVCD).
Most VCD, viability and lactate concentration data were

represented in figures rather than being tabulated; thus,
WebPlotDigitizer, an online data extraction tool (https://
apps.automeris.io/wpd/), was used to collect data from
the figures where needed. The specific growth rates were
calculated during the exponential growth phase of the cul-
tures using the data of viable cell density as a function of
time. IVCD is an important metric in cell culture that is
directly related to the specific rates of product formation,
nutrient consumption and cell growth. The cumulative
viable cell concentration over the culture period up to
time t—denoted by IVCDt—was calculated using the
trapezoidal rule by Equation (1): [34]

𝐼𝑉𝐶𝐷𝑡 = 𝐼𝑉𝐶𝐷𝑡−1 +
𝑉𝐶𝐷𝑡 + 𝑉𝐶𝐷𝑡−1

2
× Δ𝑡 (1)

https://apps.automeris.io/wpd/
https://apps.automeris.io/wpd/
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2.3 Data pre-processing

Box plots were used to visualize the statistical distribution
of each variable in the raw dataset and to identify possible
outliers. No outlier was detected for the target variable of
VCD. Statistically identified outliers for independent vari-
ables that are scaling parameters, such as agitation rate,
power input, and bioreactor aspect ratio were included in
the dataset, as their variation is commonly expected across
scales and is expected to be physically meaningful based
on prior knowledge and technical reports [28].
Data imputation was not performed, as the data

obtained were from different processes with a limited
number of experiments, or observations. Features that
were reported across all processes were selected for
inclusion in the preprocessed database. Conversely, fea-
tures where data were not reported across all processes
(e.g., >50% of oxygen mass transfer coefficients were not
reported across all processes) were excluded from the
dataset. There were no missing data within each process
for the selected features. Since not all the observations
belong to the same process, a process name (e.g., Process
1, Process 2, etc.) was included as a categorical variable in
the dataset to account for different process characteristics,
including cell line, media, or feeding strategy. This cate-
gorical variable was converted to a numerical input for ML
algorithms using one-hot encoding, where a value equal to
onewas assigned for observationswithin the same process,
while zero was assigned to other processes.
A standardization method was then applied to ensure

that features with greater values would not dominate over
those with smaller values. Equation (2) was used to trans-
form each variable 𝑋 based on the mean (�̄�) and standard
deviation (𝜎) [35, 36]. This transformation was performed
by the StandardScaler method in the Scikitlearn library in
Python.

𝑍 =
𝑋 − �̄�

𝜎
(2)

2.4 Comparing processes using
principal component analysis

Principal component analysis (PCA) was used as amethod
of unsupervised multivariate data analysis to assess and
potentially explain variance in the original dataset. This
transformation of data into a low-dimensional space can
facilitate statistical comparisons between processes and
was used to assess similarity between the bioprocesses by
identifying the location of clusters in the bioreactor data
on the score plot of the first two principal components that
explain the highest variability. In this case, the variables

of bioreactor scale, including scale (volume), vessel diam-
eter (Dt), aspect ratio, impeller diameter (Di),Di/Dt, power
input per volume (P/V), impeller tip speed, Kolmogorov
length, Reynolds number (Re), mixing time, agitation rate,
seeding density, culture duration at peak VCD, final viabil-
ity, peak VCD, final IVCD, and specific growth rate were
examined.
The evolution of a bioreactor culture with time can also

be studied using PCA, as described previously [37, 38]. A
second PCA was therefore performed to detect any signif-
icant change in cell metabolism during cultivation within
each process by assessing the change in cell density, viabil-
ity, IVCD, and lactate concentrations as a function of time.
The FactoMineR package [39] and pca3d package [40] in
R were used to conduct the PCA, applying a confidence
ellipse level of 95%.

2.5 Machine learning regression model
development

The complexity of predicting cell behavior within a biore-
actor at different scales is not only attributed to intracellu-
lar phenomena but also linked to changes in scale-sensitive
variables that act as external factors influencing cell
growth andmetabolism. This includes the impact of scale-
sensitive parameters on cell signaling pathways, for which
there are limited mechanistic mathematical descriptions
[11, 41]. Traditionally, tomitigate this complexity, a suitable
scale-up criterion (commonly P/V) is maintained constant
between scales, the equivalence between scales is then
examined by comparing the plots of daily measurements
(such as daily VCD and titre) from experiments across
scales. For a successful bioreactor scale-up, ideally VCD,
or other critical measurements, should be equal across the
two scales on each day (t) as follows:

(𝑉𝐶𝐷𝑡)𝑆𝑐𝑎𝑙𝑒1 = (𝑉𝐶𝐷𝑡)𝑆𝑐𝑎𝑙𝑒2 (3)

This process is always at the risk of failure, as the
importance of other scaling parameters is not completely
captured in this strategy. For example, the surface (or
overlay) gas exchange and bubble gas exchange for CO2
and O2 have a substantial impact on cellular growth in a
bioreactor. Although P/V is correlated with gas transfer,
an equivalent P/V does not necessarily provide equivalent
gas transfer; it has been shown that surface exchange is
correlated with Reynolds number and aspect ratio, while
bubble gas transfers are mainly correlated with P/V and
gas flowrate [42]. Furthermore, such interdependencies
are not the same between two different scales.
An alternative strategy is to search for a set of values

for multi scaling parameters in an acceptable range that
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when applied together ensure equivalent performance.
Nonetheless, owing to a lack of mechanistic information,
as explained above, achieving a set of such values is not
a trivial task. With this in mind, we set out to exam-
ine the potential of ML predictive models to describe
the relationship between scaling parameters and a target
measurement, such as VCD, as shown by Equation (4):

𝑉𝐶𝐷 = 𝑓

(
𝑡,
𝑃

𝑉
, 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜, 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟,

𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 𝑡𝑖𝑝 𝑠𝑝𝑒𝑒𝑑, 𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, …

)
(4)

In this study, we employed and compared data-driven
models, namely artificial neural networks and a gradient
boostingmethod, to help buildmathematical relationships
between such scale-sensitive variables.
The full dataset of 18 processes with 755 datapoints col-

lected from 55 bioreactors, preprocessed as described in
Section 2.2, was used for machine learning. The features
used as model inputs were ten scale sensitive variables:
scale (volume), vessel diameter (Dt), aspect ratio, impeller
diameter (Di), Di/Dt, power input per volume (P/V),
impeller tip speed, Reynolds number (Re), mixing time,
agitation rate, and a further feature of bioreactor seeding
density. VCD was selected as the response variable (the
model output), as this was a key output reported in all
the public sources reviewed. Other important performance
indicators, including product titre, key metabolite concen-
trations, and product critical quality attributes can also
be used as response variables in a similar way but in this
instance, most of these outputs were not available in the
publicly available data on bioreactor scale-up.

2.5.1 Model development: artificial neural
network

Artificial neural networks (ANNs) have widely been used
to model complicated biological processes [43–46] due
to their great flexibility in modeling interconnectivities
between independent and response variables. An ANN
model was therefore developed and the ability of this
model to predict VCD across scales between different pro-
cesses assessed. As there was no prior knowledge or rules
available for the optimum ANN topology, a hyperparam-
eter optimization procedure was established to construct
the ANNmodel. A three-layer ANN comprised of an input
layer, one hidden layer and an output layer was devel-
oped in the TensorFlow Keras API in Python 3.10. The
network hyperparameters included the number of neurons
in the hidden layer, activation function, learning algo-
rithm, learning rate, batch size, and number of epochs.

In addition to this conventional ANN, the application of
embedding neural networks that are extensively utilized in
Natural Language Processing (NLP) to capture contextual
and semantic relationships between words, was examined
to transfer knowledge between scaling processes.
A Bayesian optimization technique was implemented to

tune the hyperparameters using a 5-fold cross-validation
repeated five times (performed by the repeated K-Fold
cross validator in the Scikitlearn library) [47, 48]. In this
procedure, the data were randomly split into five data
subsets and the model then trained on four of the five
subsets. The network weights and biases were obtained
by minimizing the mean squared error (or loss function)
between the experimental andmodeledVCDs. Afterwards,
the unused subset of data was utilized as a test set to eval-
uate the performance of the model in each iteration of the
cross-validation procedure. After 25 iterations with ran-
dom combinations of training and test subsets for each
set of hyperparameters, the average loss function was cal-
culated. The best hyperparameters were then identified,
where the lowest value of the loss function was obtained.
An EarlyStopping callback was also considered to monitor
the loss function and to avoid overfitting once no fur-
ther improvement in the loss function minimization was
achieved. The optimized structure of the ANN was then
used to train themodel on the standardized bioreactor scal-
ing dataset. In all training procedures, the dataset was split
with 70%allocated for the training set and 30%allocated for
the validation set.
As described above, an ANN topology with one addi-

tional embedding layer was also developed to capture
potential similarity among the bioreactor processes exam-
ined. A one-hot encoded vector was not sufficiently effec-
tive, as it is sparse (i.e., most cells are zero); further, it
cannot convey any information regarding the similarity
between different processes. An embedding layer, on the
other hand, automatically generates a D-dimensional vec-
tor of numerical values representing each process; hence,
capturing the possible relationships among different biore-
actor scale-up processes. This procedure has recently been
employed to successfully transfer knowledge across dif-
ferent cell lines [49]. The dimension of the embedding
vector (D) was assigned as a new hyperparameter and was
determined using the same optimization method applied
to determine other network hyperparameters, as described
above.

2.5.2 Model development: XGBoost
(eXtreme Gradient Boosting)

With its ability to model nonlinear problems, XGBoost has
been shown to be an effective ensemble machine learning
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algorithm that can be applied to biological systems [50–55].
This particular algorithm involves parallel trees to pro-
vide greater predictive performance and scalability, with
lower computational requirements compared to neural
networks, it also capable of providing feature importance
[56]. Like the ANN model development explained above,
a Bayesian hyperparameter tuning procedure with 5-fold
cross-validation was developed to create XGBoost models
using the XGBoost Python package. The hyperparame-
ters included the step size shrinkage (eta), minimum loss
reduction (gamma), learning rate, subsample ratio, num-
ber of boosting iterations, and the maximum depth of a
tree.

2.5.3 ML case studies

The predictive performance of ML algorithms described
above was initially evaluated using test data selected ran-
domly from different scale-up processes from the full
preprocessed dataset. This scenario is somewhat different
to an actual scale-up problem, where a specific process,
that is, individual cell line and product, is scaled for larger
scale production and the aim is to examine key perfor-
mance indicators across scales but within the same process
and product. Additional case studies were therefore con-
sidered to specifically evaluate the performance of the ML
models during bioreactor scaling, including for the same
cell line, process, and product (Table 1).
In the first case study, the ability of the model to pre-

dict across processes was tested. All data for a selected
process of interest were removed from the dataset (e.g.,
Process 1 or Process 2, etc. where only one process
was removed at a time). To prevent leakage, a new ML
algorithm was then optimized and trained on the remain-
ing dataset without the removed process. The predictive
performance of the model was next tested using the
removed data as an unseen new process (see Table 1 for
a description of training and test datasets). This approach
assumes that the input features are reasonably process
independent.
In the second and third case studies, a different approach

was taken to better represent scale up in industry and test
the ability of the ML algorithms to predict across scale.
Typically, most data are initially obtained in small-scale
bioreactors, where data acquisition is more feasible and
cheaper. The ability to scale based on this small-scale data
is therefore important. In these new case studies, all the
larger scale data for a specific process were removed from
the test dataset during the test phase leaving only the
small-scale data for that process. The ML algorithms were
then developed using this new small-scale dataset and
their ability to predict unseen larger scale data for the same T
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process evaluated (Table 1). This approach again assumed
input features are reasonably process independent.
In addition, case study three examined the advantages

of adding an embedding layer to the ANN and one-hot
encoding to the XGBoost methods of predictions (Table 1).
Model performance was evaluated using the root-mean-

square error (RMSE) between the predicted and actual
measurements, as follows where N is the number of
measurements:

𝑅𝑀𝑆𝐸 =

√∑
(𝑎𝑐𝑡𝑢𝑎𝑙 𝑉𝐶𝐷 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝐶𝐷)

2

𝑁
(5)

2.5.4 Machine learning model development
for P/V prediction

Wealso aimed to find amathematical relationship between
P/V and bioreactor geometry (e.g., aspect ratio and vessel
diameter), where a target peak viable cell density (VCD)
could be obtained from a specific starting seed density, that
is:

P∕V = f(seeding density, peak VCD, aspect ratio,

vessel diameter, …) (6)

A total of 12 features, namely scale (volume), vessel
diameter (Dt), aspect ratio (H/Dt), impeller diameter (Di),
Di/Dt, peak VCD, seeding density, culture duration at peak
VCD, impeller tip speed, Reynolds number (Re), mixing
time, and agitation rate, could potentially be included in
such a model. Since the number of observations (or biore-
actor runs) in the dataset is limited to 55, a reduction in
dimensionality is required to find the most suitable fea-
tures to avoid overfitting. To this end, a combination of
(1) a distance correlation technique and (2) variance infla-
tion factor (VIF) analysis was used to reduce the number
of features. The distance correlation is capable of measur-
ing nonlinear dependencies between two paired variables,
so is more suited for the analysis of highly nonlinear sys-
tems, such as bioreactors than the Pearson correlation
method, which only determines pairwise linear associa-
tions between variables [57]. VIF analysis was also used to
identify multicollinearity existing among variables, where
a VIF of 1 means no multicollinearity [58].

2.5.5 Determination of feature importance

We calculated SHapley Additive exPlanations (SHAP) val-
ues based on the algorithm developed by Lundberg and
Lee in 2017 [59]. The SHAPmethod is a powerful approach

that unifies six existingmethodologies in the research field
of interpretable techniques, which is also reported to be
intuitive [59]. The SHAP values were calculated based
on the concept of cooperative game theory, in which a
weighted average contribution of each feature (or player)
to themodel output (or payout) is obtained over all possible
combinations (or coalitions) of feature values, providing
sample-by-sample feature importance and offering local
interpretability for each single model prediction [60, 61].
For “F” features, or a maximum coalition size of F, the

SHAP explainer model 𝑔 representing the original model
𝑓 is defined as a linear model of the feature attribution (or
Shapley values) for a feature j (𝜙𝑗) as follows:

𝑔
(
𝑧′
)
= 𝜙0 +

𝐹∑
𝑗 = 1

𝜙𝑗 𝑧
′
𝑗

(7)

where 𝑧′ is the coalition binary vector ∈ {0,1, mean-
ing that when the feature j is present, the corresponding
𝑧′
𝑗
is 1, otherwise 𝑧′

𝑗
= 0. The goal is to evaluate how

model predictions change in the presence or absence
of a given feature by estimating the coefficients of the
explainer model, that is 𝜙′

𝑗
. This is estimation is achieved

by minimizing the loss function 𝐿 (Equations (8)):

𝐿 (𝑓, 𝑔, 𝜋𝑥) =
∑
𝑧′

[
𝑓
(
ℎ𝑥

(
𝑧′
))

− 𝑔
(
𝑧′
)]2

𝜋𝑥( 𝑧
′) (8)

where 𝜋𝑥 is the Shapley kernel weight and is calculated by
the following equation:

𝜋𝑥
(
𝑧′
)
=

𝐹 − 1(
𝐹||𝑧′||

) |𝑧′| (𝐹 − |𝑧′|) (9)

The best explainer model that is very close to 𝑓, is then
obtained i.e:

𝑔
(
𝑧′
)
≈ 𝑓

(
ℎ𝑥

(
𝑧′
))

(10)

where ℎ𝑥 is a function that maps the 𝑧′ vector to corre-
sponding values in the original feature space.

3 RESULTS AND DISCUSSION

3.1 The identification of factors
important to scaling and data collection

This study started with a review of the literature to identify
factors important to scaling CHO mAb production pro-
cesses. Substantial amounts of time, effort, and cost are
commonly dedicated to the effective scaling of bioreactors.
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TABLE 2 Important factors that impact cellular behavior
within a bioreactor for which limited mechanistic mathematical
descriptions are available.

Gas flow rates (superficial gas velocities) including sparger rate
and overlay rate

Gas mass transfer coefficients
Sparger design, type, and location
Number of impellers
Impeller design, type, and location
Fluid forces and properties
Probe locations
Agitation rate
Power input
Impeller tip speed
Number of baffles
Vessel baffling configuration
Vessel diameter
Impeller diameter
Gas holdup
Bubble diameters
Eddy sizes
Gas bubble residence time
Kinetic energy dissipation rates
CO2 stripping time
Mixing time
Shear rates
Other bioreactor design characteristics, such as top and bottom
clearance designs.

This is due to many factors that have a direct or indirect
impact on cell behavior and the rates of metabolite forma-
tion in bioreactors across scales, of which we have little
or no mechanistic knowledge. These include but are not
limited to the factors listed in Table 2.
In addition to the factors shown in Table 2, pro-

cess variables such as pH, temperature, dissolved oxygen
and carbon dioxide, media composition, seeding density
and culture duration can have an impact on key per-
formance indicators, including cell viability, viable cell
density, titre, critical product quality attributes, metabolite
concentrations, specific growth rate, and specific produc-
tivity. Figure 1 presents an Ishikawa diagram where five
key upstream categories are presented that can lead to
nonequivalent performance between bioreactors at differ-
ent scales. These are bioreactor design and scale sensitive
factors, bioreactor design and hydrodynamics, mass trans-
fer factors, feeding strategy and bioreactor operational
conditions, including factors listed in Table 2. In addition,
Figure 1 highlights the interconnectivities between these
parameters, determined from a review of the literature
[41, 62]. For example, the relationship between bioreactor

aspect ratio and oxygen mass transfer is complex, making
troubleshooting and de-risking highly process-specific and
challenging.
Although each factor described above can have an inde-

pendent influence on a specific performance indicator, it
is almost impossible to include all these factors as features
in machine learning algorithms, because of the curse of
dimensionality (i.e., there are too many features). Further-
more, many of these factors are not typically measured or
reported in the literature or may be qualitative, such as
the type of impeller/sparger. A comprehensive literature
review was therefore conducted to identify factors most
crucial to scale up for possible inclusion in a machine
learning algorithm:

(i) Parameters including power input per volume,
gas mass transfer coefficient (kLa), gas flow rates,
impeller tip speed, mixing time, and Reynolds num-
ber are often analyzed to obtain insights formatching
key performance indicators across bioreactor scales
[63–65]. These scale-specific parameters can repre-
sent many qualitative and quantitative variables per-
taining tomixing,mass transfer, and shear damage to
cells.

(ii) There are many factors affecting power consumption
in a stirred-tank bioreactor including impeller design
and configuration, sparger design and location, fluid
properties, and vessel baffling. A power number is
then incorporated into power consumption calcula-
tions to account for these factors [66–68].

(iii) The Reynolds number characterizing the bioreactor
fluid regime represents the ratio of inertial to viscous
forces in the culture media, as well as the fluid prop-
erties [64, 69] and provides a good characterization of
the fluid environment in the bioreactor.

(iv) The scale or production rate is indicated by the biore-
actor volume; however, the bioreactor volume is not
the sole size-related factor determining flow-field-
relevant effects in a bioreactor; various aspect ratios
and vessel diameters can be employed for the same
vessel volume. The aspect ratio affects gas bubble
formation and residence time, leading to changes
in the oxygen transfer rate and CO2 stripping rate
[28]. An aspect ratio close to 1 typically results in
the improved dissolution of oxygen from air, while
aspect ratios up to 3 increase the gas residence time
[70]. Aspect ratio also impacts the surface to volume
ratio and the hydrostatic pressure, which can influ-
ence gas exchange and impact on gas solubility. In
addition, it has been shown that although mixing
time increases upon scale up, mixing time is also
impacted by the aspect ratio at the same volume
[70–72].
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F IGURE 1 An Ishikawa diagram showing possible causes that can contribute to differences in bioreactor performance across scales.
These are grouped into five related upstream categories (orange). The complex interconnections among these variables are also listed in tables
that appear at the top and bottom (grey) and in the network (adopted from [62]) on the right, which represents the possible impacts and
interconnectivities of variables on cell growth and product quality attributes.

(v) Several standard design considerations and special
engineering ratios, such as impeller positioning and
size, as well as tank baffling and clearance, affect
fluid swirling and vortexing and are represented by
the vessel diameter [72–74].

(vi) The impeller diameter and its ratio to the vessel diam-
eter are widely used in many characterized formulas
employed in bioreactor design and scale-up, in partic-
ular for gas-handling capacity estimations, including
flooding or loading transitions and gas dispersions
[75, 76].

(vii) Many hydrodynamic parameters, such as hydrody-
namic shear and gas holdup volume, mass trans-
fer and culture heterogeneity, as well as process
variables, such as pH, dissolved O2 and CO2 and
temperature can vary with agitation rate [77].

Although several scale-dependent parameters are corre-
lated, they can have disparate impacts on cellular behav-
iors across scales. As a result, relative changes in cell death,
growth, metabolism, morphology, and differentiation will
depend on the cell type and culture characteristics, requir-
ing customization of process scaling [78, 79]. As a case in
point, the gas flow rate has an impact on dissolved oxygen
concentrations, because it is directly linked to the bub-
ble residence time. It can also be correlated with power
consumption and mass transfer coefficients, as well as
CO2 removal rate [4, 80, 81] CO2 removal, however, is
not affected by the power input [79]. In another exam-

ple, cell growth can vary between two bioreactors with
the same volume but different aspect ratios. The critical
factors identified above were therefore all considered in
the development of the ML algorithms in this study with-
out performing further dimensionality reduction, unless
otherwise stated.

3.2 Explanatory data analysis

Boxplots were used to explore the data collected for 18
CHO mAb producing processes across 250 mL to 5000 L
scale from the literature (Figure 2). These plots show the
range of setpoint, dependent, and calculated parameters
and provide insightful estimations for the variation in scale
dependent process variables.
As controlled variables, the setpoint data for the opera-

tional pH and temperature have a low spread (Figure 2A).
The seeding density is also easily controlled by operators
and is typically held constant across scales, so is quite sim-
ilar across the dataset for CHO cells. The dissolved oxygen
is also typically controlled at 40% across scales inmAb pro-
duction processes, although it can vary between 30% and
60%.
Significant differences in cellular behavior stemming

from internal cellular metabolism and the response to
external environmental factors, other than pH and tem-
perature, can be observed in the variation in cell growth
related parameters, namely the specific growth rate, final
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F IGURE 2 Boxplots (A–E) showing the range of key parameters collected for the 18 processes at different scale from literature. Similar
parameters with equivalent range are grouped together. IQR in the legend denotes the interquartile range.
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viability, final IVCD, and peak VCD. Of these the final
IVCD had the greatest range, followed by final viability,
both factors that impact on cell and process performance.
In contrast, operators often target a similar specific growth
rate across experiments and scales. The peak VCDwas also
similar (Figure 2B). The variations observed are expected,
as dynamic cellular behaviors can vary across CHO cell
lines in each of the different processes within the dataset.
Several parameters reflect the different scales (250 mL

to 5000 L) within the dataset, including the vessel vol-
ume and diameter (Figure 2C,D). Other parameters reflect
variations in bioreactor design, such as impeller diame-
ter, aspect ratio and Di/Dt (Figure 2E), although these can
also vary with scale. Key process parameters such as agita-
tion rate, impeller tip speed, and mixing time vary but are
limited by the physical requirements of the cells.
Several data points are identified as statistical outliers

between the different processes (Figure 2); nonetheless,
these are not erroneous measurements (erratic outliers)
but rather meaningful variations typically expected in
bioreactor scaling processeswith different physical geome-
tries and operational conditions. The greatest number of
outlierswas observed forP/V. Power density is an indicator
of shear stress and the degree of mixing and homoge-
nization within a bioreactor. Given differences between
processes and scales stemming from variations in bioreac-
tor geometries and cell line characteristics, such variations
in P/V are expected.
Insights can be obtained from the Reynolds number and

the Kolmogorov length scale, or eddy size, which charac-
terize fluid flow within the bioreactor (Figure 2D,E). The
mean value of the Reynolds number, which was greater
than 80,000, indicates that fully turbulent conditions are
commonly established across the mammalian cell biore-
actors examined here. Despite turbulent conditions, the
Kolmogorov length scale indicates CHO cells are not likely
to be damaged. When the average eddy size is greater than
the cell size, the cell disruption is not generally expected
due to turbulent shear stress [82, 83]. The mean length
was 78 µm here, which is much larger than the average
diameter of <20 µm for CHO cells, indicating that cell
damage due to turbulence would not be a significant issue
for the processes studied here. Although the number of
processes that reported kLa was limited, an average kLa
value of 17.5 h−1 was calculated providing insight into these
processes.

3.3 Comparing processes

Principal component analysis (PCA) was performed in
order to assess the similarity of the 18 processes and 17 vari-
ables (described in Section 2.3), as shown in Figure 3. A

plot of the first two uncorrelated principal components,
explaining 31.2% and 17.1% of the variance is presented in
Figure 3A. Processes located near the center point of the
plot, such as process 3, have the most similarity to other
processes. Conversely, processes far from the center, such
as process 1, are less similar to other processes.
The PCA plot provides insights into processes con-

ducted within Ambr250 bioreactors, an example of a fully
automated high-throughput bioreactor system, which rep-
resents the smallest scale (250 mL) within the dataset.
These efficient systems have frequently been utilized by
the pharmaceutical industry for high-throughput process
development, particularly for expensive experiments [84,
85] and can improve process understanding and identify
optimal conditions [86]. Yet, one consideration often dis-
cussed in the literature that is also of interest to companies,
is whether such mini bioreactors can be used as qualified
scale-down models.
The Ambr250 bioreactor may not be able to perfectly

represent the conditions within other larger commercial
scale bioreactors, as the data for the four processes using
Ambr250 in this dataset are located far from the center,
on the left of the PC1 axes, near or out of the confidence
ellipse border. This observation is consistent with pre-
vious reports that extensive characterization studies are
often required to achieve a consistent scale-down model
in the Ambr250 system owing to scale-specific limitations
that especially affect mass transfer and gassing [87, 88].
Such high-throughput systems can therefore be used as
complementary screening platforms but may not effec-
tively represent performance at other scales and advanced
risk analysis and characterizations are required [88]. This
observation is not unique to Ambr250 systems though, as
data for all processes was spread across the PCA plot for
different scales, reflecting the difficulty of matching all
conditions across scales. A further 3D plot of the first three
PCs (Figure 1S in the Supplementary Information) explain-
ing the highest variance in the original data also resulted
in similar conclusions, as most of the variance is explained
by the first two principal components.
A 2000 L stainless steel (SS) bioreactor, second only in

volume to the 5000 L bioreactors within the dataset, is
a second feature of interest in the PCA plot (Figure 3A);
this lies outside the confidence interval to the right of the
PC1 axis, while other 2000 L bioreactors in this dataset
fall within the confidence ellipse. To further investigate
why this bioreactor differs, the distribution profiles of the
17 variables listed in Section 2.4 were plotted. The distri-
bution of the complete dataset for four key variables is
shown in Figure 3B, namely the impeller diameter, agita-
tion rate, Reynolds number, and P/V, with the complete set
of 17 variables provided in Figure 2S in the Supplementary
Material.
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F IGURE 3 Principal component analysis performed to assess similarity between the 18 bioreactor processes. (A) Score plots for the first
two principal components (PC1 and PC2). (B) Distribution profiles the plot PC1 versus PC2 for the key variables of impeller diameter,
agitation rate, Reynolds number, and P/V. In (A), multiple dots of the same color indicate the same process. In (B), the color indicator
provides a measure of scale and select data points of interest are highlighted with a red circle.

Several variables set the 2000 L SS reactor apart. This
bioreactor has by far the highest impeller diameter (indi-
cated by a yellow color) (Figure 3B). The higher Reynolds
number also indicates a different flow regime (indicated
by yellow) (Figure 3B). Two of the five Ambr250 biore-
actors, denoted by the red circles in Figure 3B, have the
highest P/V and agitation rates compared to other biore-
actors (indicated by yellow). While it is not always clear
why these differences in set up have occurred, given
the large public dataset is made up from many differ-
ent processes, this type of visualization tool is useful to
observe variation among data across scales and differ-

ent bioreactors. One possible reason for the difference in
these two Ambr250 bioreactors is that the high power
input and agitation in these bioreactors would lead to
high dissolved oxygen and mass transfer rates, which
would be much greater than when applying the equiv-
alent conditions (i.e., power level) from a larger vessel
[89, 90]. This difference also highlights how a constant
P/V criterion applied to scale-up or scale-down is likely
to fail, as larger bioreactors typically have lower power
requirements.
A further analysis of variation in dynamic cell growth

parameters over the duration of the culture, including
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time-series data of cell viability, viable cell density, inte-
gral viable cell density, as well as lactate concentration was
performed by PCA for processes where these data were
reported. The results, shown in Figure 3SA in the Supple-
mentaryMaterial, indicate some clear trends in the process
data with time, irrespective of the process or bioreactor
type, where the general direction of each variable is shown
by an arrow. Specifically, changes in PC1, could be linked to
IVCD and cell culture duration, as these arrows weremore
closely aligned with the PC1 axes, whereas changes in PC2
could be linked to cell metabolism and lactate concentra-
tion. Changes in viability and VCD with time appeared to
affect both PC1 and PC2.
There are some differences between the trajectory of

individual processes as a function of time in Figure 3SA,
Supplementary Material. These can arise from either dif-
ferent bioreactor geometries or inherent metabolic shifts,
including the exhaustion of nutrients and the catabolism
of intermediates, including lactate, during the shift from
exponential growth to stationary phase. The effect of
metabolic shift is particularly clear for the cells in pro-
cess 10, where the highest net lactate accumulation was
observed, compared to other processes and several data
points cluster near the edge of the confidence ellipse
(Figure 3SA, Supplementary Material).
Several common cellular traits can be assumed across

antibody-producing CHO cell processes, however, as a
result of most score points in Figure 3SA, Supplementary
Material, occurring within the confidence ellipse. PC score
data for high CHO cell viability (in yellow), for example,
is clustered in the left upper quadrant (Figure 3SB, Sup-
plementaryMaterial), which is diagonally opposed to high
culture duration that occurs in the bottom right quadrant
(in yellow) (Figure 3SB, Supplementary Material). These
data indicate that across the processes, cell viability was
generally high (often greater than 95%) early in the process,
with some decline in viability in the later stages of culti-
vation. Most CHO-based processes, however, displayed an
extended viability over the course of cultivation, as shown
by the spread of yellow datapoints. The VCD follows an
interesting pattern, with the PC score data increasing from
the middle left (purple) to the top right (yellow), indi-
cating the transition from cell growth to other metabolic
states, which can be attributed to specific culture proper-
ties, such as nutrient depletion and waste accumulation.
The concentration of lactate is an important process indi-
cator that is typically measured and monitored in CHO
cell culture [91, 92]. A nonmonotonic trend is presented in
the PCA plot shown in Figure 3SB, Supplementary Mate-
rial, where the pattern moves from purple on the left to
green and yellow in the bottom middle and then back to
purple on the right. This pattern, observed for all CHO-
based processes, may arise due to variations in lactate

production and consumption. The extended culture viabil-
ity and enhanced VCD result in an increase in IVCD over
the process, which leads to a similar distribution profile
for both the IVCD and the culture duration (Figure 3SB,
Supplementary Material).
The PCAplots indicate that horizontal knowledge trans-

fer may be possible across processes, that is, knowledge
about one process may be transferred to another process,
as we expect that data acquired for a new antibody product
obtained from a different CHO cell expression system are
most likely to be locatedwithin the same confidence ellipse
with similar trajectories in the PCA space. This hypothesis
was further tested by in-house data at various scales (5, 200,
and 2000 L). The results (not shown) verified that all the
observations for the new data fell within the confidence
ellipse over the culture evolution.

3.4 Prediction performance of ML
models

A range of machine learning models based on ANN and
XGBoost algorithms were trained and tested for three
process examples (i.e., process 1, 2, and 3) selected from
the dataset of 18 different processes and applied to three
different case studies, as described in Table 1 and Sec-
tion 2.5, with the purpose of testing whether the model:
(1) could predict a new unseen process, (2) could pre-
dict across scales when provided with only small-scale
data; and (3) whether the addition of entity embedding
improved model prediction. The effect of one-hot encod-
ing on model predictions was also tested. The optimized
hyperparameters for these models are presented in Table
2S in the Supplementary Material.
The performance of the ANN models for processes 1, 2,

and 3 was evaluated on both test data and unseen data,
as detailed in Section 2.5.3, generating the predicted VCD
shown in Figure 4. A good predictive model will generate
data that clusters close to the y = x line—that is, there will
be a good match between the predicted VCD (the verti-
cal axis) and the corresponding actual VCD (the horizontal
axis).
The ANNmodels for the first case study worked well on

the test data for all three processes (right graph for each
of the three processes) but less well on the unseen data
(left graph for each process), which is expected. The basic
ANN model generated VCD data that was scattered about
the x = y line (black series) and resulted in a higher root
mean square error (RMSE) for the unseen data compared
to the test data (purple and yellow bars).
The inclusion of small-scale data in case study 2, where

the VCD for the same process was predicted at larger scale,
generally improved model predictions, as shown by the
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F IGURE 4 The prediction of VCD by the ANN models developed in this study for three example processes (process 1, 2, and 3) based on
the three case studies, as shown in Table 1. The bar charts indicate the root mean square error (RMSE) for all three cases studies (left to right)
for each of the three processes.

yellow data series and improved RMSE for the unseen data
for each process (purple bar for each process).
The greatest improvement was observed in case study

three, with the addition of the embedding layer to the
ANN model, which resulted in the data clustering more
closely to the x = y line (green series) and a lower RMSE
for the unseen data for all three processes (purple bar
for each process). This outcome indicates that creation
of a D-dimensional vector that contains numerical values
encoding each process is necessary to capture possible rela-
tionships among processes in the artificial neural network
model.
A comparison between the predictive performance of

different XGBoost models developed is shown in Figure 5.
Similar to the ANN predictions, the XGBoost models had a
lower ability to predict a new scaling process in case study
one, where the basic XGBoost model was tested, result-
ing in a greater RMSE value for the unseen data (purple
bar for each process) than the test data (yellow bar for
each process) for all three processes (Figure 5). The mag-
nitude of the RMSE error obtained by XGBoost for the
unseen datasets, however, was lower than that obtained
using the ANN models, with an RMSE of 5.8, 2.8, and 3.8
for processes 1–3 compared to 9.4, 6.7, and 12.3 for the ANN
models respectively. The inclusion of small-scale data for
case study 2, improved two of the three predictions of VCD,

with a small decrease in the RMSE for the unseen larger
scale data (purple bar) for these processes (process 1 and 2;
Figure 5).
Unlike the ANN with the embedding layer, the one-hot

encoding representation of the categorial variable (i.e., the
process type) did not improve the predictive performance
of the XGBoost model in case study three. This could be
due to the inefficiency of one-hot encoding for the high car-
dinality categorical variable, where the cardinality refers
to the number of values that can be assigned to the cate-
gorical variable, that is, the 18 different processes. One-hot
encoding generates 18 new features, leading to a significant
increase in the dimensionality of the feature representa-
tions. Furthermore, the one-hot encoding is unlike entity
embedding, which maps the categorical variable into a
D-dimension numerical space determined in hyperparam-
eter tuning that conveys the intrinsic properties of each
process and can consider possible similarities between pro-
cesses. Instead, the one-hot encoding representation of
the categorical variable cannot include the relationship
between processes [93]. Despite these drawbacks, the pro-
cesses were better predicted by the XGBoost models, with
lower RMSE. The predictive performance of either the
ANN models or XGBoost models was also shown to be
highly process-specific, given the varying RMSE values
calculated for each of the three processes.
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F IGURE 5 The prediction of VCD by the XGBoost models developed in this study for three example processes (process 1, 2, and 3) based
on the three case studies shown in Table 1. The bar charts indicate the root mean square error (RMSE) for all three cases studies (left to right)
for each of the three processes.

3.5 Potential application and current
limitations of MLmodels for predicting
process performance

The proof-of-concept ML models demonstrated with test
cases 2 and 3 above, either with ANN or XGBoost com-
ponents, could potentially be applied to predict process
performance across scales during process development.
Application would require a new training dataset of mam-
malian production processes similar to the process of
interest undergoing scaling, such as historical scaling data
collected for industrial processes. Data would also need to
be collected for the new process of interest at small scale,
which typically occurs early in process development.
One of the limitations of the dataset collated and exam-

ined here is that engineering features of the bioreactor
geometry, such as the vessel diameter and the aspect ratio,
only vary between scales and remain constant for processes
reported at the same scale. This results in low variability
in scale-sensitive factors, which limits the capability of the
models to predict the effect of scaling parameters on VCD
output. Consequently, culture duration was identified as
the top predictor of output in an analysis of feature impor-
tance by the SHAP method (shown in Figure 4S in the
Supplementary Information).
An ideal training dataset would include a much broader

set of process data at each scale, including different

bioreactor characteristics including agitation, power and
aeration conditions, mixing times, and culture volumes
(e.g., some of the features considered within Figure 4S,
Supplementary Material); this dataset would also ide-
ally include data for different bioreactor geometries, such
as different vessel diameters and aspect ratios, at each
scale and could also include other characteristics of the
chosen cell line. The development of an ideal train-
ing set with adequate process variation and similarity
to the process of interest undergoing scaling is expected
to further reduce error beyond the reductions observed
here.
A further extension would also be to consider other

ML algorithms.While ANN and boosting algorithms, such
as XGBoost, are among the most powerful models for
predicting nonlinear, complex systems, various other ML
algorithms, such as support vector machines, Gaussian
processes and random forests, to name a few, could also
be tested for similar application to scaling.

3.6 Extension to predict scaling
parameters

In an extension of the models presented in Section 3.4,
we next developed a new ML model to predict popular
scaling criteria used by industry to scale bioreactors. P/V
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and the oxygen mass transfer coefficient (kLa) or oxy-
gen transfer rate (OTR) are three commonly used scaling
criteria. Matching P/V is believed to ensure comparable
shear stress, mixing conditions, and oxygen transfer rates
between two scales.
In this example, we set out to determine a P/V that

would be needed to achieve a target peak VCD, starting
from a given seeding density within a bioreactor. This sce-
nario is often encountered when a target peak VCD is
known at smaller scale and the process of scaling seeks
to achieve the same target peak VCD at larger scale.
P/V was chosen for demonstration, as these data were
available within the public dataset compiled here, while
oxygen transfer data were constrained (see Section 2.3).
The first step involved development of a function for P/V
and bioreactor or process variables, where dimensionality
reduction was used to reduce the number of variables and
multicollinearity. Bioreactor and process variables con-
sidered included volume, impeller diameter, impeller tip
speed, Re, mixing time and agitation rate, which were
found to be highly correlated with the vessel diameter,
with correlation coefficients between 0.6 to more than
0.9, indicated by the red color in Figure 5S in the Sup-
plementary Information. Significant multicollinearity was
also identified among variables, as indicated by the large
VIF values listed in Table 3S, Supplementary Material.
Dimensionality reduction was used to largely eliminate
this multicollinearity, resulting in VIF values close to one,
as shown in Table 3S, Supplementary Material. The choice
of variables was based on the results obtained from the
distance correlation (Figure 5S, Supplementary Material)
(e.g., out of several variables that were found to have a
strong correlation with vessel diameter, as exemplified
above, vessel diameter was retained as a feature, since
it is readily available). This was followed by checking
the VIF values for the reduced feature space. The final
function with reduced dimensions can be summarized as
follows:

P∕V = f(seeding density, peak VCD, aspect ratio,

vessel diameter, Di∕Dt)

A CatBoost [94] machine learning model was devel-
oped to predict P/V, as this approach can be applied
to small datasets; in addition, this method is able to
directly incorporate high cardinality categorical variables
(i.e., allows unique values) without increasing the dimen-
sion of the dataset; this is a great advantage for the current
dataset with 18 different process names (each of which are
categorical variables with significant cardinality, i.e., dif-
ferent process names).Moreover, a CatBoost algorithm can

provide an estimate of uncertainty associated with each
prediction.
For each of the 18 processes in the dataset, a specific

model was trained using small-scale data and used to pre-
dict the P/V value at a larger scale for that specific process.
Large-scale observations were excluded from the train-
ing to allow the model to be tested, while the remaining
small-scale data from that process plus the data obtained
from the 17 other processes were used to train the model.
For each process model, the hyperparameters including
depth, maximum number of trees (num_boost_round),
and learning rate were then tuned by Bayesian optimiza-
tion in Python, resulting in a total of 18 optimized models
(Table 4S, Supplementary Material).
This approach gave good predictions of P/V, close to

the actual P/V values for the larger bioreactor (the target
scale within each process), while potentially achieving the
same peak VCD as occurred in the smaller bioreactor (the
reference scale), as shown inFigure 6. The uncertainty esti-
mated by the CatBoost algorithm via a virtual ensemble
of models (where the ensemble count was 50) [94] is also
represented by the error bars in this figure.
Good agreement was observed for most processes. Nev-

ertheless, for some processes, in particular process 4, the
discrepancy between the predicted and actual values is sig-
nificant. This could be due to a much greater power input
used in process 4 at larger scale, which may have been
used to maintain the dissolved oxygen at the process set-
point over the culture duration and to achieve a sufficient
homogenization, as stated by themanufacturing team [95].
This proof-of-concept approach demonstrates the possi-

bility of developingMLmodels for the estimation of scaling
parameters and future work could seek to use ML pre-
dicted parameters to match bioreactor performance across
scales. Application of this approach would again require
a good historical or experimental dataset of bioprocesses
similar to the target process across two or more scales.
This could include data for the features selected here, that
is, seeding density, peak VCD, aspect ratio, vessel diame-
ter, and Di/Dt or other combinations of variables similarly
selected to reduce dimensions andVIF, as described for the
function developed above. The data could then be used to
create data-drivenmodels that predict key scale-dependent
factors, such as P/V, or with extension OTR, at both ref-
erence and target scales. Further, optimization algorithms
might be developed to find suitable agitation and aera-
tion values, to achieve equivalent performance between
two scales, given cell line characteristics and limitations,
such as shear stress. In this way, equivalent bioreactor
performance, such as equal peakVCDor comparable prod-
uct concentrations, could potentially be achieved between
reference and target scales.
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F IGURE 6 The predicted power inputs (P/V) from the CatBoost model at the larger target scale and actual P/Vmeasurements reported
experimentally for each process. The error bars represent the uncertainty from a virtual ensemble of 50 models.

4 CONCLUSIONS

One of the most difficult aspects of transferring cell cul-
tures from one scale to another is the determination of
suitable scaling factors that can give reproducible culture
performance between scales. Factors affecting scalingwere
reviewed and the present modeling framework demon-
strated the potential of machine learning tools to build
mathematical relationships among important engineer-
ing scale-dependent factors that can predict cell growth.
The unsupervised learning methods, based on principal
component analysis, identified differences and similarities
between bioreactors across 18 different mAb production
processes involving CHO cells. The wide range of scale-
dependent factors, arising from different design configu-
rations, was one of the main sources of difference between
small- and large-scale bioreactors; for example, very high
Reynolds numbers were observed at large scales and very
high agitation rates at small scales, such as Ambr250
bioreactors. The similarity between growth-related fac-
tors in these CHO cell culture-based processes, however,
underscored the potential for knowledge transfer between
processes. The supervised learning models based on ANN
could predict process performance for some processes and
had higher predictive capability when process character-
istics were incorporated using entity embeddings. The
CatBoost algorithmwas also efficient in handling the high
cardinality categorical features in the small dataset, using
its in-built target encoding capability. The need for com-
prehensive scaling datasets was identified, to build more
powerful, generalized models capable of predicting suit-
able scaling factors. These should ideally include sufficient

variability generated under a wide range of operating con-
ditions, including gassing flow rates and agitation rates,
with data collected for the same process at different scales
and data collected across processes at the same scale,
whichwould allowboth vertical andhorizontal knowledge
transfer, respectively. These approaches may be useful for
future investigations using ML for scale-up of bioreactors
with equivalent performance.
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