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A B S T R A C T

Nitric oxide (NO) is a ubiquitous signaling molecule that is critical for supporting a plethora of processes in
biological organisms. Among these, its role in the innate immune system as a first line of defense against path-
ogens has received less attention. In asthma, levels of exhaled NO have been utilized as a window into airway
inflammation caused by allergic processes. However, respiratory infections count among the most important
triggers of disease exacerbations. Among the multitude of factors that affect NO levels are psychological processes.
In particular, longer lasting states of psychological stress and depression have been shown to attenuate NO
production. The novel SARS-CoV-2 virus, which has caused a pandemic, and with that, sustained levels of psy-
chological stress globally, also adversely affects NO signaling. We review evidence on the role of NO in respiratory
infection, including COVID-19, and stress, and argue that boosting NO bioavailability may be beneficial in pro-
tection from infections, thus benefitting individuals who suffer from stress in asthma or SARS-CoV-2 infection.
1. Introduction

Asthma and respiratory infections are diseases that cause an enor-
mous health care, economical, societal, and individual burden. The
COVID-19 pandemic is the most recent dramatic example for the global
scale of the threat from respiratory disease. Psychological factors are
known to affect asthma and respiratory infections and their burden in
turn can affect psychological and behavioral functioning. Airway nitric
oxide (NO) has been identified as a protective factor against respiratory
pathogens. Recent research has shown that NO production is linked to
psychological factor. In the following, we review the role of NO and stress
in asthma and respiratory infection, including COVID-19. We propose
that boosting airway NO may benefit the innate immune defense and
elevate resistance against respiratory infections in psychological stress
and other conditions of heightened vulnerability.

2. The burden of asthma and respiratory infections

Asthma is a common chronic respiratory disease affecting an esti-
mated 339 million people worldwide (Global Asthma Network, 2018),
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including 25.7 million individuals in the US alone. Among children and
adolescents, asthma is the most common chronic illness and has
continued to increase in prevalence in the past several decades. Asthma
extolls a substantial burden on the patients’ well-being and can be life
threatening if not controlled adequately. Asthma-related morbidity and
mortality highlight the need for better control and exacerbation pre-
vention. With approximately $56 billion each year in direct health care
costs and lost productivity (Barnett and Nurmagambetov, 2011), the
economic costs of asthma are significant, as are the costs to the sufferer’s
well-being. Although medical treatment has improved, overall asthma
control remains unsatisfactory.

Respiratory tract infections are the leading cause of physician visits in
developed countries (Shann et al., 1999), accounting for an estimated 10
million outpatient visits a year (Thomas et al., 2020). Their adverse ef-
fects on personal well-being, mood, cognition, and performance are
well-known (Smith, 2016). The economic costs of respiratory tract in-
fections are high with an estimated $22 billion annual and accounting for
more than 20 million missed days of school and work in the US (Fendrick
et al., 2003; Adams et al., 1999). Respiratory infections are difficult to
treat (Musher and Thorner, 2014). Most recently, COVID-19 has
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increased the economic, health care, and psychological burden of respi-
ratory virus infections worldwide dramatically (Subbaro and Mahanty,
2020).

3. Asthma and respiratory infections

Asthma is a chronic inflammatory airway disease characterized by
episodic exacerbations, which are associated with distressing symptoms
of shortness of breath, chest tightness, cough, and wheezing (National
Heart Lung and Blood Institute (NHLBI), 2007). Symptom worsening,
loss of asthma control, or exacerbations can be precipitated by various
allergens, air pollution or irritants, weather/climate changes, respiratory
infections, exercise, or psychological stress, as suggested by both obser-
vation and challenge tests and patient self-report (Ritz et al., 2006, 2008,
2016). Upper respiratory infections and common colds are particularly
potent triggers of exacerbations and are estimated to be a factor in up to
80–90% of patients (Busse et al., 2010; Jartti and Gern, 2017). Compared
to allergic triggers, which can be more salient and often can be avoided
more easily, infections are less easily evaded (especially in critical sea-
sons). Allergic inflammation of the airways interacts with respiratory
viruses (Edwards et al., 2017), resulting in more severe and longer illness
periods in asthma and increased asthma exacerbations.

4. Psychological stress and respiratory infections

People commonly report that they contract colds during stressful
periods of their lives. Research has indeed demonstrated that psychoso-
cial stress is associated with cold symptoms or upper respiratory tract
infections (Falagas et al., 2010; Pedersen et al., 2010). Self-reported
stress is associated with common cold symptoms in both children and
adults (Cobb and Steptoe, 1996; Evans and Edgerton, 1991; Smolderen
et al., 2007; Turner-Cobb and Steptoe, 1998) and experimental infection
studies have shown associations between the development of cold
symptoms and perceived stress, lack of social support, or loneliness.
(Cohen et al., 1991; LeRoy et al., 2017; Stone et al., 1992). Virtually all
major constructs of negative affect, including anxiety, depression,
neuroticism, perceived stress, chronic stress, negative life-events, or daily
hassles have been associated with susceptibility to respiratory infections
or outcomes such as cold symptom severity or duration (Falagas et al.,
2010). Importantly, associations with stress do not vary whether studies
monitor biological indicators of respiratory infection or cold symptoms
(Pedersen et al., 2010).

Biological factors underlying the stress-infection association have also
been explored, with studies suggesting a role for systemic proin-
flammatory cytokine production (Cohen et al., 1999), natural killer cell
cytotoxicity (Cohen et al., 2002), catecholamine levels (Cohen et al.,
1997), leukocyte telomere length (Cohen et al., 2013), cardiovascular
stress reactivity (Boyce et al., 1995), and cortisol levels or cortisol stress
reactivity (Cohen et al., 2002; Janicki-Deverts et al., 2016). Comparably
fewer studies have explored local airway processes, in particular airway
mucosal immune responses, to stress (Trueba and Ritz, 2013). Cohen
et al. (1997) found that social support increased mucociliary clearance of
infection. A number of studies have examined immunoglobulin A (IgA)
(Bosch et al., 2004) and other molecules relevant to adaptive and innate
immunity extracted from saliva (Bosch et al., 2003), but a clear rela-
tionship with cold symptoms has not been established and factors more
directly linked to airway mucosal immunity have not been studied in
detail.

5. Asthma, psychological stress, and respiratory infections

Asthma has long been associated with emotions and psychological
stress (Lehrer et al., 2002; Ritz et al., 2013). Anecdotal and clinical re-
ports have detailed psychologically induced asthma symptoms or exac-
erbations. Longitudinal epidemiological research has also made progress
in demonstrating the role of psychopathology and stress as a precursor of
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asthmatic pathology. Additionally, laboratory studies have demonstrated
the susceptibility of the airway to stress induction (Ritz, 2012) and
observational studies have detailed associations between life stress fac-
tors, airway inflammation, and asthmamanagement outcomes (Chen and
Schreier, 2008; Kullowatz et al., 2008; Liu et al., 2002; Rosenkranz et al.,
2016). Consequently, asthma treatment and management guidelines
have listed stress or psychosocial influences among both host factors that
favor the development of asthma and as antecedent factors triggering
exacerbations of existing asthma (NHLBI, 2007). Research with a psy-
chometrically validated perceived asthma trigger questionnaire has
shown that patients who experience psychological triggers suffer from
low perceived control of asthma, high anxiety and depression, and a
reduced quality of life (Ritz et al., 2006, 2008, 2016). In addition, among
all perceived triggers, only psychological triggers are consistently asso-
ciated with a lower asthma control, explaining up to 10% of the variance
in symptoms, daily life function, nighttime sleep, and bronchodilator use
(Ritz et al., 2014). Psychological triggers are associated with
physician-recorded asthma exacerbations and emergency treatments
over and above other trigger factors, anxiety, and depression (Ritz et al.,
2016). Elevated susceptibility for respiratory infections with stress is one
pathway for the effects of stress on asthma (Trueba and Ritz, 2013;
Wright et al., 1998). Perceived psychological asthma triggers usually
correlate with respiratory infection triggers (Ritz et al., 2006, 2008).
However, there is a lack of longitudinal studies that monitor stress, res-
piratory infections or common cold symptoms, and asthma control across
periods of critical life stress.

6. The COVID-19 pandemic: effects on psychological well-being

The recent COVID-19 pandemic has disrupted or destroyed regular
daily life, social networks, livelihoods, and lives of billions of people
around the globe. Whereas early into this crisis, detrimental mental
health effects on health care personnel, who works on the frontlines of
patient care, have been recognized (Lai et al., 2020), increasingly the
broader impact on global mental health is being documented (Szcze�sniak
et al., 2021; Torales et al., 2020). The threat of infection and potential
long-term health consequences or death, combined with stay-at-home
orders or lockdowns, loss of occupation, and separation from families
and friends, have created multiple sources of challenges that are pro-
totypes of intense and sustained stress, which can result in helplessness,
hopelessness, and depression. Although challenges vary and sub-
populations can mobilize different resources and resiliency factors
(Nikolaidis et al., 2021), even young and healthy populations such as
college students can show mood effects that predispose to depression
(Elmer et al., 2020; Hasratian, under review). Given the evidence on
stress and respiratory infections, it can be expected psychological factors
can worsen the course of this illness.

7. Airway NO in asthma

NO is a ubiquitous signaling molecule employed in multiple organ-
ismic processes, including vasodilation and bronchodilation, impulse
transmission in peripheral and central nervous system, and inflammation
(F€orstermann and Sessa, 2012). At the molecular level, NO has an un-
paired electron in the ground state and exists as a free radical under
biological conditions (Fukuto et al., 2012). As a free radical, reactions are
generally fast with other radical species. NO reacts with oxygen (O2) in a
termolecular process to produce two equivalents of nitrogen dioxide
(NO2

�), which can subsequently react with another equivalent of NO to
form dinitrogen trioxide (N2O3) (Wink et al., 1992). N2O3 is a reactive
nitrosating species that can react with thiols, amines, and other bio-
molecules to form nitroso compounds that have important roles in
cellular signaling, but also potentially deleterious effects (Hess et al.,
2005). N2O3 will ultimately decompose to form nitrite (NO2

–), which is
often used as a marker of NO production. The oxidation of NO by oxygen
is second order in NO, which means the rate the reaction of NO with



Fig. 1. Mechanisms involved in antiviral effects of NO. A range of viral enzymes
and proteins that are critical for viral replication can be inactivated by S-
nitrosylation of their cysteine residues. NO can also react with superoxide an-
ions to form the highly reactive peroxynitrite, which oxidizes DNA and the
amino acids of capsids that form the envelope of the virus, and thus interfere
with entry of the virus into the host cell by cross-linking the capsids. In coro-
navirus strains, NO reduces the addition of palmitate, a saturated fatty acid, to
the spike proteins on the envelope of the virus and thereby interferes with
binding to the host cell’s angiotensin-converting enzyme (ACE)-2 receptor.
Airway epithelial cells are the first to contact respiratory viruses and play the
main role in NO defenses, but other cells can also participate in antiviral
NO activity.
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oxygen is slow at low concentrations of NO and faster at higher con-
centrations of NO. This is an important consideration when comparing
the signaling of low levels of NO to pharmacological or even pathological
effects at higher levels of NO, due to the production of highly reactive
oxygen species. NO can also react with superoxide (O2

�–) to produce
peroxynitrite (ONOO–), which can further react to form the indiscrim-
inately damaging hydroxyl radical (HO�) and nitrogen dioxide (NO2

�)
(Pryor and Squadrito, 1995). Additionally, NO can react with reductants
like hydrogen sulfide (H2S) or other cellular reductants to produce aza-
none (nitroxyl, HNO), a molecule that can quickly react with ubiquitous
biological nucleophiles by two-electron mechanisms (An et al., 2019).
Although N2O3, ONOO–, HNO, and other reactive species do have pro-
posed roles for cellular signaling, they can cause deleterious cell damage,
and are more likely to be produced when levels of NO exceed healthy
physiological concentrations. These considerations highlight the fine
details that must be considered when using NO or NO donors in a ther-
apeutic approach (Daiber and Münzel, 2015).

NO has been measured in exhaled air as the fraction of exhaled NO
(FENO) ("ATS/ERS recommendations for standardized procedures for the
online and offline measurement of exhaled lower respiratory nitric oxide
and nasal nitric oxide, 2005," 2005; Dweik et al., 2011). In asthma, FENO
has found support as an indicator of airway inflammatory processes,
because large amounts of it are produced by immune cells involved in
allergic inflammation (Dweik et al., 2011; Forsythe et al., 2001; Ric-
ciardolo et al., 2004; Silkoff et al., 2006). A major source of elevated
levels FENO levels in atopic asthmatics are eosinophils (Ricciardolo et al.,
2004), which contribute to asthmatic inflammation and tissue damage
(Pijnenburg and De Jongste, 2008; Yates, 2001). FENO has become a
widely accepted marker of Type 2 airway inflammatory status in asthma
(Barnes et al., 2010; Dweik et al., 2011). Anti-inflammatory treatment
with inhaled corticosteroids reduces FENO levels (Pijnenburg and De
Jongste, 2008; Yates, 2001).

However, the function of elevated NO levels in asthma is far from
clear and both detrimental as well as beneficial effects of airway NO have
been demonstrated (Ricciardolo et al., 1996; Sanders, 1999). NO is
formed from L-arginine by NO synthase (NOS) for which three isoforms
have been identified: two constitutive forms NOS1 (or nNOS) and NOS3
(or eNOS), which are mostly found in postsynaptic terminals of neurons
or endothelial cells, respectively, and an inducible isoform NOS2 (or
iNOS) in immune cells such as eosinophils or macrophages (Ricciardolo
et al., 2004). In the lung, depletion of neuronal NO can interfere with
bronchodilation, reduce bronchoprotection from constricting agents, and
induce airway hyperreactivity (Belvisi et al., 1992; Persson et al., 1995;
Ricciardolo et al., 1996). Reduction of endothelial NO is associated with
excessive vascular smooth muscle contraction and pulmonary hyper-
tension (Klinger and Kadowitz, 2017). In healthy individuals, FENO is
almost exclusively dominated by iNOS activity in epithelial cells (Lane
et al., 2004), whereas in asthma, iNOS activity from an additional variety
of immune cells linked to allergic inflammation contribute to high levels
of FENO. Given the short half-life of NO, a number of factors that can limit
its diffusion from cell compartments (Villanueva and Giulivi, 2011), and
potential activity of NOS inhibitors or NO competitors, it is unlikely that
other NOS isoforms contribute substantially to FENO.

8. Airway NO as a major factor in pathogen defense

Beyond its role as an indicator of allergic airway inflammation, NO is
a major player in the mucosal defense of the airways (Proud, 2005;
Vareille et al., 2011; Xu et al., 2006). NO produced by constitutive NOS2
activity in airway epithelial cells is part of the innate immune response. It
is secreted upon contact with pathogens and unfolds cytostatic and
cytotoxic properties (Xu et al., 2006). NO levels are substantially
increased in airway infection (Kharitonov et al., 1995) and higher NO
levels in experimental human rhinovirus infection have been linked to
more effective viral clearance, fewer symptoms (Sanders et al., 2004),
and reductions in the chemokine infection marker CXCL10/IP-10
3

(Koetzler et al., 2009). The role of NO appears to be linked to early
stages of infection, limiting viral replication, while adaptive immune
processes seem to be more important in later stages of pathogen clear-
ance from the airways and the resolution of infections (Proud, 2005).

NO is active against a range of DNA and RNA viruses, including res-
piratory virus strains such as influenza virus, respiratory syncytial virus,
rhinovirus, and coronavirus, by unfolding a range of suppressive actions
against these pathogens. Among the possible antiviral mechanisms are S-
nitrosylation of cysteine residues of viral proteins that are essential for
replication (Colasanti et al., 1999), deamination of DNA (Wink et al.,
1991), and generation of peroxynitrite by reaction of NOwith superoxide
anions, which can interfere with viral entry into the host cell (Padalko
et al., 2004) and oxidize amino acids of viral capsid proteins (Bastin et al.,
2020). In the case of the coronavirus family, NO inhibits viral replication
by reducing the palmitoylation of the spike protein on the virus envelope,
thereby interfering with binding to the target receptor on the host cell
(Akerstr€om et al., 2009) (Fig. 1). Whereas these mechanisms have been
studied mostly in airway epithelial cells, other immune cells, such as
eosinophils and macrophages, have also been found to contribute to the
antiviral NO response (Benencia and Courreges, 1999; Drake et al.,
2016).

Endogenous NO also enhances ciliary beat frequency of the nasal
respiratory epithelium facilitating mucociliary clearance of pathogens
(Alberty et al., 2004, 2006). Therefore, NO would pose as an intriguing
target for respiratory infection prevention efforts. In support of this idea,
the role of FENO relative to cold symptoms was prospectively studied in
healthy and asthmatic students (Ritz et al., 2018). Cold symptoms were
measured with the Wisconsin Upper Respiratory Symptom Survey (Bar-
rett et al., 2005) (WURSS), a reliable measure validated against viral
infection markers. Higher basal FENO was associated with lower cold
symptoms 5–10 days after academic finals. Additionally, baseline
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perceived stress, cortisol levels during the finals, and vascular endothelial
growth factor measured in saliva and exhaled breath condensate pre-
dicted cold symptoms. Overall, these factors explained 60% of the vari-
ance in reported cold symptoms.

9. Stress and depression compromise airway NO

Emerging research has shown that FENO varies with psychosocial
factors in particular stress and mood states (Ritz and Trueba, 2014).
Across a number of studies we and others have found FENO is elevated
following acute laboratory challenges, such as public speech paradigms,
stressful interviews, or unpleasant odor exposure, and that higher FENO
levels are associated with stronger acute negative affect (Chen et al.,
2010; Ja�en and Dalton, 2014; Kullowatz et al., 2008; Ritz et al., 2011;
Ritz et al., 2014). On the other hand, FENO increases following acute
laboratory stressors are reduced (Ritz et al., 2014), or overall FENO levels
are lower, with higher levels of depressive symptoms (Cepeda et al.,
2016; Ritz et al., 2015). Reports of more daily hassles in the past month
have also been associated with lower FENO levels (Kullowatz et al., 2008).
Moreover, compared to low stress in mid-semester, FENO is reduced
during a week-long academic stress period in healthy students (Trueba
et al., 2013). Another study observed a gradual decline in FENO levels
during final examinations, which was particularly prominent for students
with asthma and those with depressive symptoms showed an accelerated
decline of FENO (Ritz et al., 2015). Others have observed a FENO decrease
in healthy students but not asthma during an academic stress period
(H€oglund et al., 2006). In contrast, higher levels of social support in
healthy students were also associated with higher basal FENO (Trueba
et al., 2014). Taken together, sustained acute, longer-lasting, or chronic
stress appear to reduce FENO. Reduced mobilization of NO could
compromise mucosal immunity and make individuals more susceptible
to respiratory infections.

A number of mechanistic pathways have been proposed for enhanced
NO release due to stress, including sympathetic stimulation of epithelial
or mast cells, or enhanced interferon-γ production by T-helper cells
stimulating iNOS production (Ritz and Trueba, 2014). NO reduction due
to longer lasting stress could be due to action on NO inhibitors or com-
petitors, such as oxidative stress processes. Additionally, stress-related
hypothalamic-pituitary-adrenal axis activation has been suggested as a
factor, with higher salivary cortisol levels linked to attenuated FENO in-
creases to acute stress (Ritz et al., 2011) and reduced FENO levels in
sustained stress of the academic finals (Ritz et al., 2015).

10. NO in SARS-CoV-2 infection

SARS-CoV-2 infection has also been shown to disrupt signaling that is
critical for endothelial NO production. The angiotensin-converting
enzyme 2 (ACE2) receptor that is used by the virus as a main gateway
into cells, in health supports a signaling cascade that counteracts the ACE
– angiotensin II - angiotensin receptor-1 pathway, which is traditionally
known to lead to sympathetic activation, vasoconstriction, and inflam-
mation, and is responsible for vascular damage and disease outcomes
including hypertension and heart failure (Patel and Schultz, 2013).
Conversion of angiotensin II by the ACE2 receptor to angiotensin (1–7)
supports an alternative metabolic pathway that, among other effects,
enhances NO production and is vasoprotective. This protective system is
also active in lung epithelial cells (Adusumilli et al., 2020; Samavati and
Uhal, 2020). Viral activity inactivates this pathway and leads to wide-
spread cardiovascular and pulmonary damage, including low levels of
NO. NO production is also reduced in populations that are at particular
risk from SARS-CoV-2 infection, including those of older age or suffering
from underlying conditions such as type 2 diabetes, metabolic syndrome,
chronic obstructive pulmonary disease (COPD), obesity, or autoimmune
disorders (Adusumilli et al., 2020; Ozdemir and Yazici, 2020). Suffi-
ciently high levels of NO can offset at least some of the drastic adverse
consequences of the infection, including vascular inflammation,
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hypercoagulation, impaired microvascular blood flow and oxygen de-
livery with accumulation of toxic byproducts, and pulmonary hyperten-
sion (Adusumilli et al., 2020; Zhang et al., 2020).

11. Vaccinations and supplements for prevention of respiratory
infections

The prevalence and burden of respiratory infections has resulted in
numerous research strategies to aid in prevention, including vaccines,
predominately live attenuated or inactivated viruses (Papadopoulos
et al., 2017). However, a recent Cochrane systematic review showed that
there was no significant difference between vaccine and placebo in
preventing the common cold (Simancas-Racines et al., 2017). Respira-
tory syncytial virus, which is known to exacerbate symptoms of asthma
(Falsey et al., 2005; Simpson et al., 2003), has no effective vaccine
(Jorquera and Tripp, 2017). Supplements have commonly been used as
prevention strategies for respiratory infections, but findings have
remained equivocal. Studies of vitamin C (Hemilia and Chalker, 2013)
and D (Martineau et al., 2017) have not supported initial enthusiasm
(Li-Ng et al., 2009; Murdoch et al., 2012). Probiotics have shown some
promise, but they do not reduce length of respiratory infection (Hao
et al., 2011). Thus, although a magnitude of research tested possible
prevention strategies for respiratory infections, development of impactful
preventative treatments continues to remain a challenge (Papadopoulos
et al., 2017).

12. NO donors and their potential in asthma and SARS-CoV-2
infection

An understudied prevention strategy for respiratory infections is
boosting airway NO. In cell-based models, NO has been shown to inhibit
replication of the human rhinovirus and virus-induced epithelial cyto-
kine and chemokine production (Koetzler et al., 2009; Sanders et al.,
1998) and higher NO levels have shown benefits in viral clearance and
symptom reduction after experimental infection (Sanders et al., 2004).

Increasing circulating NO levels is possible through provision of
exogenous NO in the form of inhaled gas, dietary supplementation, or
administration of direct or indirect donors. However, the complex
physiological pathways involved in NO production and regulation result
in varying levels of efficacy and safety depending on the method used,
and thus multiple variables must be considered before administration.
For example, the potent vasodilatory and anti-inflammatory properties of
inhaled gaseous NO have been effective in treating acute respiratory
disease, but its administration and storage challenges could make it less
ideal for outpatient use (Zhou et al., 2020). High costs and the production
of toxic byproducts during NO delivery, such as NO2 and O3, have limited
its use (Yu et al., 2015), with severe hypoxic conditions and pulmonary
hypertension in neonatology as the main application (Gentile, 2011).

Regarding pharmaceuticals targeting the NO pathway, drugs that
enhance production of NO by increasing cGMP levels or inhibiting
phosphodiesterase type 5 (PDE5) show particular promise (Kovamees
et al., 2016; Vasquez et al., 2016). Alternatively, soluble organic nitrates
are indirect NO donors that have been used in cardiovascular medicine
for decades, but evidence for the deleterious effects of such compounds
has mounted over time (Münzel et al., 2011). Inorganic nitrate and ni-
trites found in leafy vegetables improve vasomotor function and balance
endogenous NO in humans, and murine model studies have indicated
potential anti-inflammatory effects and improvements in age-related
endothelial dysfunction (Sindler et al., 2011). Further, vegetable prod-
ucts containing high levels of inorganic nitrite/nitrate have shown
increased effectiveness over nitrate salts in some studies – a benefit
potentially attributed to the presence of phytochemicals, such as poly-
phenols, that also utilize a NO-dependent pathway to produce vaso-
dilatory effects (Clifford et al., 2019).

The strength of inhaled NO therapy appears to lie in vascular and
immunological benefits. Inhaled NO has been successfully used in the
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2003 severe acute respiratory syndrome (SARS) epidemic (Chen et al.,
2004) caused by a coronavirus that is genetically similar to the novel
coronavirus SARS-CoV-2. Consequently, inhaled NO has been recom-
mended as a treatment strategy in the SARS-CoV-2 virus pandemic
(Hedenstierna et al., 2020; Ignarro, 2020) and is currently being tested
for affected patients (Alvarez et al., 2020; Lei et al., 2020a,b; Parikh et al.,
2020), capitalizing on both NO’s vasodilatory effects improving
oxygenation and its strong antiviral properties (Ignarro, 2020). PDE5
inhibitors that improve NO availability have also been proposed for
protection from widespread cytokine dysregulation and vascular and
pulmonary damage inflicted by the SARS-CoV-2 virus (Isidori et al.,
2020). Developing convenient ways to elevate airway NO could establish
the biological strategy of early prevention of respiratory infections,
including protection against SARS-CoV-2.

13. Beetroot juice as a source of dietary nitrate and nitric oxide

An additional dietary pathway has recently been identified that relies
on dietary nitrate as an alternative source of NO. After ingestion, bac-
terial nitrate reductases convert nitrate to nitrite, which is then further
reduced to NO by a range of enzymatic and non-enzymatic pathways in
the hypoxic environment of the stomach, gut, and other tissues (Hezel
and Weitzberg, 2015; Lundberg et al., 2008; Marteus et al., 2005)
(Fig. 2). Nitrite, an end product of NO, can also be reduced in the body to
NO and/or NO metabolites in a controlled way to produce physiologi-
cally relevant NO levels and mediate beneficial NO signaling (Kim--
Shapiro and Gladwin, 2014). When considering the risks of generating
deleterious reactive products with high NO concentrations, using natural
Fig. 2. Alternative pathways of NO production: The regular physiological pathway
nitric oxide synthase (NOS) under participation of cofactors such as oxygen and nic
through inducible NOS (NOS2, one of three types of NOS). The alternative dietary pat
to nitrite in the oral cavity by bacterial nitrate reductase. The nitrite is then further c
reductases under acidic or low oxygen conditions.
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supplements high in nitrite, like beetroot juice, poses an attractive clin-
ical strategy for NO therapy (Calvert and Lefer, 2010). Dietary nitrate
supplementation may help offset some of the adverse effects of low NO
across organ systems and tissues, including the cardiovascular system,
the airways, and mucosal pathogen defense. Clinical trials have utilized
beetroot juice as a source of dietary nitrate, to improve cardiovascular
health (Coles and Clifton, 2012; Hobbs et al., 2012; Jajja et al., 2014;
Kapil et al., 2010; Webb et al., 2008). A meta-analysis examining 22
studies suggests that beetroot juice reduces blood pressure, with the
greatest impacts being shown for systolic blood pressure (Bahadoran
et al., 2017). Beetroot supplementation is a cost-effective method to
improve cardiovascular health in both healthy and hypertensive pop-
ulations (Bonilla Ocampo et al., 2018; Cicero and Colletti, 2015). Addi-
tionally, it improves cardiovascular functioning during exercise
(Bahadoran et al., 2017; Bailey et al., 2009; Domínguez et al., 2017;
Kerksick et al., 2018).

Clinical trials vary in duration and dosage of beetroot juice admin-
istration (for examples, see Table 1). A recent meta-analysis of beetroot
juice interventions using only organic NO3- and in non-exercise settings,
reported varying duration of the supplementation period (1–21 days
supplementation), volumes ranging from 70 to 500 mL, and the amount
of NO3- ranging from 5 to 8 mmol per dose (Bonilla Ocampo et al., 2018).
Supplementation over multiple days (Eggebeen et al., 2016; Webb et al.,
2008) or higher doses of beetroot juice, have also shown positive benefits
(Kerley et al., 2019). While most studies reported no side effects, some
with higher concentrations of beetroot juice noted beeturia (pink or red
coloration of urine) as a minor side effect (Rasica et al., 2018).
s is through breakdown of the conditionally essential amino acid L-arginine by
otinamide adenine dinucleotide phosphate. In the epithelial cells, this happens
hway is through intake of dietary nitrate (e.g., in vegetables), which is converted
onverted to NO in the stomach and various tissues by bacterial and mammalian



Table 1
Examples of variations in dosages, supplementation periods, and outcomes for clinical trials examining the impact of beetroot juice.

Authors (year) Beetroot Juice
Dosage

NO3�Concentration Supplementation
Period

Outcome for Beetroot Juice

Kukadia et al.
(2019)

70 mL �6.5–7.3 mmol 1 day SBP decreased with BRJ at 30 and 60 min, but was not sustained over 24 h

Volino-Souza et al.
(2018)

140 mL Not listed 1 day Improved macrovascular endothelial function, but not muscle oxygen saturation parameters

Rasica et al. (2018) 70 mL 5 mmol 6 days Plasma NO3� higher with BRJ; O2 cost of moderate-intensity exercise was not different in
BRJ vs. PLA; reduced amplitude of O2 uptake slow component with BRJ and longer time to
exhaustion with BRJ

Eggebeen et al.
(2016)

70 mL 6.1 mmol 7 days Single dose and one week of daily BRJ increased plasma NO3� submaximal aerobic
endurance improved 24% after 1 week of daily BRJ; SBP decreased with single dose and 1
week of daily BRJ

Whitfield et al.
(2016)

280 mL 6.5 mmol 7 days Reduced submaximal exercise oxygen consumption with BRJ; measures of mitochondrial
coupling and respiratory efficiency not altered in muscle; rates of mitochondrial H2O2

emission were increased in the absence of markers of lipid or protein oxidative damage
Ashor et al. (2015) 70 mL �4.8–6.4 mmol 21 days SBP and DBP decreased 3 weeks after BRJ
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14. Beetroot juice for boosting airway NO

Given the tight association of cold symptoms with low FENO levels,
beetroot juice was explored as a convenient and well-tolerable inter-
vention to raise airway NO levels, testing the influence of a beetroot juice
supplement on FENO in healthy participants (Kroll et al., 2018). FENO was
measured at baseline, 45 min, and 90 min following ingestion of 70 mL
beetroot juice (6.5 mmol nitrate) (Fig. 3a). Forty-five minutes after
beetroot consumption, FENO values increased by 21.3% (d ¼ 1.54) and
were still elevated by 20.3% (d ¼ 1.45) after 90 min. Less than 1% in-
crease in FENO was observed after consumption of water as control on a
separate day. Elevated FENO levels persisted over 3 h when tested in a
small subset of participants.

The potential of beetroot juice to protect against illness and cold
symptoms was recently tested with N ¼ 76 students during an academic
finals period (Ritz et al., 2019). Participants were randomly assigned to a
7-day trial of one daily dose of the supplement or no supplementation
control during their final exams. Findings showed that the supplement
was associated with reduced symptoms of cold and illness during and 7
days after finals (Fig. 3b). Students with asthma showed the greatest
symptom reduction. Higher exhaled NO was prospectively associated
with reduced symptoms. Thus, beetroot juice intake during periods of
psychological stress protects against cold symptoms. The benefits in
asthma could extend to protection against exacerbations due to respira-
tory infections.
Fig. 3. a) FENO increases after acute ingestion of 70 mL of beetroot juice (6.5 mmol o
across baseline, 7 days of academic finals stress with or without beetroot juice su
permission from Ritz et al., 2019).
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15. Open questions

15.1. NO produced by allergic immune processes, epithelial cells, and NO
donors

It may appear counter-intuitive to raise airway NO in asthma, because
FENO has been interpreted as a marker of airway inflammation and tar-
geted by anti-inflammatory therapy. However, the function of elevated
NO in asthma has been debated and benefits of NO have also been
emphasized (Sanders, 1999). Because FENO is not specific to the source of
NOS activity or dietary supplementation, NO elevations through allergic
pathways coexist with NO elevations through epithelial production and
conversion of dietary nitrate. It should be noted that while inflammatory
and epithelial cells use the same NOS isoform (NOS2), its activation is
calcium-independent in the former (classically labeled as “inducible”),
but calcium-dependent in the latter (“constitutional”) (Mattila and
Thomas, 2014). Thus, more research is needed to estimate the contri-
bution of different cell populations, tissue compartments and
NO-generation through dietary and NOS2-dependent pathways to FENO
and to delineate their functions.

There is also a need to better understand the dynamics of NO pro-
duction through beetroot juice in various tissues and potential inhibitors
and competitors of NO. The mechanisms underlying NO deficits in stress
and depression and the impact of beetroot juice on these are unclear.
Asymmetric dimethylarginine (ADMA) is a potent inhibitor of NOS ac-
tivity (Mangoni et al., 2019) and the ratio of l-arginine to ADMA as an
f dietary nitrate) (reproduced from Kroll et al., 2018), b) Cold symptom severity
pplementation, and follow-up 7 days after finals in students (reproduced with
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indicator of NO availability has been shown to be reduced with depres-
sive mood in heart failure patients (Mommersteeg et al., 2015). In
addition, the enzyme arginase competes for L-arginine, thus reducing its
availability for NO production. Increased airway arginase activity in-
terferes with beneficial effects of NO, compromising bronchodilation and
increasing airway hyperresponsiveness (van den Berg et al., 2018). Both
arginase and ADMA levels have been shown to be elevated in depression
(Baranyi et al., 2015; Elgün and Kumbasar, 2000) and asthma (Morris
et al., 2004; Scott et al., 2011).

15.2. The role of the oral and intestinal microbiome

The oral cavity has been shown to substantially contribute to exhaled
NO (T€ornberg et al., 2002). An increasingly large body of evidence has
pointed to microbiota in the mouth and gut as essential in the
nitrate-nitrite-NO pathway, with species of Actinomyces, Haemophilus,
Neisseria and Veillonella most readily implicated (Grant and J€onsson,
2019). It has been estimated that up to 25% of dietary nitrate is reduced
by oral bacteria, and circulatory and metabolic benefits of dietary nitrate
can be negated by antimicrobial mouthwash administration (Hezel and
Weitzberg, 2015; Moretti et al., 2019). Similarly, the ability to regulate
blood pressure is compromised in individuals with lower levels of
nitrite-reducing bacteria on the tongue (Tribble et al., 2019).

In the gut, bacterial species also play a crucial role in NO production
through the metabolism of nitrate and polyphenols, and changes to in-
testinal bacterial communities can affect systemic inflammatory path-
ways (Rocha et al., 2016). There is up to 45% species overlap of bacteria
found in the large intestine and oral cavity, and disruptions in one bac-
terial community within the body often elucidate changes in another
(Segata et al., 2012). Such body-wide microbiome alterations, possibly
mediated by lymphoid migration (Mestecky, 1987), have been impli-
cated in chronic illness. In eosinophilic respiratory disease, alterations
are present in the oral, respiratory, or gut microbiomes (Hiremath et al.,
2019; Huang and Boushey, 2015; Sverrild et al., 2017) and can occur
through external (e.g., diet, environment) or endogenous influences (e.g.,
psychological stress, systemic inflammation) (Duran-Pinedo et al., 2018;
Huang and Boushey, 2015). However, the relationship between NO
production, microbiome disruptions, stress, and chronic disease is com-
plex and further research is required to elucidate underlying connections.

15.3. Potential use of dietary nitrate in respiratory disease an infection

The potential of NO donors as prophylaxis against upper respiratory
tract infections requires further exploration. Infection peaks in children
coincide with school reopening and the fall season (Olenec et al., 2010;
Perry Markovich et al., 2015), which in turn coincide with high rates of
exacerbations and emergency room treatments in asthma (Sears and
Johnston, 2007). Elevated exposure to pathogens and psychosocial stress
in return to school and work could be critical factors. Individuals with
other vulnerabilities could equally profit from NO donors in this context.
In critical daily life situations during a viral pandemic, such as crowding
or close human contact in professional or leisure time settings, strategic
use of NO supplementation could be a promising avenue for intervention
research. Because aging is associated with a reduced production of NO
(Ozdemir and Yazici, 2020), supplementation with NO donors may hold
promise for boosting resistance to respiratory infection, including
COVID-19, in older individuals, beyond its benefits for cardiovascular
health (Ignarro, 2020). Other chronic respiratory illnesses, such as COPD
or cystic fibrosis, which are at elevated risk of exacerbation by respira-
tory infections (Flight and Jones, 2017; Viniol and Vogelmeier, 2018),
could profit from an investigation of NO-based prophylaxis and thera-
pies. In cystic fibrosis, airway NO is low due to a lack of sufficient iNOS
production, a risk factor for a range of bacterial and viral infections
(Moeller et al., 2006; Nichols et al., 2008). NO donors have been pro-
posed as a promising strategy for cystic fibrosis (Barnes et al., 2010;
Deppisch et al., 2016; Lundberg et al., 2008; Proud, 2005), but benefits of
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dietary nitrate supplements has not yet been explored systematically.

15.4. Limits and risks of dietary nitrate use

NO’s endogenous role as both a pro- and anti-inflammatory agent,
and its relationship with circulating radical oxygen species (ROS), re-
quires that levels be modulated and/or monitored in tissue to avoid
negative effects during administration (F€orstermann et al., 2017). For
example, circulating NO may promote or inhibit tumor growth and
metastasis under different conditions depending on its concentration (Xu
et al., 2002). Of particular concern is the finding that generation of
N-nitroso compounds (NOCs), a potential carcinogen, can be stimulated
by acute nitrate ingestion (Zamani et al., 2020). One study has examined
effects of beetroot juice on NOC excretion, and results indicate that acute
consumption did result in increased levels of NOCs in urine (Berends
et al., 2019). However, more recent epidemiological studies have not
found associations between nitrite and gastric cancer or esophageal
cancer (Ma et al., 2018). There is also no evidence that a diet high in
nitrate-rich vegetables increases the risk of cancer – on the contrary,
incorporation of vegetables like beetroot and spinach may have protec-
tive effects against cancer. While reason for these contrary findings is
unknown, high levels of vitamin C in these vegetables could counteract
the formation of NOCs and the resulting increase in circulating NO could
actually facilitate optimal uptake of tumor-inhibiting phytochemicals
(van Breda and de Kok, 2018; Zamani et al., 2020). Effects of ingested
nitrate seem to be context-dependent, in that it is potentially carcino-
genic only on the background of intake with dietary amines or amides as
found in red and cured meats (Koch et al., 2017). Thus, although
increasing NO levels through exogenous donors such as inhaled NO gas,
inorganic nitrite/nitrate consumption, or targeted NO-pathway treat-
ments show therapeutic promise, more human research is required on the
effects of such treatments before dosage and treatment course recom-
mendations can be made (Gori, 2020).

16. Conclusion

Preventing and combatting respiratory tract infections has remained
a formidable scientific challenge despite decades of investigative efforts.
While individuals with respiratory disease or compromised immune
function are most vulnerable to viral infections, the current COVID-19
crises has highlighted the need for developing new strategies that pre-
serve airway and cardiovascular health in the general population. Here
we have proposed that boosting NO, which is depleted by psychological
stress and viral assault, could provide protection against viral prolifera-
tion and its many adverse pulmonary and vascular consequences. A focus
on dietary means of elevating nitrate levels, such as intake of particular
types of vegetables, could also be more cost-effective and unfold addi-
tional effects on overall health. However, before wider application of
such strategies, further exploration of NO donor effects on respiratory
infection are needed.
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