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1  | INTRODUC TION

As intuitive reflections of biodiversity, morphological characteris-
tics provide valuable taxonomic insights into phenotypic evolution 
and its underlying genetic mechanisms (Grant & Grant, 2006; Joron 
et al., 2006; Peichel et al., 2001). Therefore, comparative morphol-
ogy is generally the indispensable, first step of organismal feature 
identification and investigation. Yet, quantitatively measuring mor-
phological variation remains challenging.

Fortunately, imaging techniques have advanced so that mor-
phological characteristics can be acquired easily. Commonly, mor-
phological features of interest are measured manually and then 
classified based on measured data, and the usual geometric mor-
phometrics describes individuals through relative landmark positions 
(Bookstein, 1996). For example, Drosophila wings are two- dimensional 
structures with clear venation patterns, so the veins and their cross-
ings are usually considered landmarks whose distances and angles 
can be measured precisely (Cavicchi et al., 1981; Guerra et al., 1997).
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Abstract
1. Recognizing and classifying multiple morphological features, such as patterns, 

sizes, and textures, can provide a comprehensive understanding of their variability 
and phenotypic evolution. Yet, quantitatively measuring complex morphological 
characters remains challenging.

2. We provide a machine learning- based pipeline (SVMorph) to consider and classify 
complex morphological characters in multiple organisms that have either small or 
large datasets.

3. Our pipeline integrates two descriptors, histogram of oriented gradient and local 
binary pattern, to meet various classification needs. We also optimized feature 
extraction by adding image data augmentation to improve model generalizability.

4. We tested SVMorph on two real- world examples to demonstrate that it can be 
used with small training datasets and limited computational resources. Comparing 
with multiple CNN- based methods and traditional techniques, we show that 
SVMorph is reliable and fast in texture- based individual classification. Thus, 
SVMorph can be used to efficiently classify multiple morphological characters in 
distinct nonmodel organisms.
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However, using those manual methods with large- scale data-
sets is both difficult and inefficient. Researchers have developed 
several advanced methods, such as WINGMACHINE (Houle 
et al., 2003), DrosoWing (Loh et al., 2017), and FijiWings (Dobens 
& Dobens, 2013), which detect Drosophila landmark information 
automatically, and MORPHOJ (Klingenberg, 2011), which per-
forms further morphological analyses based on landmark data. 
Similarly, some automated systems including machine learning- 
based methods use fundamental wing morphological features 
to classify specific insects. For example, using machine learning- 
based approaches Crnojević et al. (2014) detected vein junctions to 
discriminate hoverfly species. Yang et al. (2015) developed DAIIS, 
which identifies owlfly species according to wing outlines. Also, 
color pattern modeling characterizes Heliconius butterfly pheno-
types by comparing color patterns (Le Poul et al., 2014); a machine 
learning- based approach classifies guenon face patterns (Allen & 
Higham, 2015); and Patternize, another machine learning- based 
method that works for multiple organisms, uses color pattern vari-
ations (Van Belleghem et al., 2018). While those approaches are 
useful, either for focal organisms or for processing a specific mor-
phological feature, they are not easily used with organisms other 
than their original targets or for detecting and classifying more 
complex features that may harbor a wider range of morphological 
variability in a combination of patterns, shapes, and textures. A 
comprehensive and efficient solution that considers and handles 
such integrative features is still required.

As illustrated above, machine learning has recently provided 
remarkable image processing solutions that can both efficiently 
identify complex features and accomplish classification tasks 
(Lürig et al., 2021). Note that although deep- learning algorithms 
are widely applied to feature extraction and classification, they re-
quire relatively larger training sets and cannot appropriately handle 
classification problems with fewer samples. In contrast, support 
vector machine (SVM) universally handles generalized problems 
and performs well when confronted by a limited or imbalanced 
sample size, for the decision boundary can be determined by a few 
support vectors (Tang et al., 2009). Therefore, we developed an 
SVM- based pipeline, SVMorph, for complex morphological classi-
fication. To begin, SVMorph tackles many classification needs by 
combining two optional descriptors, histogram of oriented gradi-
ent (HOG) (Dalal & Triggs, 2005) and local binary pattern (LBP) 
(Baraldi & Panniggiani, 1995), to extract morphological features 
from images, and it then trains an SVM classifier to carry out clas-
sification tasks. We also employ data augmentation to improve 
model generalizability, which aims to increase the dataset size by 
appropriately modifying existing dataset. To illustrate SVMorph's 
usage and performance, we used it to classify two groups of organ-
isms that possess distinct and polymorphic features. Ultimately, 
SVMorph demonstrated its considerable potential and universal-
ity by excellently and proficiently handling complex morphological 
classification.

2  | SVMORPH WORKFLOW

We developed SVMorph in the MATLAB environment (MathWorks 
Inc.). The overall workflow for a typical task generally includes data 
preprocessing, feature extraction, and classification (Figure 1). When 
conducting a new task, a classifier must be trained and established 
before new data may be processed.

3  | DATA ACQUISITION AND 
PREPROCESSING

While raw images may be captured using digital cameras that can 
provide better image resolution, we recommend two- dimensional 
structures, such as insect wings, be photoscanned for better imag-
ing homogeneity. For example, using a regular scanner (HP LaserJet 
Pro M227fdw) with a resolution of 600 dpi, we obtained a single 
forewing image of about 1,000 × 1,000 pixels. While using a digital 
camera (NIKON D850) with a 1:1 macro lens, we could acquire a 
single forewing image of over 3,000 × 3,000 pixels with much higher 
resolution. However, SVMorph or other deep learning- based algo-
rithms only require 256 × 256- pixel or 224 × 224- pixel images as 
input, and even lower resolutions work as well. Therefore, the need 
for image resolution is easily satisfied, so we are more concerned 
with image homogeneity. When the images come from different 
sources, it may be difficult to ensure the consistency of the photo-
graphing equipment or conditions. Relatively, scanners can provide 
stable photographing conditions and low operational complexity to 
obtain images with similar quality. Nevertheless, when digital cam-
eras are properly set up, image homogeneity will not be a critical 
issue. In addition, data augmentation has the potential to reduce the 
effects of unstable photographing conditions. Therefore, ordinary 
photographing devices and normal conditions can satisfy the re-
quirements of SVMorph. After data acquisition, SVMorph requires 
all input image data be preprocessed as follows. Given that both 
HOG and LBP feature descriptors extract feature information from 
eight- bit grayscale images, raw images should be transformed into 
eight- bit grayscale format (Figure 2a,b) and the appropriate bright-
ness, contrast, and exposure are required (Figure 2a) to ensure op-
timum classification accuracy. For our sample datasets, we adjusted 
the butterfly images with the following parameters: brightness 10 
and contrast −50, and we did not adjust the spider images. Note that 
the adjustments in this step are optional. For photoscanned images, 
the adjustment in this step is equivalent to setting these parameters 
correctly when photographing with a digital camera. We want the 
morphological features we care most about to be well expressed in 
the images. Therefore, adjustments such as lighting and exposure 
can depend on the visual effects of the images, that is, whether key 
morphological features can be clearly distinguished visually. In gen-
eral, there are no particular restrictions on photographing, but the 
conditions need to be consistent for a classification task.
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Regarding the sample size, as mentioned above, SVM generally 
performs well compared to other algorithms when faced with a limited 
or imbalanced sample size, because the decision boundary of SVM 
is determined only by a few samples (support vectors). Besides, the 
data augmentation step can improve the classification to some extent 
as well. Therefore, SVMorph is less affected by the limited sample 
size. In practice, the criterion of sufficient sample size is difficult to 
predict and needs to be determined based on the actual model per-
formance. Nevertheless, the model performance generally improves 
with the increasing sample size, so larger sample size is always pre-
ferred. On the other hand, when adding samples, highly imbalanced 
class distributions of samples should be avoided as well. In practice, 
we recommend at least 10 samples for each class and the ratio of 
sample sizes between different classes should be <5. For example, if 
class A has a sample size of 10 which is the least among all classes, the 
sample size of other classes should not exceed 50 for each.

4  | DATA AUGMENTATION

For pattern recognition tasks, a set of preprocessed, classified, and 
labeled image data functions as a training dataset, and many training 
samples usually produce the most robust model. However, the prac-
tical circumstances of morphological studies underlie the critical 
need for a data augmentation step in SVMorph, where the rarity of 
specific specimens often makes sample collection very challenging. 
Data augmentation artificially creates synthetic training data with 

label- preserving transformations by adding slight modifications such 
as cropping, flipping, rotation, and color jittering, which effectively 
deal with limited sample size datasets.

Additionally, data augmentation may potentially involve both 
prior knowledge about the data and task- specific invariances, each 
of which can regularize the model (Dao et al., 2019). Therefore, to 
promote task- specific invariances and generalization of classification 
models, different augmentation methods are needed for different 
tasks. Based on data- specific invariances and features, the prepro-
cessed training datasets may undergo one or more augmentation 
methods (Figure 2c,d) by implementing the augmentation.m script in 
SVMorph. In our sample datasets, the butterfly wing patterns are 
less sensitive to parameters such as resolution, brightness, and con-
trast, so we adopted extensive augmentation methods for butterfly 
images. As for spider images with texture features more susceptible 
to the abovementioned image factors, we applied fewer methods to 
avoid distorting the texture features during the augmentation pro-
cess. Despite the ubiquity of data augmentation in image classifica-
tion, its underlying theoretical principles are not well understood. 
Therefore, in practice, the choice of data augmentation methods 
often depends on the actual performance. Basically, cropping and 
flipping methods are more reliable and commonly used, which may 
be considered as the primary choices. We used random parameters 
for data augmentation, which refer to the specific input arguments 
of data augmentation methods. For example, in the noise addition 
step, we introduced Gaussian white noise with random mean values 
and random variance values. Thus, different images were augmented 

F I G U R E  1   SVMorph framework 
and workflow. HOG, histogram of 
oriented gradient (Dalal & Triggs, 2005); 
LBP, local binary pattern (Baraldi & 
Panniggiani, 1995); and SVM, support 
vector machine
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F I G U R E  2   Image data preprocessing and augmentation. (a) Examples of preprocessed grayscale images of polymorphic wing patterns of 
the dead- leaf butterfly, Kallima inachus. Morph 1: light- colored main vein; Morph 2: dark- colored main vein; Morph 3: dark- colored main vein 
with lateral veins; Morph 4: light- colored main vein with dense black dots; and Morph 5: light- colored main vein with black moldy- looking 
spots. (b) Examples of original images showing the polymorphic body textures of the jumping spider species complex in the Toxeus genus. 
Morph 1: mostly hairless abdomen; Morph 2: abdomen with sparse fine black hair; and Morph 3: abdomen densely covered with white hair. 
(c) Data augmentation examples of contrast adjustment, noise addition, and random cropping of dead- leaf butterfly wing images. (d) Data 
augmentation examples showing flipping and image filtering of jumping spider images
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differently, which could increase the diversity of the image datasets 
and avoid introducing bias during the augmentation process. We also 
tested the effects of data augmentation on the two sample datasets, 
subsequently demonstrating that data augmentation significantly 
improved model accuracies in both cases (Figure 3). Therefore, data 
augmentation is necessary for optimal model performance.

5  | FE ATURE E X TR AC TION

SVMorph offers two descriptors for feature extraction from the 
augmented training dataset: HOG (Dalal & Triggs, 2005) and LBP 
(Baraldi & Panniggiani, 1995). To classify organisms that display a 
combination of various elements and that produce local edge and 
gradient information, we recommend HOG as the major feature de-
scriptor. HOG feature extraction is implemented by the extractHOG-
Features function in the Computer Vision Toolbox in MATLAB 2020b 
(https://www.mathw orks.com/produ cts/compu ter- vision.html). 
Once implemented, HOG divides images into small spatial regions 
called cells, computes discrete histograms for each cell, and then 
assembles the cells into larger spatial regions called blocks to nor-
malize histograms of all the cells in a block (Dalal & Triggs, 2005), 
which helps to maintain better invariance and to illuminate changes 
or shadowing (Figure 4). For texture classification tasks, we recom-
mend LBP be used together with HOG. LBP calculates neighbor-
ing pixel gray values to a center pixel and encodes them as a binary 
number (Baraldi & Panniggiani, 1995), which also endows LBP the 
advantage of computational simplicity (Figure 5). To further reduce 
computation time, we use the extractLBPFeatures function in the 
Computer Vision Toolbox of MATLAB 2020b (https://www.mathw 

orks.com/produ cts/compu ter- vision.html) to implement a uniform 
LBP that corresponds to the number of spatial bitwise transitions 
in LBPs. For example, there would be only 59, instead of 256, total 
patterns for an eight- bit LBP operator. Finally, both HOG and LBP (if 
any) feature vectors from each image are extracted and combined 
for subsequent downstream classification.

6  | CL A SSIFIER TR AINING

To train multiclass SVM models, we implement the fitcecoc function 
in the Statistics and Machine Learning Toolbox (https://www.mathw 
orks.com/produ cts/stati stics.html) in MATLAB 2020b. That function 
adopts a one- versus- one coding design that includes a set of binary 
SVM classifiers for each possible pair in all classes, so for a model of 
n classes, n(n –  1)/2 binary SVM classifiers are trained. We improve 
classification accuracy by applying the error- correcting output code 
multiclass model, which is helpful to deal with multiclass classifica-
tion problems based on multiple binary classifications (Dietterich & 
Bakiri, 1994). For the classification tasks using example datasets, all 
feature extraction and classifier training were performed on a com-
puter with an Intel i7- 10700K (3.80G Hz) processor and 32 GB of 
RAM under a 64- bit Windows operating system.

7  | CL A SSIFIER TESTING

During the evaluation step, we used k- fold cross- validation, which 
partitions all samples into k subsets randomly, to examine classifier 
performances. While a single subset is reserved as test data, the 

F I G U R E  3   Data augmentation effects on model performance. To compare classification performances before and after data 
augmentation, we calculated accuracy for each replicate (20 replicates for each group) of 10- fold cross- validations for the butterfly (a) and 
spider (b) datasets, where data are median (SD). The average accuracy for the butterfly dataset increases from 0.9513 (0.0064) to 0.9748 
(0.0054) after augmentation and from 0.9196 (0.0154) to 0.9433 (0.0110) for the spider dataset after augmentation. Both (a) and (b) show a 
significantly higher degree of accuracy with augmentation than without augmentation. Wilcoxon rank- sum test. Boxes enclose scores within 
the first and third quartiles, and the whiskers show the minimum and maximum values
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remaining k- 1 subsets are used to train the model. A confusion ma-
trix is an n × n table (for n classes), whose rows represent true labels 
and columns represent predicted labels. The elements on the main 
diagonal of a confusion matrix indicate correct predictions and, ide-
ally, all off- diagonal elements equal to zero. The percentage of cor-
rect predictions in all test samples defines the classification model's 
accuracy and, based on the proportion of all main diagonal values in 
the confusion matrix, is computed as follows:

where TP, TN, FP, and FN stand for true positive, true negative, false 
positive, and false negative, respectively. To more specifically evaluate 
a model's performance, we used the precision, recall, and F1 scores 
that we computed for each class, where

For each of our models, we calculated a confusion matrix for each 
round of 10- fold cross- validations and evaluated the measures calcu-
lated from the matrices. We then performed 20 replicates of 10- fold 

cross- validations for each classifier and used the average of 20 results 
to calculate an estimate of the model's performance. For each model, 
we created a receiver operating characteristics (ROC) curve by plotting 
the true- positive rate against the false- positive rate at various thresh-
old values. For ROC calculation, all samples were randomly halved into 
a training dataset and a test dataset and then the training dataset's 
data were augmented. We used the FitPosterior argument of the fitce-
coc function to obtain posterior probabilities for the test sample labels. 
For our multiclass classification model, we first computed ROC scores 
for each class against the rest of the classes by using the roc_curve 
function in the scikit- learn toolbox (Pedregosa et al., 2011) in Python 
3.9 and then calculated a macro- averaged ROC as the mean of the 
binary patterns, which assumes all classes are equally weighted. Area 
under the curve (AUC) of the macro- averaged ROC for each model 
was computed to illustrate their performances (Figure 6).

8  | OUTPUT

Our optimally performing, trained and tested classifiers can be used 
for relevant data classification tasks. Using the prediction.m script in 
SVMorph, we designed classifiers to output predicted labels directly. 
New data that have undergone preprocessing can be classified using 
the established classifier, and that results in the most relevant labels 
being assigned to the image data (Figure 7).

(1)accuracy = (TP + TN) ∕ (TP + TN + FP + FN)

(2)precision = TP∕ (TP + FP) ,

(3)recall = TP∕ (TP + FN) ,

(4)F1 score = 2 × recall × precision∕ (recall + precision) .

F I G U R E  4   Local histogram of oriented 
gradient (HOG) feature extractions from 
the butterfly wing patterns. We chose 
focal regions (in white boxes) from typical 
256 × 256- pixel image data of Kallima 
inachus Morph 3 (a) and Morph 2 (b), with 
a cell size of 32 × 32 pixels and a block 
size of 2 × 2 cells. (c, d) Rose plots of the 
local HOG features extracted from each 
specific area in the white boxes in (a) and 
(b), respectively. Petal length indicates 
the gradient orientation distribution of 
a direction within a cell. Petals showing 
sharp differences between two wing 
forms are highlighted in red (c) and blue (d)

(a) (b)

(c) (d)
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9  | USAGE E X AMPLES

9.1 | Wing pattern classification for dead- leaf 
butterflies

Dead- leaf butterflies (Kallima spp.) are well known for the leaf pat-
terns on the ventral sides of their wings and are thus a classic exam-
ple of morphological adaptation (Suzuki et al., 2019). Traditionally, 
those complex morphological variations have been difficult to quan-
tify precisely and efficiently, so we employed SVMorph to establish 
an SVM model and to classify those polymorphic leaf wing charac-
ters. According to the prior knowledge, we labeled them from Morph 
1 to Morph 5 (Figure 2a).

During data acquisition and preprocessing, we photoscanned (HP 
LaserJet Pro M227fdw) ventral forewing images from 230 K. inachus 
individuals. The subsequent RGB PDF images each had <600 dpi res-
olution, were extracted using Adobe Photoshop (Adobe Photoshop 
CC 2018 v19.1.9, Adobe Systems Inc.), and were merged together 
for batch operations. Then, we preprocessed all the images by first 
transforming them into eight- bit grayscale format with brightness and 
contrast adjusted to 10 and −50, respectively, and then cropped them 
into separate wing images using the imagecrop.m script in SVMorph. 
Then, the images used for the training dataset were classified and 

labeled manually according to our a priori knowledge (nMorph 1 = 77, 
nMorph 2 = 56, nMorph 3 = 60, nMorph 4 = 18 and nMorph 5 = 19). During 
data augmentation, preprocessed 256 × 256- pixel wing images were 
randomly cropped to 224 × 224 (Figure 2c). Then, we randomly in-
troduced Gaussian white noise with means ranging from 0.1 to 0.2 
and variances ranging from 0.02 to 0.05 (Figure 2c). Contrast values 
used as input limits were randomly adjusted at low intensity values 
ranging from 0.0 to 0.1 and high intensity values ranging from 0.9 to 
1.0 (Figure 2c). Since the butterfly wing patterns appear in a combi-
nation of various elements, we selected HOG as the major feature 
descriptor. In order to capture relative large- scale wing pattern in-
formation while saving computation time, we set 32 × 32- pixel cells 
and 2 × 2- cell blocks for butterfly images of 256 × 256 pixels. We 
used nine orientation bins that were evenly spaced from 0 to 180 
degrees to encode oriented gradient information (Figure 4) and ex-
tracted 1,764- dimensional HOG feature vectors from each image. 
Considering those high- dimensional feature vectors, we selected the 
SVM model with the linear kernel function to reduce computational 
complexity and overfitting, which also guarantees that the model 
has fine generalization properties. To evaluate the butterfly classi-
fier's performance, we evaluated accuracy, precision, recall, and F1 
scores (Table 1) by using 20 replicates of 10- fold cross- validation. 
Using data augmentation, the butterfly classifier's overall accuracy 

F I G U R E  5   Local binary pattern (LBP) 
feature extraction of spider body textures. 
We chose focal regions (in a white or 
black box) from 512 × 512- pixel typical 
image data of Toxeus genus Morph 1 (a) 
and Morph 3 (b), with a cell size of 64 × 64 
pixels. (c) Squared errors of the histograms 
calculated for each cell in boxes 1A and 
1B (a) and 3 (b) compare LBP features 
extracted from the focal regions. Squared 
errors are relatively smaller for regions 
with similar textures (M1A– M1B) and 
relatively larger for regions with different 
textures (M1A– M3 and M1B– M3)
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F I G U R E  6   Receiver operating characteristic (ROC) curves for multiclass classifications. Macro- averaged ROCs and areas under the curve 
(AUCs) illustrate the predictive abilities of the trained butterfly (a) and spider (b) classifiers. ROC curves plot the true- positive rate against 
the false- positive rate at various threshold settings, and the threshold settings are determined by posterior probability distributions of all the 
samples. Both ROC curves in (a) and (b) are far from the diagonals, indicating a high level of model performance relative to random guessing

(a) (b)Butterfly ROC Spider ROC

F I G U R E  7   Classifier output that can be used for classification tasks. Examples of the output labels predicted by the trained classifiers for 
dead- leaf butterflies (a) and jumping spiders (b) using test data. Labels M1– M5 correspond, respectively, to butterfly morphs 1– 5 shown in 
Figure 2a, and labels M1– M3 correspond, respectively, to spider morphs 1– 3 shown in Figure 2b

(b)

(a)
Predicted Label: M1 Predicted Label: M2 Predicted Label: M5Predicted Label: M4Predicted Label: M3

Predicted Label: M2Predicted Label: M1 Predicted Label: M3
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reached 97.4%, while most classes had fine precision, recall, and F1 
scores. However, Morph 5 had a relatively low recall value (86.8%), 
most likely due to its small sample size or high within- group variation. 
The trained model's macro- averaged ROC curve showed very good 
predictive ability for butterfly classification (Figure 6a).

Now using the trained classifier, we classified the preprocessed test 
data and labeled it accordingly (Figure 7a). The subsequent computa-
tional feature extraction and classification processes for this K. inachus 
dataset with 1,764- dimensional feature vectors took approximately 
0.03 s per image to run. According to our results, the butterfly image 
data were classified and assigned accurately, efficiently, and appropri-
ately to the abovementioned morphs, thus demonstrating the power 
of SVMorph to extract and distinguish complex wing patterns.

9.2 | Body texture classification in jumping spiders

Toxeus spp. jumping spiders are highly polymorphic mimics that re-
semble unpalatable Polyrhachis ants and thus have a protective ad-
vantage (Yamasaki & Ahmad, 2013), providing an excellent example 
with which to test SVMorph. Among them, members of the species 
complex of T. maxillosus, T. magna, and T. globose are closely related 
and have three mimicry morphs according to the body texture fea-
tures that we named from Morph 1 to Morph 3 (Figure 2b).

Using a microscope (Nikon SMZ18) with an attached digital cam-
era (Nikon DS- Ri2), we photographed 99 individual spiders. Raw im-
ages were captured using SHR Plan Apo 1×, at zoom magnification 
of 0.75× with Nikon C- FLED2 LED Light Source. We directly trans-
formed the images into eight- bit grayscale format and zoomed into 
the abdominal areas (Figure 2b). Finally, we classified and labeled the 
images manually according to their phenotype information (nMorph 

1 = 19, nMorph 2 = 42, and nMorph 3 = 38). Since the spider data were 
more sensitive than the previous butterfly wing data, we performed 
data augmentation in the same way as we did for the butterfly data 

except for noise addition and contrast adjustment (Figure 2d). The 
images were filtered using an averaging filter with a hsize of [3 3] and 
the convolution option. During feature extraction, we used the same 
HOG parameters that we had used for the butterfly wing images and 
extracted 8,100- dimensional HOG feature vectors from each image. 
In addition, we introduced LBP to extract local texture information. 
To preserve more local details, we divided the original 512 × 512- 
pixel images into 64 × 64- pixel spatial regions and then calculated 
uniform LBP histograms for each cell (Figure 5). Specifically, a one- 
radius circular pattern was used to compute the LBP of eight neigh-
bors for each pixel, and rotationally invariant features were not 
considered. Then, L2 normalization was applied to each cell's LBP 
histogram. As a result, 3,776- dimensional LBP feature vectors were 
extracted from each image of the spider dataset, and both HOG and 
LBP descriptors were combined into 11876- dimensional feature 
vectors for spider image classification. As with the butterfly data, we 
applied the SVM model with the linear kernel function to those high- 
dimensional feature vectors. By using 20 replicates of 10- fold cross- 
validations, we calculated accuracy, precision, recall, and F1 scores 
that helped us evaluate the jumping spider classifier's performance 
(Table 2). With data augmentation, the overall accuracy of the jump-
ing spider classifier was over 94.3% and, as it was with the butterfly 
classifier, jumping spider Morph 1, which had the smallest sample 
size, also had a relatively low recall value (83.4%). These results 
suggest that as training sample size increases, classification perfor-
mance should improve. The macro- averaged ROC curve showed a 
considerable predictive ability for spider classification, comparable 
to that of the butterfly classification model performance (Figure 6).

Finally, the preprocessed spider test data were classified using 
the trained classifier and labeled accordingly (Figure 7b). The fea-
ture extraction and classification process for the spider dataset 
with 11876- dimensional feature vectors took approximately 0.04 s 
per image to compute. Our results showed that the spider image 
data were precisely classified and assigned to the abovementioned 
morphs, thus suggesting that these spiders could be classified ac-
cording to their body textures and without any intermediate morph.

9.3 | Performance of SVMorph and other methods

To evaluate the performance of SVMorph, we compared the accu-
racy and running time for SVMorph and other methods including the 
morphology- based taxonomy and three established deep learning 
(Convolutional Neural Network, CNN)- based models such as AlexNet 
(Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015), and VGG 

M1 M2 M3 M4 M5 overall

Precision 0.9792 0.9300 1.0000 1.0000 1.0000 0.9818

Recall 0.9760 0.9920 0.9833 1.0000 0.8684 0.9639

F1 score 0.9776 0.9599 0.9916 1.0000 0.9290 0.9716

Accuracy — — — — — 0.9748

Note: M1– M5 correspond, respectively, to butterfly morphs 1– 5 shown in Figure 2a.

TA B L E  1   Evaluation measures for 
the butterfly wing classifier (with data 
augmentation)

TA B L E  2   Evaluation measures for the jumping spider classifier 
(with data augmentation)

M1 M2 M3 overall

Precision 0.9921 0.9014 0.9734 0.9556

Recall 0.8342 0.9726 0.9645 0.9238

F1 score 0.9051 0.9354 0.9688 0.9365

Accuracy — — — 0.9433

Note: M1– M3 correspond, respectively, to spider morphs 1– 3 shown in 
Figure 2b.
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(Simonyan & Zisserman, 2014) (Table S1). All the methods were tested 
using both butterfly and spider datasets on one Intel i7- 8700 (3.20G Hz) 
CPU with 16 GB RAM. We also tested three CNN- based methods on 
a Quadro P400 GPU, but the VGG- 16 did not complete the task owing 
to memory overflow, indicating a limitation of GPU usage on such sce-
narios. For each CNN- based method, the accuracy was the mean value 
of ten separate runs to overcome the randomness of CNN model train-
ing, whereas SVMorph yielded consistent results. For each method, the 
time was the mean value of ten separate runs. For the butterfly data-
set, we have not established a reliable morphology- based taxonomy, 
whereas for the spider dataset, we quantified the spider body textures 
using a scanning electron microscope (SEM). The SEM images showed 
that the different body textures were due to different cuticle struc-
tures and seta lengths. We collected six individuals for each pheno-
type and measured three setae for each individual, which took about 
two days. Relative to the manual morphology- based taxonomy, all the 
CNN- based methods and SVMorph cost less time. However, one of the 
CNN- based methods showed relatively lower accuracy in analyzing 
both datasets. The SVMorph method performed better with consider-
ably high accuracy and the least amount of running time when handling 
the two datasets, suggesting its application potential on specific and 
complex classification tasks, and the deep learning- based algorithms 
focus on the generalization ability instead of specificity.

10  | DISCUSSION

The scales and setae of invertebrates are single- cellular cuticular 
structures extending from the cuticle, which play an important role 
in generating phenotypic diversity and can have a profound impact 
on fitness (Tian et al., 2019). Taken the two sample datasets as an 
example, the dead- leaf butterflies in K. inachus display a remarkable 
diversity of leaf wing patterns for masquerade (Protas & Patel, 2008), 
whereas different morphs of Toxeus jumping spiders mimic different 
ant species to gain a protective advantage (Yamasaki, 2015). These 
cuticular structures accommodate not only color variation but also 
shape variation such as length, width, and diameter of a cross sec-
tion, and pilosity variation (Matsuoka & Monteiro, 2018). Therefore, 
the complexity in cuticular structures makes it difficult to classify the 
phenotypes and understand the underlying mechanisms of pheno-
typic diversity. To characterize the wing coloration of butterflies, one 
may measure wavelength reflectance in at least three locations: the 
main vein, lateral veins, and spots. To quantify the texture patterns, 
one may need to place setae on scanning electron microscopy (SEM) 
stubs, sputter- coat them with gold– palladium, and measure their 
length and width under SEM. However, it is difficult and inefficient 
to apply these quantifying methods to large- scale datasets. SVMorph 
is a convenient and efficient method for identifying variations of cu-
ticular structures such as setae and scales. The method obtained in 
this study can be used for analyzing wing patterns and body textures, 
which could fully develop identification systems of phenotypic poly-
morphism for such nonmodel organisms and bridge the gap between 
genotype and phenotype. Furthermore, due to the generality of the 

proposed method, it can be used with no major modification for other 
tasks, such as analyzing cuticular structures in other invertebrates.

11  | CONCLUSIONS

SVMorph, a fast and accurate pipeline for handling classification 
tasks with complex patterns and textures, is particularly helpful 
for batch processing large image data applications. Also, based on 
the performance of a trained classifier, it can be used to examine 
a priori hypotheses of organismal classifications or to extract and 
investigate images with rare morphological features that cannot 
be appropriately labeled. Moreover, SVMorph is very modular and 
easy to schedule, thus giving the researcher the ability to perform 
each step independently and interactively with other applications. In 
summary, SVMorph efficiently characterizes and classifies morpho-
logical characters of nonmodel organisms.
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