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� We developed the first deep learning-
based druggable protein classifier for
fast and accurate identification of
potential druggable proteins.

� Experimental results on a standard
dataset demonstrate that the
prediction performance of deep
learning model is comparable to
those of existing methods.

� We visualized the representations of
druggable proteins learned by deep
learning models, which helps us
understand how they work.

� Our analysis reconfirms that the
attention mechanism is especially
useful for explaining deep learning
models.
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Introduction: The top priority in drug development is to identify novel and effective drug targets. In vitro
assays are frequently used for this purpose; however, traditional experimental approaches are insuffi-
cient for large-scale exploration of novel drug targets, as they are expensive, time-consuming and labo-
rious. Therefore, computational methods have emerged in recent decades as an alternative to aid
experimental drug discovery studies by developing sophisticated predictive models to estimate unknown
drugs/compounds and their targets. The recent success of deep learning (DL) techniques in machine
learning and artificial intelligence has further attracted a great deal of attention in the biomedicine field,
including computational drug discovery.
Objectives: This study focuses on the practical applications of deep learning algorithms for predicting
druggable proteins and proposes a powerful predictor for fast and accurate identification of potential
drug targets.
Methods: Using a gold-standard dataset, we explored several typical protein features and different deep
learning algorithms and evaluated their performance in a comprehensive way. We provide an overview
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of the entire experimental process, including protein features and descriptors, neural network architec-
tures, libraries and toolkits for deep learning modelling, performance evaluation metrics, model interpre-
tation and visualization.
Results: Experimental results show that the hybrid model (architecture: CNN-RNN (BiLSTM) + DNN; fea-
ture: dictionary encoding + DC_TC_CTD) performed better than the other models on the benchmark data-
set. This hybrid model was able to achieve 90.0% accuracy and 0.800 MCC on the test dataset and 84.8%
and 0.703 on a nonredundant independent test dataset, which is comparable to those of existing meth-
ods.
Conclusion: We developed the first deep learning-based classifier for fast and accurate identification of
potential druggable proteins. We hope that this study will be helpful for future researchers who would
like to use deep learning techniques to develop relevant predictive models.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Most marketed drugs are small organic molecules that elicit a
therapeutic response by binding to a series of biological macro-
molecules, such as peptides, proteins, and nucleic acids. Within
these macromolecules, proteins are currently the first druggable
targets for the design and development of new drugs [1] because
over 95% of known drug targets are proteins and coordinate
approximately 93% of known drug-target interactions [2]. These
proteins are usually referred to as ‘‘druggable proteins” and con-
tain structures favouring interactions with drugs/compounds,
which is where the original definition of protein druggability was
born [3]. In view of a purely structural point, druggability is related
to the possibility that a drug/compound binds a particular protein
target with high affinity where the distance between them is less
than 1 mM [4,5]. Previous studies have indicated that interactions
with drugs/compounds can modulate the function of many classes
of druggable proteins, including G protein-coupled receptors, ion
channels, nuclear hormone receptors, transporters and enzymes
[6,7]. A number of nonenzymes, such as scaffolding, regulatory
and structural proteins, and the proteins related to specific pro-
tein–protein interactions, have also become binding targets for
drugs in recent years [8]. This suggests that there is still a huge
demand for the discovery and characterization of drug targets. In
addition, these pharmaceutically useful protein targets are heavily
involved in underlying mechanisms related to cardiovascular dis-
ease, hypertension, immune system functions, and other diseases
[9]. Therefore, rapid and accurate identification of potential drug-
gable proteins is a vital first step in drug discovery and
development.

Although scientists and researchers have made great efforts to
achieve this goal in recent decades, developing new drugs remains
a challenging task due to the complexity, cost, time consumption
and low success rate of traditional experimental methods [10]. In
general, the development of a single new drug often takes over
12 years and costs on average 2.6 billion USD [11], while only 4%
of drug development plans are eventually authorized to produce
licenced drugs [12,13]. Moreover, modern drug development faces
a constant increase in costs, while the number of newly approved
drugs per year is declining [14]. One of the main reasons for this
phenomenon is the lack or incorrect choice of drug targets [15].
Thus, the search for appropriate druggable proteins from the
human proteome is a key point in the study of drug targets.

In recent years, various computational strategies for predicting
potential druggable proteins have emerged, which commonly use
the sequence, structural, and functional features of proteins as
input [5,16–19] but also system-level properties such as network
topological features [20–23]. Various machine learning (ML) algo-
rithms have been employed to develop in silico models, including
support vector machine (SVM) [24–27], neural network (NN)
[28,29], naive Bayes (NB) [30,31], logistic regression (LR) [32],
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hidden Markov model (HMM) [33], random forest (RF) [34], and
ensemble methods [35–37]. In 2016, through in-depth data min-
ing, Jamali et al. proposed an enlarged benchmark dataset for algo-
rithm development, starting a new round of studies to predict
potential druggable proteins [38]. They used 443 sequence-
derived protein attributes to represent both druggable and non-
druggable proteins and six conventional machine learning algo-
rithms to build the predictors, of which NN yielded the highest
accuracy of 89.78%. Subsequently, Sun et al. performed a compre-
hensive comparison of different combinations of protein features
and machine learning algorithms using the same dataset in 2018
[39]. Interestingly, they found that the LQL-v using NN obtained
the highest training accuracy of 91.10%, but the overlapped 3-
gram word2vec using LR afforded the best test accuracy of
89.55%, which was selected as the final predictor. In 2019, Lin
et al. chose pseudo-amino acid composition, dipeptide composition
and reduced sequence of proteins as input, and each protein was
first transformed into a 591-dimensional vector [40]. Then, they
exploited the genetic algorithm (GA) to optimize the feature set,
and the Bagging algorithm to perform ensemble learning with
multiple SVM predictors. Using the 5-fold cross-validation, the
Bagging-SVM ensemble predictor provided the best overall accu-
racy of 93.78%.

As a subdiscipline of ML, deep learning (DL) was developed
from artificial neural networks (ANNs) and has grown rapidly in
the past two decades [41]. Different from traditional ML algo-
rithms, DL can automatically extract features and learn patterns
from various types of data, which makes it particularly suitable
for handling large and complex data. The past decades have wit-
nessed an unprecedented number of research studies considering
the application of deep learning in the fields of speech recognition,
computer vision, and natural language processing [42]. Further-
more, DL algorithms have become typical approaches for drug
activity prediction, drug-target interaction identification, medical
image analysis, and lead molecule discovery in the field of drug
development and biomedicine [43,44] and for sequence analysis,
structure prediction, biomolecular property and function predic-
tion, and systems biology in the field of bioinformatics [45–47].
Convolutional neural networks (CNNs), recurrent neural networks
(RNNs) and deep neural networks (DNNs) are the three most com-
monly used deep learning architectures. Although deep learning
algorithms have been widely applied to drug discovery [48,49],
genomic sequence analysis [50], and protein sequence and struc-
ture classification [51,52] in recent years, to date, there are no
methods or tools available for predicting potential druggable pro-
teins using deep learning.

In this study, our objective is to investigate novel deep learning
techniques with potential applications for facilitating the discovery
of innovative targets. We describe the main strategies of deep
learning methods, including protein descriptors, neural network
architectures, libraries and toolkits for deep learning modelling
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and gold-standard datasets for system training and benchmarking.
Subsequently, we explored the usefulness of DL-based approaches
for predicting druggable proteins from amino acid sequences.
Experimental results using the benchmark dataset show that the
hybrid neural network architecture achieves the best overall pre-
diction performance. The hybrid model that integrates
convolutional-recurrent neural networks (CNN-RNNs) and deep
neural networks (DNNs) can predict druggable proteins with, on
average, 90.0% accuracy, 89.6% F value, 89.0% recall, 90.5% preci-
sion, and 0.800 MCC when tested on the test set 10 times. Across
the nonredundant blind test, the best model also achieves ACC, F
value, recall, PRE, and MCC values of 84.8%, 85.3%, 91.1%, 80.3%
and 0.703, respectively, highlighting the robustness of the model.
Finally, we explain the predictions of the deep learning models
using the self-attention mechanism and projection-based visual-
ization approach. This investigation is the first study to identify
potential druggable proteins using deep learning methods, and
we hope to provide a new research strategy for future studies of
druggable proteins.
Materials and methods

Datasets

With reference to other works, the public standard dataset
established by Jamali et al. [38] was used in this work to construct
the training and test datasets, where the positive samples (proteins
approved as drug targets by FDA) were extracted from the Drug-
Bank database [53], while the negative samples (proteins that can-
not be considered drug targets) were collected from Swiss-Prot
according to the methods proposed by Li et al. [25] and Bakheet
et al. [26]. All sequences were filtered for the removal of identical
and similar sequences. In addition, research and experimental pro-
teins known as drug targets of human origin from the DrugBank
and Therapeutic Target Database (TTD) [54] and members of their
related families were also eliminated from the negative samples.
After the above data processing steps, 1,224 druggable proteins
and 1,319 nondruggable proteins were retained as the positive
and negative samples, respectively. The deep learning models were
fitted to a training dataset containing 80% randomly selected pro-
teins, and their predictive performance was compared and evalu-
ated on a test dataset containing the remaining 20%.

An independent test set with a balanced sample size was used
to further evaluate the performance of the developed deep learning
model. The positive samples and negative samples were obtained
from the latest version of the DrugBank database (Version 5.1.8)
[55] and a study by Kim et al. [56], respectively. We first removed
the sequences present in the standard dataset and then carried out
a 20% homology reduction of the remaining sequences using CD-
HIT [57]. Any sequence with an amino acid sequence length smal-
ler than 50 AA or greater than 10,000 AA was also omitted. Finally,
224 druggable proteins and 237 nondruggable proteins were
retained in the independent test set.
Feature extraction

Word representation of protein sequences
As the two most common encoding methods for deep learning

techniques, dictionary and one-hot encoding schemes have been
widely used to obtain primary protein sequence information
[58,59]. For the former scheme, each amino acid in a protein
sequence is encoded as an ordinal number, and the 20 natural
amino acids are sequentially encoded as numbers from 1 to 20
(e.g., ‘A’ is encoded as 1). In this way, each protein sequence is
encoded as an L-dimensional numerical vector, where L is the
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length of the protein. For the latter scheme, the residues in the
sequence are encoded as a vector in which only one element is a
‘10 and the other elements are ‘00. The ‘10 in the vector is a represen-
tation of the amino acid, and different amino acids use different
positions in this vector, so the length of the vectors is 20 as default.
In addition, the k-mer operation can be used for encoding methods.
For example, each sequence is first divided into different windows
with the same length k using the sliding window with a certain
stride (usually set as 1), and then the generated windows can be
encoded by the above two encoding methods. Since the k-mer
operation counts the short peptides of length ‘k’ instead of only
residues, it has a long and sparse output vector.

Descriptor representation of protein sequences
When using DL to predict druggable proteins, each protein is

represented by a multidimensional numerical vector composed
of descriptors that can truly reflect their intrinsic correlation with
the target to be predicted. These descriptors define the sequence
composition, physicochemical properties and conservation profiles
of proteins. Descriptors based on sequence composition reflect the
occurrence frequencies of different amino acid types and their
combinations in a protein sequence. Descriptors based on physico-
chemical properties describe protein sequences in terms of the
composition, transition and distribution of hydrophobicity, van
der Waals volume, polarity, polarizability, charge, secondary struc-
ture and solvent accessibility. Descriptors based on conservation
profiles reflect the evolutionary information of protein sequences.

Amino acid composition (AAC), dipeptide composition (DC) and
tripeptide composition (TC)

Composition is both the simplest and most important descrip-
tor of protein sequences. Different types of compositions, including
amino acid, dipeptide and tripeptide compositions, have been pro-
ven to be important for the development of classification models in
previous studies. For a total of 20 natural amino acid types, the AAC
calculates the frequency of each type of amino acid, and a protein
sequence is thus converted into a 20-dimensional vector {d1, d2, . . .,
d20}. Dipeptide composition (DC) is calculated using the percent-
ages of the 400 dipeptide combinations {d1, d2, . . ., d400}. Tripeptide
composition (TC) reflects the statistical frequency of any combina-
tion of three amino acids, and a protein sequence is converted into
an 8000-dimensional vector {d1, d2, . . ., d8000}.

Composition-transition-distribution (CTD)
As a global sequence descriptor, composition-transition-distri

bution (CTD) is often used to characterize protein and peptide
sequences, encompassing three feature descriptors: composition
(C), transition (T) and distribution (D) [60]. The CTD feature repre-
sents the amino acid distribution patterns of a specific structural or
physicochemical property in a protein sequence. For each physico-
chemical property, the 20 natural amino acids are classified into
three groups. The first composition descriptor set reflects the glo-
bal percentage of a particular amino acid attribute group in a pro-
tein sequence, the second transition descriptor set reflects the
percent frequency of transitions between two different groups
along the whole protein sequence, and the third distribution
descriptor set reflects the distribution patterns of a particular
amino acid attribute group in this protein sequence. In CTD, com-
position, transition and distribution descriptors are encoded as 21-,
21- and 105-dimensional feature vectors, respectively.

Position-specific scoring matrix (PSSM)
In previous studies, the position-specific scoring matrix (PSSM)

has been demonstrated to be an effective and powerful feature for
encoding the evolutionary information of protein sequences
[61,62]. For a protein sequence, the PSSM is generated by using
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PSI-BLAST to search against the Swiss-Prot database, with three
iterations and an E-value cut-off of 0.001 for multiple sequence
alignment. In this process, a matrix consisting of L rows and 20 col-
umns is created, where L is the length of a protein sequence and 20
columns represent the occurrence or substitution of each type of
the 20 natural amino acids. Then, a formula is used to make all
PSSM matrices size-uniform, which has been described in our ear-
lier study [61]. Ultimately, each protein sequence is transformed
into a 20-dimensional vector.

Deep learning methods

There are several different types of neural network architec-
tures related to deep learning. Currently, the most typical and com-
monly used neural networks include convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and deep
neural networks (DNNs). In addition, some variants of the above
network types, such as the hybrid neural network, consisting of
the CNN, RNN and DNN blocks, are frequently employed. The
diversity of neural network types and the complexity of neural net-
work architectures have made the deep learning method extre-
mely successful in myriad different fields [42,63]. An overview of
the basic modules of different deep learning architectures is
described in detail below.

Convolutional neural networks (CNNs)
CNNs are the most important deep-learning-based approaches

for computer vision [64]. The architecture of a typical CNN consists
of three types of layers: convolutional, pooling and fully connected
layers. The convolutional layer is designed to use the convolution
operation for extracting and gathering the information contained
in the input data. The commonly used CNN layer is the 2D convo-
lutional layer, which can be described as follows:

Outij ¼
X

i�mj j � s

j� nj j � s

XmnKmn þ e
ð1Þ

where ‘s’ is the kernel size, ‘X’ is the input with a 2D shape, ‘e’ is the
bias and ‘K ’ is the kernel for convolution. In the application of bio-
logical sequences, the kernel is simplified to 1D since the sequences
do not contain 2D relations, so the representation can be described
as:

Outi ¼
X
i�mj j�s

XmKm þ e ð2Þ

The 1D kernel can gather the local information from the
sequence data but will ignore the information outside the kernel.
Pooling is also an important operation in the CNN architecture.
The basic principle of the pooling process is to calculate the repre-
sentative value from fixed-size windows. Thus, the pooling layer
can be used to reduce the computational requirements through
the network and minimize overlapping by reducing the spatial size
of the activation map. In addition to the basic network layers
described above, the rectified linear unit (ReLU) activation function
and dropout regularization methods are often used in CNNs with
the aim of introducing nonlinearities and avoiding overfitting dur-
ing model training.

Recurrent neural networks (RNNs)
Recurrent neural networks (RNNs) are popular in sequence

labelling tasks because they can use previous information in a
sequence to process the current input. Long short-term memory
(LSTM) neural networks and gated recurrent unit (GRU) neural net-
works are two special subclasses of RNNs. They are designed to
capture sequential information and historical states are used to
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implement ‘memory’ and ‘forgetting’ mechanisms. For example,
in the LSTM, two hidden states, ‘c’ and ‘h’, are used to update the
information along the time ‘t’:

ct ¼ zf � ct�1 þ zi � z ð3Þ

ht ¼ zo � tanh ct
� � ð4Þ

z# ¼ r W# � Concat Xt ;ht�1
� �� �

ð5Þ

where # 2 i; f ; of g, the generated vectors ‘z#’ are the temporary vec-
tors, ‘Concat ;ð Þ’ is the concatenate operation of two vectors, and ‘�’
is the Hadamard product. The ‘memory’ and ‘forgetting’ mecha-
nisms are performed when updating ‘ct ’ in every iteration. The bidi-
rectional LSTM (Bi-LSTM) is an extension of LSTM in which the
input sequence is processed forwards and backwards, and then both
outputs are concatenated. Bi-LSTM consists of two LSTM layers
sharing the same inputs in two directions, but the output ‘y’ is

determined by the two hidden states ‘h1’ and ‘h2’ at the same posi-
tion in both directions. If no shift is used, the relation is:

yi ¼ gðW � Concat h1
i ; h

2
l�i

� �
þ eÞ ð6Þ

where ‘W ’ is the weight, ‘gðÞ’ is the activation function, ‘l’ is the
length of the sequence and ‘e’ is the bias.

Deep neural networks (DNNs)
The DNN architecture is the basic framework for deep learning.

All deep neural networks were essentially developed based on the
traditional machine learning algorithm - artificial neural networks
(ANNs), which have been successfully applied in many research
and application areas [65–68]. The main differences between DNNs
and ANNs are the number of hidden layers, layer-to-layer connec-
tions and feature learning ability when processing different data
[69]. In general, the deep neural network is a standard multilayer
neural network with more than one hidden layer between the
input and output layers, which is commonly called the multilayer
perceptron (MLP) [70]. By stacking multiple hidden layers, DNNs
can learn high-level abstractions in the input data with a deep
architecture composed of multiple nonlinear transformations. The-
oretically, DNNs can handle any type of data, but they cannot learn
the complex correlations among the features as CNNs and RNNs
do. Therefore, for the prediction of druggable proteins, discrete
protein descriptors, such as AAC, DC, TC, CTD, and PSSM, are com-
monly used as inputs to DNNs.

Convolutional-recurrent neural networks (CNN-RNNs)
As the most popular hybrid deep learning methods, CNN-RNNs,

which are a kind of quasi-recurrent neural network (QRNN) [71],
are proposed to integrate the advantages of CNNs and RNNs and
have been successfully applied to various biological applications
[72–74]. The hybrid CNN-RNN leverages the feature extraction
capability of CNN and connects the obtained feature representa-
tions to an RNN to capture sequential dependencies between the
input data.

Model design for druggable protein prediction

In this work, the model was constructed according to the type of
input datasets. The sequential data were encoded by either a built-
in encoding mechanism using the dictionary representation or
directly a one-hot representation. The encoded array was used in
CNN/CNN-RNN layers to yield the processed layer information,
which contains the local information from the convolution layers
and global information from RNN layers. The discrete feature
groups, such as AAC, CTD and PSSM, were processed by using
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DNN layers. The processed sequential features were reshaped to a
1-D array per sample by using a flattening operation, and all of the
feature groups had the same dimensions. We first use the discrete
feature groups for prediction separately by using a DNN layer as
the projection layer for prediction. Afterwards, all of the combina-
tions of sequential and discrete features were employed for predic-
tion by using a concatenation operation in the feature dimension.
Hence, we considered CNN, RNN and CNN-RNN as the core archi-
tecture of the hybrid model, and different descriptor combinations
of DNN were used as extra information concatenated to the last
fully connected layer of core architecture. Together with the com-
bination of the five features (AAC, DC, TC, CTD and PSSM), a total of
31 (i.e., 25-1) DNN models were generated for concatenating the
core architecture. Since the concatenation of the submodels will
increase the parameters of the hybrid model, the learning rate
and epochs should be changed according to the scale of the model.
After several tests, the number of epochs is determined by the
number of models concatenated before the last fully connected
layer:

#epochs ¼ 64�#SubM ð7Þ
where ‘#SubModel’ is the number of models to be connected. For
example, using a CNN as the core structure, the ACC and CTD of
DNNs will concatenate three outputs before the last fully connected
layer; thus, ‘#SubModel’ is 3, and the number of epochs is 192. The
learning rate is determined in a similar way, being set to 5e-5 if only
one model is used, 2e-5 if two submodels are used, and 5e-6 if three
or more submodels are used. First, the performances of three deep
learning models (CNN, RNN and CNN-RNN) with two encoding
methods (dictionary and one-hot encoding) were compared using
the same training dataset to find the optimal core architecture.
Then, the best core architecture was chosen to concatenate the
DNNmodels with different combinations of discrete feature groups.
To reduce the effect of random factors in sampling and model fit-
ting, each training procedure was repeated 10 times. Finally, we
performed 420 model training procedures, of which 110 were used
for a single model and 310 for the hybrid models. The results are
shown in detail in the following sections.

Visualizing and understanding deep learning methods

Self-attention mechanism
As a common operation, the attention mechanism is widely

used in various nature language processing (NLP) transformer
models. The attention mechanism can calculate the similarity
between two vectors and modify the weights according to the sim-
ilarity. Additionally, self-attention focuses on the relations of the
inputs from a certain layer for reweighting its outputs, and thus,
self-attention is usually used as a neural network layer followed
by an RNN layer. Depending on different modelling purposes and
data characteristics, there are various algorithms to implement
Table 1
Performance comparison of different deep learning models on the training dataset.

Encoding Architecture ACC (%) F

Dictionary CNN 86.8 8
Onehot CNN 87.2 8
Dictionary RNN (BiLSTM) 71.8 6
Onehot RNN (BiLSTM) 69.0 6
Dictionary CNN-RNN (BiLSTM) 88.9 8
Onehot CNN-RNN (BiLSTM) 88.3 8
AAC DNN 88.5 8
DC DNN 87.0 8
TC DNN 83.8 8
CTD DNN 68.1 7
PSSM DNN 84.5 8
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the similarity calculation. For example, the following equation
shows the additive self-attention mechanism:

v ¼ softmax tanh X �Wq þ X �Wk þ ebh
� � �Wa þ eab

� � � X ð8Þ
where ‘Wq’, ‘Wk’ and ‘Wa’ are weights that could be updated during
the epochs and ‘ebh’ and ‘eab’ are two bias vectors. Self-attention will
calculate all similarity between all variables (i.e., features in this
work) and generate the attention weights for further calculation.
The attention weights can be used for model interpretation and
other downstream analyses.

Visualizing the hidden activity of deep learning models
Using interconnected layers, deep learning models can extract

information from data and learn (high-dimensional) higher-level
representations in the data that are useful for a given task. How-
ever, deep learning models are typically used as ‘‘black boxes”
because it is difficult to know the specific process by which they
make predictions. To explain how the deep learning models make
a prediction, we need to understand the evolution of the data in
each hidden layer of the model. The nonlinear dimensionality
reduction technique uniform manifold approximation and projec-
tion (UMAP) has shown potential to provide insightful visual feed-
back about deep learning models [75]. UMAP projections can
visualize the relationships not only between learned representa-
tions of input data, but also between artificial neurons.

Metrics for performance evaluation of deep learning methods

In a binary classification task, such as the classification models
in this work with druggable and nondruggable two labels, the pre-
dictive performance of different models is evaluated by the follow-
ing metrics:

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

ð9Þ

PRE ¼ TP
TP þ FP

ð10Þ

F � value ¼ 2� TP
2TP þ FP þ FN

ð11Þ

Recall ¼ TP
TP þ FN

ð12Þ

MCC ¼ TP � TNð Þ � FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp ð13Þ

where TP, FN, TN, and FP represent true positives, false negatives,
true negatives, and false positives, respectively. Receiver operating
characteristic (ROC) and precision-recall (PR) curves show the per-
formance of classification models, and the area under the curve is
-value (%) Recall (%) PRE (%) MCC

6.4 86.8 86.8 0.741
6.7 85.8 87.9 0.746
8.3 65.5 76.7 0.463
3.6 61.3 75.2 0.415
8.9 85.6 92.0 0.780
8.1 87.4 89.3 0.768
7.8 85.5 90.9 0.776
7.6 89.6 85.6 0.740
5.0 91.3 79.0 0.681
1.2 89.5 61.3 0.387
4.8 91.7 77.9 0.703
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often used as a metric to evaluate the performance of binary classi-
fication problems. The learning curve refers to a plot of the predic-
tion performance versus the training set size. Usually, both the
training and test/validation performance are plotted together to
diagnose the bias-variance tradeoff and to assess the complexity
of the classification models. For each training epoch, the model
accuracy and loss of both the training and validation sets are
recorded in the accuracy-loss curve.
Fig. 1. Optimization of hyperparameters and architectures for CNN-RNN (BiLSTM) mod
and kernel size combinations; (B) Performance comparison of different pooling sizes; (C)
(D) Performance comparison of different RNN architecture types; (E) Performance com
Schematic illustration of the optimized model architecture.
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Deep learning tool for biological sequence classification

AutoBioSeqpy, a Keras-based [76] deep learning tool, is specifi-
cally designed for biological sequence classification [77]. This tool
is packaged into powerful and easy-to-use software. The users only
need to prepare the input dataset as well as the model template.
After that, with a single-line command, autoBioSeqpy can auto-
matically encode the sequence, split the dataset, train and evaluate
the model, and generate figures from the results. In addition, auto-
el with dictionary encoding method. (A) Performance comparison of different filter
Performance comparison of different numbers of convolutional and pooling layers;
parison of different numbers of hidden cells in the bidirectional LSTM layer; (F)
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BioSeqpy can design deep learning models in different types and
architectures for DNA, RNA and protein sequences. Currently, the
autoBioSeqpy tool has been upgraded to version 2.0, which sup-
ports more complex model architectures and incorporates model
interpretation and visualization features such as the attention

mechanism and UMAP. autoBioSeqpy 2.0 is available at https://

github.com/jingry/autoBioSeqpy/tree/2.0/.
Results

The performance comparison of different deep learning models

We first evaluated the predictive performance of 11 different
deep learning models, including two CNN models, two RNN mod-
els, two CNN-RNN models and five DNN models. For a fair compar-
ison, we tuned the hyperparameters and optimized the
architectures of each model to obtain the best possible perfor-
mance with the training dataset. Table 1 shows the best perfor-
mance achieved by each of the 11 different deep learning models.

We trained two types of RNNmodels (LSTM and BiLSTM) on dif-
ferent numbers of hidden cells (Table S1 and S2). Overall, the per-
formance of the RNN (BiLSTM) model was significantly better than
that of the RNN (LSTM) model, which again shows that the BiLSTM
learns more feature information than the LSTM. When the number
of hidden cells was set to 16, the RNN (BiLSTM) model achieved the
best performance with MCC values of 0.463 and 0.415 for both
encoding methods, respectively. For the convolutional-based mod-
els (CNN and CNN-RNN), we mainly optimized their four hyperpa-
rameters, including kernel size (3, 5, 7, 9 and 11), number of filters
(50, 150 and 250), pooling size (2, 4, 6, 8 and 10) and number of
convolutional and pooling layers (2, 3, 4, 5 and 6). Detailed opti-
mization results of the four models are shown in Fig. 1 and
Figure S1-S3. The CNN-RNN (BiLSTM) model with the dictionary
Table 2
Performance comparison of the hybrid models with different combinations of protein des

Core structure (Encoding) DNN (Feature) ACC (%)

AAC 88.8
TC 87.6
PSSM 87.5
DC 88.2
CTD 89.5
TC_CTD 88.6
DC_TC 88.6
DC_PSSM 88.4
DC_CTD 88.0
CTD_PSSM 87.0
AAC_TC 86.6
TC_PSSM 87.6
AAC_CTD 87.5
AAC_DC 88.4
AAC_PSSM 88.0

CNN-RNN AAC_TC_PSSM 88.8
(Dictionary) AAC_TC_CTD 88.6

TC_CTD_PSSM 88.4
AAC_CTD_PSSM 87.7
AAC_DC_TC 89.2
AAC_DC_PSSM 88.1
DC_CTD_PSSM 88.0
AAC_DC_CTD 89.1
DC_TC_CTD 90.0
DC_TC_PSSM 89.1
AAC_DC_TC_PSSM 89.0
AAC_DC_TC_CTD 87.9
AAC_TC_CTD_PSSM 89.0
DC_TC_CTD_PSSM 89.4
AAC_DC_CTD_PSSM 88.9
AAC_DC_TC_CTD_PSSM 88.5
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encoding method obtained the best performance among all core
structure candidates, with the highest scores of ACC (88.9%), F value
(88.9%), recall (85.6%), PRE (92.0%), and MCC (0.780) (Table 1). This
model is constructed from an input layer, an embedding layer, a
dropout layer, a convolutional layer, a max pooling layer, a bidirec-
tional LSTM layer, and an output layer (Fig. 1C and 1F). First, the
embedding layer transforms the dictionary-encoded input
sequence into a 256-dimensional vector representation. A dropout
of 0.2 is applied to the embedding layer to prevent overfitting. The
convolutional layer has 50 filters, where the kernel size is set to 9
(Fig. 1A). After the convolutional layer, the pooling layer performs
max pooling, which outputs the maximum value over a nonover-
lapping sliding window of 8. (Fig. 1B). Subsequently, the flattened
pooling output is passed to a bidirectional LSTM layer of 16 hidden
neurons (Fig. 1D and 1E), which finally connects to a sigmoid acti-
vation function that outputs the predicted probability score.
Clearly, the dictionary encoding method overperforms the one-
hot encoding method on the representation of potential druggable
proteins, so the CNN, RNN, and CNN-RNN models with the former
achieved better performance than the corresponding models with
the latter.

All DNN models except for the TC descriptor are constructed
from three fully connected layers with 128, 64, and 32 hidden units
each. We compared the performance of the same DNN architecture
with different protein descriptors (Table 1). Among the five
descriptors, AAC had the best overall prediction performance and
yielded the highest ACC (88.5%), F value (87.8%), recall (85.5%),
PRE (90.9%), andMCC (0.776) scores. We further analysed and visu-
alized the AAC difference between druggable and nondruggable
proteins using Composition Profile software [78]. Significant AAC
differences were observed between these two classes of proteins,
where the druggable proteins appeared to be enriched in isoleu-
cine, lysine and tyrosine (Figure S4).
criptors.

F-value (%) Recall (%) PRE (%) MCC

88.2 87.1 89.5 0.776
87.5 88.7 86.5 0.754
86.8 85.9 88.0 0.751
87.9 88.8 87.3 0.766
89.0 89.0 89.2 0.791
88.3 89.0 87.8 0.772
88.4 89.5 87.4 0.772
87.8 87.6 88.3 0.769
87.4 87.3 87.8 0.761
86.8 87.5 86.2 0.740
86.1 86.2 86.0 0.732
87.5 89.6 85.6 0.753
87.4 88.1 87.1 0.752
88.1 88.6 87.7 0.767
88.1 88.6 87.6 0.760
88.2 89.1 87.5 0.777
87.9 87.7 88.4 0.771
88.1 88.2 88.2 0.768
87.2 87.0 87.7 0.754
89.0 90.3 87.9 0.785
87.4 86.6 88.4 0.761
87.9 89.4 86.7 0.760
89.1 90.4 87.8 0.783
89.6 89.0 90.5 0.800
89.0 88.7 89.4 0.782
89.1 90.2 88.2 0.780
87.6 89.6 85.8 0.760
88.5 90.6 86.7 0.780
89.4 91.3 87.6 0.789
88.7 90.4 87.3 0.780
88.4 89.1 87.8 0.771

https://github.com/jingry/autoBioSeqpy/tree/2.0/
https://github.com/jingry/autoBioSeqpy/tree/2.0/
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Twenty models were trained using the five discrete protein
descriptors based on four conventional machine learning algo-
rithms: support vector machine (SVM), random forest (RF), naïve
Bayes (NB), and K-nearest neighbour (KNN). The Scikit-learn pack-
age was used to implement all the models [79]. Fivefold cross-
validation was performed to select models among their respective
hyperparameters. For SVM, we selected a radial basis function
(RBF) kernel, testing different values for regularization parameter
C (2-1, 20, . . ., 25) and kernel width parameter c (2-5, 2-4, . . ., 21).
The main hyperparameters for RF include the number of decision
trees (50, 100, . . ., 500) and the number of attributes considered
at each split (5, 10, . . ., 40). For KNN, we used the Euclidean dis-
tance as a distance function and tested a different number of
neighbours (3, 5, . . ., 21). We compared the prediction results of
the DNN models with the SVM, RF, NB and KNN models. Based
on the results in Table S3, the DNN constantly outperformed the
other algorithms on all protein descriptors except for CTD. RF
was the best model for the CTD descriptor, while for other descrip-
tors, it ranked second after the DNN.
Fig. 2. ROC, PR, and learning curves for the best hyb
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Hybrid models further improve predictive performance

After carefully analysing the prediction results of all single deep
learning models, we developed more complex hybrid models that
integrate the advantages of different deep learning algorithms.
All possible combinations of the five feature groups (AAC, DC, TC,
CTD and PSSM) were generated using the concatenated DNN mod-
els (details in the section ‘Model design for druggable protein predic-
tion’) and the best core structure (the CNN-RNN (BiLSTM) model
with dictionary encoding). Therefore, we designed a total of 31
hybrid models. For each hybrid model, we repeated the training–
testing procedure 10 times, and the average of its output was used
as the final output for comparison. The performance of hybrid
models utilizing various combinations of feature groups is summa-
rized in Table 2. The results indicate that although different combi-
nations of feature groups result in different performances, the
hybrid model generally exhibits better performance than a single
model. The hybrid model with the ‘DC_TC_CTD’ feature group out-
performed other combinations in terms of average ACC (90.0%), F
value (89.6%), recall (89.0%), PRE (90.5%), and MCC (0.800). In addi-
rid deep learning model on the training dataset.
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tion, we employed receiver operator characteristic (ROC) and
precision-recall (PR) curves to assess the performance of the best
hybrid model (Fig. 2). We calculated the area under the ROC and
PR curves, and the values are shown in parentheses under both
curves (0.963 for ROC and 0.970 for PR). Then, the learning curves
that correspond to the ACC and MCC metrics were plotted to assess
the effect of the dataset scale on the predictive performance of the
hybrid model. Five different scales (20, 40, 60, 80, and 100%) of
subsets were generated by using an external resampling mecha-
nism. Each resampling was repeated 10 times, and each subset
was divided into 5 training-test groups for cross-validation so that
a total of 250 hybrid models were used for the generation of learn-
ing curves. As shown in Fig. 2, the hybrid model becomes increas-
ingly stable as the scale of the dataset increases, but still has
relatively good predictive performance on the small sample
dataset.

Performance evaluation with the independent test set

We further evaluated the generalization capabilities of our
hybrid model on the previously described independent test set,
which was nonredundant at the sequence level. The new dataset
consisting of 224 positive samples and 237 negative samples was
selected as a blind test. Our final model (architecture: CNN-RNN
(BiLSTM) + DNN; feature: dictionary encoding + DC_TC_CTD)
demonstrated balanced predictive performance, achieving an over-
all accuracy of 89.8%, F value of 88.9%, recall of 84.8%, precision of
93.6% and MCC of 0.799. These experimental results verify the effi-
ciency and stability of our proposed method.

Visualizing and understanding deep learning models

To better understand how the deep learning models work, we
utilized the layerUMAP tool [75] to visualize the representations
of druggable proteins learned by these models. Here, all samples
Fig. 3. LayerUMAP shows the working mechanism of deep learning models. (A) UMAP
encoding method; (B) UMAP projection of the output layers after training of the ten dee
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in the training dataset were grouped into two classes: red points
for druggable proteins and purple points for nondruggable pro-
teins. To explain the working mechanisms of the models or to shed
light on their internal representations, we first visualized two
classes of proteins based on the representations learned by the
main hidden layers of the best core structure (CNN-RNN (BiLSTM)
model with dictionary encoding). As illustrated in Fig. 3A, the drug-
gable proteins and nondruggable proteins are almost indistin-
guishable in the first embedding layer but can be very clearly
distinguished in the last two hidden layers (bidirectional LSTM
layer and output layer). It is clear that these representations
become increasingly discriminative along the layer hierarchy dur-
ing model training. Furthermore, the projections of the output
layer representations of the other ten deep learning models are
shown in Fig. 3B. As expected, the partitioning effects of the two
classes of points in these figures are highly consistent with the pre-
dictive performance of the corresponding models.

In Table 1, we observe that the CNN-RNN (BiLSTM) model per-
forms significantly better than the RNN (BiLSTM) model for both
encoding methods, even though they have the same bidirectional
LSTM layer. We can therefore conclude that the convolution-
based model can effectively extract predictive features from pro-
tein sequences through filter scanning. To further confirm our con-
clusions, we added a self-attention layer after the bidirectional
LSTM layer of the RNN (BiLSTM) and CNN-RNN (BiLSTM) models.
We plotted the attention values and self-attention relations to
visualize the importance of different hidden neurons in the bidirec-
tional LSTM layers for the classification (Fig. 4). The self-attention
heatmaps can reflect the relationship of each protein to the
druggable and nondruggable classes. We can see that the differ-
ence in attention values between the CNN-RNN (BiLSTM) model
for druggable and nondruggable proteins is significantly larger
than that of the RNN (BiLSTM) model, thus explaining the differ-
ence in their prediction performance.
projection of inter-layer evolution of the CNN-RNN(BiLSTM) model with dictionary
p learning models.



Fig. 4. Heat maps show the distributions of the attention values of two bidirectional LSTM layers in the CNN-RNN (BiLSTM) and RNN (BiLSTM) models.

Table 3
Performance comparison of our proposed deep learning model with the existing methods.

Method Algorithms Encoding method ACC (%) F-value (%) Recall (%) PRE (%) MCC

DrugMiner NN 443 features 89.78 90.14 90.14 – 0.7952
DrugMiner NN 130 features 92.10 92.41 92.80 – 0.8417
Sun et al.’ method NN Jamali-v 88.12 – – – –
Sun et al.’ method NN Overlapped 3-gram word2vec 90.23 – – – –
Sun et al.’ method NN LQL-v 91.93 – – – –
Lin et al.’ method PseAAC-DPC-RS 591 features 90.98 90.97 87.88 – 0.8212
Lin et al.’ method PseAAC-DPC-RS-GA 143 features 93.42 93.07 92.21 – 0.8711
Lin et al.’ method GA-Bagging-SVM 143 features 93.78 93.58 92.86 – 0.8781
Our work Hybrid DL model Dictionary + DC_TC_CTD 92.40 91.90 94.50 89.50 0.8490
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Comparison with other methods

As we described in the introduction section, three studies have
been carried out to develop predictors with different machine
learning algorithms and features using the dataset from Jamili
et al. [38–40]. Here, we also used this standard dataset to compare
the performance of our proposed deep learning model with these
existing methods. It is worth noting that DrugMiner and Lin
et al.’s method were constructed based on the whole dataset, while
Sun et al. extracted 10% of the whole dataset to construct the inde-
pendent test set, and we randomly selected 20% as the indepen-
dent test set. All results from the four methods are listed in
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Table 3, the first three of which are directly from the studies of
Sun et al. [39] and Lin et al. [40]. As shown in Table 3, the GA-
Bagging-SVM with 143 features achieved the best overall predic-
tive performance and provided the highest scores of ACC (93.8%),
F value (93.6%), and MCC (0.878). Our proposed deep learning
model did not obtain the best overall prediction performance,
but its performance was comparable to that of state-of-the-art
methods and provided the highest recall rate (94.5%). Since our
deep learning models were developed in autoBioSeqpy software
[77], many operations, including data reading, parameter initial-
ization, sequence encoding, model loading, training, and evalua-
tion, can be executed automatically with one-line commands,



L. Yu, L. Xue, F. Liu et al. Journal of Advanced Research 41 (2022) 219–231
which can save considerable time for users. In addition, compared
with the other three methods, our model is more flexible and inter-
pretable, which supports the use of deep learning techniques to
develop predictors for the identification of potential druggable
proteins. More importantly, this is the first study to use deep learn-
ing algorithms, which also provides a new strategy for druggable
protein prediction.
Discussion

The discovery of drug targets is a matter of utmost importance
for the development of new drugs [80], and the accurate and effec-
tive identification of these targets is a key step in the drug develop-
ment process. At present, increasing attention has been given to
druggable proteins, which play a key role in various diseases and
have proven to be one of the most important sources of drug tar-
gets [81]. Traditional experimental methods are laborious, time-
consuming, expensive, and cannot be used in a high-throughput
manner. Therefore, computational methods have become particu-
larly popular in recent years for identifying potential druggable
proteins for the design and development of new drugs. In this
work, we sought to develop a novel method for predicting drug-
gable proteins directly from primary sequences through the use
of deep learning algorithms. We carried out extensive experiments
for comparison and presented an in-depth analysis. The experi-
mental results show that the hybrid neural network model
achieves better classification performance than the other models
tested. The superior performance of the hybrid model shows that
(i) neural networks (such as CNNs and CNN-RNNs) can extract
high-order information hidden in the sequences; (ii) the use of
additional information (e.g. handcrafted protein features) is helpful
for improving performance; and (iii) the proposed framework can
integrate protein features and deep neural network models well.

As shown in this study, a good deep learning model is related to
many factors, including the architecture of the model, hyperpa-
rameters, feature engineering, etc. A suitable architecture ensures
proper progression of data processing. The hyperparameters can
maintain a certain training progress with reasonable loss values
and gradients in each epoch. Feature engineering can provide
and refine correct information from the current data, even if a part
of it has been integrated into the deep learning layers. In addition,
the quality of the dataset (e.g., size and noise) will be an important
factor. Deep learning methods have demonstrated flexibility in
model design and good interpretability in practical applications
in several machine learning areas, such as computer vision (CV)
and artificial intelligence (AI), but a major reason for this success
is the large size of the training data. For example, the number of
figures used to train a CV model can exceed 1 million for just
one epoch, and using the strategy of manifold learning for some
AI problems can generate a nearly infinite number of samples for
learning. However, in druggable protein prediction, it is currently
difficult to obtain large-scale data for training, so the architecture
and parameters of neural networks are simplified and reduced to
avoid overfitting, rather than embedding state-of-the-art struc-
tures such as various transformer structures to mine the intrinsic
information hidden by the sequences. One possible solution is to
use transfer learning to use more corrected data but still need a
preprovided dataset for parameter initialization. We believe that
with the development of experimental techniques in the postge-
nomic era, the big data generated by the high-throughput experi-
ments on biological systems will be enough for deep learning
modelling in this field.

In summary, we focused on recent deep learning applications in
druggable protein prediction with methods, tools, and gold-
standard datasets that are used to train and test machine learning
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models. We described several types of protein descriptors that are
frequently used in feature engineering, especially for deep learning
applications. We introduced some deep learning toolkits and
libraries, that can design and train different neural network archi-
tectures, generate figures from the results and carry out down-
stream analysis. Based on the experimental results, we generated
an amino acid character dictionary and protein features extracted
from sequence information and subsequently implemented these
features into a hybrid model that integrated convolutional recur-
rent neural networks (CNN-RNNs) and deep neural networks
(DNNs). The hybrid model achieved the best overall prediction per-
formance and afforded the highest scores of ACC (90.0%), F value
(89.6%), recall (89.0%), PRE (90.5%), and MCC (0.800). The innova-
tions of this study are as follows: (i) to the best of our knowledge,
we developed the first deep learning-based druggable protein clas-
sifier for fast and accurate identification of potential druggable
proteins; (ii) different deep learning models and features are
employed to develop the classifier; (iii) to better interpret the
models and explain their predictions, two novel visualization tech-
niques are introduced to give insight into the function of interme-
diate feature layers and the operation of the classifier; (iv) our
comprehensive benchmark assessment suggests valuable direc-
tions for future algorithm development.
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