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Abstract 

Background:  Health space (HS) is a statistical way of visualizing individual’s health status in multi-dimensional space. 
In this study, we propose a novel HS in two-dimensional space based on scores of metabolic stress and of oxidative 
stress.

Methods:  These scores were derived from three statistical models: logistic regression model, logistic mixed effect 
model, and proportional odds model. HSs were developed using Korea National Health And Nutrition Examination 
Survey data with 32,140 samples. To evaluate and compare the performance of the HSs, we also developed the Health 
Space Index (HSI) which is a quantitative performance measure based on the approximate 95% confidence ellipses of 
HS.

Results:  Through simulation studies, we confirmed that HS from the proportional odds model showed highest 
power in discriminating health status of individual (subject). Further validation studies were conducted using two 
independent cohort datasets: a health examination dataset from Ewha-Boramae cohort with 862 samples and a 
population-based cohort from the Korea association resource project with 3,199 samples.

Conclusions:  These validation studies using two independent datasets successfully demonstrated the usefulness of 
the proposed HS.
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Background
Lifestyle-related chronic diseases such as cardiovas-
cular diseases (CVD), diabetes, hypertension, dyslipi-
demia, and obesity are heterogeneous and multifactorial 
[1]. These diseases resulted from sustained interactions 
between biological processes including antioxidant 
defense mechanisms and metabolic adaptation [2–5]. 
A comprehensive understanding of complex biological 
processes requires concurrent quantitative analysis of 

many individual components when defining an individ-
ual’s health and susceptibility to disease [1]. An accurate 
estimation of the current state and long-term predic-
tion at an earlier life stage is essential to optimize health 
and alleviate the increasing burden on lifestyle-related 
chronic diseases [6].

A simple and effective visualization methodology may 
help to easily recognize current and future health sta-
tus of individuals so that health behavior change can be 
made. The health space (HS) was conceptualized to sta-
tistically quantify individuals’ health status for assess-
ing their responses in biological processes relevant to 
long-term health and disease outcomes by summing up 
the accumulated value of multiple biomarkers [7]. This 
HS can present a complex, multi-factorial health condi-
tion in a multi-dimensional space and visualize different 
groups of healthy and unhealthy individuals easily [8, 9]. 
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Nevertheless, while this conceptual multivariate model 
was built in a few human intervention studies [9, 10], 
the methodology needs to be optimized and further vali-
dated in the general population with a large number of 
individuals.

The previous HSs simply included axes and points, and 
were only referring to approximate differences between 
groups, such as placebo and treatment groups. Although 
the points of different groups on the HS may seem to be 
distinct from each other, the groups may be in fact often 
overlapped excessively. As a result, they could not clearly 
distinguish the groups with different health status. Aim-
ing to overcome these limitations, we propose a novel HS 
in two-dimensional space where the two axes represent 
oxidation and metabolism stress scores. We choose oxi-
dative and metabolic stress because they are the main 
processes in which the imbalance can lead to various life-
style-related chronic diseases [1].

In order to derive oxidation and metabolism stress 
scores and build HS, we first fitted three statistical mod-
els: logistic regression model, logistic mixed effect model, 
and proportional odds model. Second, we visualized an 
approximate 95% confidence ellipses of two scores in the 
HS representing the four distinct health groups. Third, 
we developed a novel index called the Health Space Index 
(HSI) which allows us to evaluate and compare the per-
formance of the HS. HSI is a quantified measure repre-
senting how much the approximate confidence ellipse 
of each health status group are overlapped and provides 
information about the distinctness between groups on 
the HS. Additionally, to demonstrate the usefulness of 
the proposed HS, we performed simulation studies and 
validation studies on two independent cohort datasets. 
The proportional odds model showed the best power dis-
criminating four health status groups.

Methods
Korea National Health And Nutrition Examination Survey 
data
We built the HS models using the Korea National 
Health And Nutrition Examination Survey 2007 − 2016 
(KNHANES) data (32,140 samples) [11]. The surveys have 
been conducted by the Korea Disease Control and Preven-
tion Agency (KDCA) for assessing the health and nutri-
tional status of Korea since 1998. The survey collected 
approximately 10,000 individuals each year with informa-
tion on socioeconomic status, health-related behaviors, 
biochemical and clinical profiles for non-communicable 
diseases [12]. From the data of individuals aged over 
19 years old from KNHANES (n = 81,503), 49,363 samples 
were excluded for the following reasons: Aged less than 
20-year-old (n = 26,768), missing information (n = 22,595) 
on anthropometric and biochemical measurements, 

disease, and smoking status. We then validated the HS 
models using two independent datasets. First, health 
examination dataset from Ewha-Boramae cohort with 862 
samples were used as validation data. This data is from 
prospective cohort study of Korean male and female aged 
19  year or above that underwent comprehensive annual 
or biannual health examination in Seoul National Univer-
sity Boramae Hospital (Seoul, South Korea) and analysis 
of biological samples was conducted at Ewha Womans 
University [13]. Out of a total of 1,464 participants, 602 
samples were excluded due to missing information on his-
tory of disease, medication, and recommended food score 
(RFS). Second, population-based cohort from the Korea 
association resource project (KARE) with 3,199 samples 
were used. The cohort of KARE was established as part 
of the Korean genome and epidemiology study (KoGES) 
Ansan and Ansung study in which biannual repeated sur-
veys were conducted in two provinces of South Korea. 
Physical examinations and clinical investigations were 
performed and measured, and anthropometric and clini-
cal measurements were also obtained. [14]. Among 9,334 
participants from 2001 to 2003, 6,135 samples having 
missing data on anthropometric and biochemical profiles, 
smoking, disease, and medication were excluded, leaving 
a sample of 3,199 participants.

For each dataset, we split the individuals into four 
health status groups: healthy group, a group with one 
metabolic risk factor, a group with two metabolic risk 
factors, a group with metabolic syndrome or oxidative 
stress-related disease group. Subjects diagnosed with 
any of the following diseases were categorized into the 
lifestyle-related chronic disease group related to oxida-
tive and metabolic stress [2–5, 15, 16]: metabolic syn-
drome, diabetes mellitus, dyslipidemia, severe obesity, 
intermediate coronary syndrome, stroke, hypertension, 
and diet-related cancers (liver, colon, stomach, breast, 
prostate, and lung). In those datasets, age, sex (0 = male, 
1 = female), WBC (× 103 μL), GPT (μkat/L), smoking sta-
tus (0 = never and past smoker, 1 = current smoker), BMI 
(kg/m2), Glucose (mmol/L), HDLC (mmol/L), and TG 
(mmol/L) were used. As the units of variables differed 
from one data to another, système international d’unités 
(SI) units [11] were adopted for modelling throughout 
the present work.

Our HS was constructed with two axes of oxidative and 
metabolic stress scores. Each score was derived from pre-
dictor variables with biological relevance. For oxidation 
axis, smoking, RFS, C-reactive protein, uric acid, hemato-
crit, erythrocyte sedimentation rate, albumin, white blood 
cell (WBC), monocyte, basophil, alpha-fetoprotein, carci-
noembryonic antigen, alkaline phosphatase, aspartate ami-
notransferase (GOT), alanine aminotransferase (GPT), and 
gamma-glutamyl transferase were used. For metabolism 
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axis, systolic and diastolic blood pressure, body mass index 
(BMI), waist circumference, total cholesterol, triglycerides 
(TG), high-density lipoprotein cholesterol (HDLC), fasting 
glucose were used. Age and sex were considered for both 
axes. We let labels of four groups as Y ∈ {0, 1, 2, 3} and 
variables as X that are used to make scores. Among afore-
mentioned markers, markers that showed significant dif-
ferences across different health status groups were selected 
using analysis of variance (ANOVA) for numerical varia-
bles and chi-squared test for categorical variables and used 
as predictor variables for modeling health space models. 
Description of the variables that are used in the model of 
the health spaces are described in Table 1.

Simulation study
A simulation study was conducted to compare the per-
formance of three HS models. Two scenarios have been 
conceived in a simulation study, each of which has four 
sub-scenarios. We assumed there are m health status 
groups. We considered the following parameters: total 
number of groups ( k ), the difference between the location 
parameters of the distribution of each group ( � ), the com-
mon scale parameter ( σ 2 ), continuous predictor variables 
( X ), discrete predictor variables ( X ′ ). Continuous predic-
tor variables X and discrete predictor variables X ′ can be 
expressed as follows:

X = x1, · · · , xp1 , xp1+1, · · · , xp1+p2

X
′

=

(
x
′

1, · · · , x
′

q1
, x

′

q1+1, · · · , x
′

q1+q2

)

The first axis of S1 score is generated by 
x1, · · · , xp1 , x

′

1
, · · · , x

′

q1
 and the second axis of S2 score 

byxp1+1, · · · , xp1+p2 , x
′

q1+1
, · · · , x

′

q1+q2
 . For the group 

m ∈
{
0, · · · , k − 1

}
, xi are randomly simulated from the 

normal distribution N
(
m�, σ 2

)
 and x′

j are randomly sim-
ulated from the Bernoulli distribution Bernoulli

(
m

k+1

)
.

For scenario 1, (p1, p2, q1, q2) = (2, 1, 0, 1) ; for scenario 
2, (p1, p2, q1, q2) = (3, 2, 1, 2) . In each sub-scenarios of 
scenario 1, � has a value of 1, 1.5, 2, and 3, and in each 
sub-scenarios of scenario 2, � has a value of 0.5, 1, 1.5, 
and 2. The detailed description of these scenarios is 
shown in Table 2.

Statistical analysis
There are several statistical models available for han-
dling multiple categorical responses representing healthy 
group (coded 0), a group with one metabolic risk factor 
(coded 1), a group with two metabolic risk factors (coded 
2), a group with metabolic syndrome or oxidative stress-
related disease group (coded 3). Note that these four 
categories have ordered information. We first consider 
simple binary models focusing only on 1 and 4 catego-
ries. We considered logistic regression model and logistic 
mixed effect model.

Next, we consider more complex models that can han-
dle four categories simultaneously. Candidate models 
included cumulative logit model [17], proportional odds 
model (POM) [18], and partial proportional odds model 
[19]. Note that cumulative logit model estimates a large 
number of regression coefficients, making the model overly 
complex. The POM assumes proportionality assumption 

Table 1  Detail descriptions of the predictor variables used in final health space models. KNHANES data was used to construct health 
spaces and Ewha-Boramae data and KARE data were used for external validation of health spaces

Continuous variables were expressed as the mean ± standard deviation, categorical variables were expressed as frequency (percentage)

Data
(sample size)

Model Development External Validation

KNHANES
(n = 32,140)

Ewha-Boramae
(n = 862)

KARE
(n = 3,199)

Age (year) 47.95 ( ±15.57) 47.72 ( ±11.23) 51.01 ( ±8.77)

Sex
  Male 15,469 (48.13%) 554 (64.26%) 1,782 (55.70%)

  Female 16,671 (51.87%) 308 (35.74%) 1,417 (44.29%)

Smoking
  Non-smokers/Past smokers 24,567 (76.44%) 690 (80.05%) 2,222 (69.46%)

  Current smokers 7,573 (23.56%) 172 (19.95%) 977 (30.54%)

WBC (× 103 μL) 6.19 ( ±1.72) 5.87 ( ±1.60) 6.63 ( ±1.79)

GPT (μkat/L) 0.36 ( ±0.31) 0.49 ( ±0.44) 0.47 ( ±0.53)

BMI (kg/m2) 23.68 ( ±3.37) 24.13 ( ±3.29) 24.54 ( ±3.08)

TG (mmol/L) 1.54 ( ±1.30) 1.35 ( ±0.78) 1.87 ( ±1.18)

HDLC (mmol/L) 1.28 ( ±0.31) 1.36 ( ±0.33) 1.14 ( ±0.25)

Glucose (mmol/L) 5.47 ( ±1.29) 5.30 ( ±1.03) 4.89 ( ±1.26)
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for the cumulative logits. While this assumption is rather 
strong, it has the effect of simplifying the model by reduc-
ing the number of parameters. The partial POM is a model 
that relaxes the proportional odds assumption [19]. How-
ever, this relaxation of partial POM may often cause a dis-
cordant ordering of observed health groups and estimated 
health groups in HS. Thus, we do not consider the cumula-
tive logit model and the partial proportional odds model in 
our analysis.

In summary, we focus on three statistical models to 
define the HS: logistic regression models (LRMs), Logis-
tic mixed effects models (LMMs), and proportional odds 
models (POMs). From these models, we derive scores 
for each model and then estimate the confidence ellipses 
based on the F-distribution to represent the groups in 
the HS.

First, we considered LRM to develop HS. It is obvious 
that an individual with a metabolic syndrome or suffering 
lifestyle-related chronic diseases is in a worse health status 
than a healthy individual. The response variable Y  repre-
senting the health status of an individual is defined to be 
0 for a healthy individual and 1 for an individual with a 
lifestyle-related chronic disease. Let X represent predictor 
variables that are used in defining oxidation and metabo-
lism scores such as age, sex, smoking preference, WBC, 
GPT, BMI, Glucose, HDLC, and TG. These predictor vari-
ables were selected by bidirectional elimination based on 
Akaike Information Criterion (AIC) [20]

While fitting LRM or LMM, we let health status group as 
Y ∈ {0, 1} and predictor variables as X . The LRM is given 
as follows.

where p = P(Y = 1) is the probability of the event 
(Y = 1) . α is an unknown intercept parameter. β is a vec-
tor of regression coefficients corresponding to X . Using 

logit(p) = α + Xβ ,

the estimates of α̂ and β̂  we let LRM score as  α̂ + X β̂  . 
Note that β can be interpreted in respect to odds ratio:

The logistic mixed effect model is defined as follows

where γ represents regression coefficients correspond-
ing to Z . The estimates of α̂ , β̂ , and γ̂  can be obtained via 
maximum likelihood estimation [21]. We let LMM health 
score as  α̂ + X β̂ + Zγ̂  . Note that β and γ can be inter-
preted in respect to the odds ratio.

In LRM and LMM, group information was not fully 
used, since only binary information on healthy group and 
unhealthy group with lifestyle-related chronic diseases 
were used.

To fully use other two groups’ (two groups that are in 
between healthy group and unhealthy group with life-
style-related chronic diseases) information, we consid-
ered the POM which uses ordered group information 
from the whole group’s data. Let Y  represent the ordered 
groups. For j = 0, · · · , k − 1, the cumulative probability 
is given by

The POM is defined in terms of γj as follows,

where X is a matrix of predictor variables. In terms of 
the POM can be repressed as follows:

For k categories of Y ’s, this POM estimates (k − 1 ) αj 
and only one coefficient vector β . After fitting the model, 
we let the score as X β̂  . Note that β can be interpreted in 
respect to the cumulative odds ratio.

logit(p) = α + Xβ + Zγ

γj = Pr
(
Y ≤ j|X

)

logit
(
γj
)
= αj − Xβ ,

γj

1− γj
= exp(αj − Xβ),

Table 2  Details of simulation settings. Δ represents the difference between the location parameters of each distribution and the σ 2 
represents the scale parameter of each distribution

Scenario 1 2

Sub Scenario 1 2 3 4 1 2 3 4

  � 1 1.5 2 3 0.5 1 1.5 2

  σ 2 1 1 1 1 1 1 1 1

  k 3 3

  p1 2 3

  p2 1 2

  q1 0 1

  q2 1 2

models Logistic regression model
Proportional odds model

Logistic regression model
Logistic mixed effect model
Proportional odds model
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Health Space Index (HSI)
One of the objectives of our study is to find the most 
appropriate model for the HS. The traditional goodness-
of-fit measures such as AIC [20] and deviance focus on 
the contribution of individual observations. In other 
words, these measures are based on deviance between 
each observation and its predicted values. Thus, they are 
not appropriate in comparing models developed for the 
HS, because a good model for developing HS is the one 

that discriminates the health status groups well.
In this regard, we developed a new measure of dis-

crimination called Health Space Index (HSI) to find the 
best model among LRM, LMM, and POM. HS is devel-
oped with the scores derived from the models. For each 
model, there are two scores: oxidation score and metabo-
lism score. The HS uses the oxidation score as the x-axis 
and the metabolism score as the y-axis. In order to cal-
culate HSI, we first estimated the confidence ellipse for 
each group. The confidence ellipse is a multi-dimensional 
generalization of a confidence interval for one-dimension 
to higher dimension. In our HS we use bi-dimensional 
space. When the confidence ellipse is estimated, we can 
estimate the percentage of true classification. That is, we 
can estimate the proportion of the confidence ellipse of 
the individual’s belonging to the “true” groups.

Motivated from Jaccard index [22], a measure of simi-
larity between data sets, we derive HSI. Note that Jaccard 
index is defined as

where A and B are data sets.
Jaccard index has the values between 0 and 1. It has the 

maximum value when A ⊆ B or B ⊆ A and the minimum 
value when A ∩ B = ∅ . That is, Jaccard index shows how 
much two sets are overlapped. Therefore, Jaccard index 
J (A,B) satisfies 0 ≤ J (A,B) ≤ 1 . For a simpler compari-
son between different models, we propose a new measure 
Health Space Index (HSI). In calculating HSI, we do not 
compare the observed groups but rather their confidence 
ellipses estimated from the models.

Based on Jaccard index we propose HSI as fol-
lows. Let (xik , yik) be the kth sample of group i 
wherei = 0, . . . ,m− 1, k = 1, . . . , ni . Let fi

(
x, y

)
 be 

a function of samples ( xi1, yi1), · · · , (xini , yini) where 
fi
(
x, y

)
= 0 represents the 95% confidence ellipse 

J (A,B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
,

constructed. Let ai be the number of samples in confi-
dence ellipse of groupi , defined as follows:

In a similar way, define aij as the number of samples of 
group i and group j in common area of confidence ellipse 
Ai and Aj as,

Using these ai ’s we define HSI as a measure of indicat-
ing how much there is an overlap between two confi-
dence ellipse Ai and Aj as follows:

A smaller value of HSI means that there is less overlap 
between Ai and Aj . As most distance measures, HSI satis-
fies several properties.

(1)	 0 ≤ HSI ≤ 1

(2)	 As the number of samples within the common area 
decreases, so does HSI.

(3)	 HSI is a monotonically decreasing function of aij.

Furthermore, the SMHSI = 1− HSI satisfies semi-met-
ric property, non-negativity, symmetry, and identity of 
indiscernible.

Results
Real data analysis
For LRMs, the predictor variables were selected by step-
wise selection via AIC. Their estimates of LRMs are 
shown in Tables  3 and 4 for the oxidation score model 
and the metabolism score model, respectively. Prior to 
applying the LMM, age was categorized into the segment 
to be considered a random intercept. For the oxidation 
score, the categorized age variable, age_gr (age group), 
and sex were used as random intercepts. In defining 
metabolism score, sex was used as a random intercept. 
The coefficients of the LMM are shown in Tables 5, 6, 7, 
and 8. LRM included the second order interaction terms 
for both oxidation score and metabolism score. The coef-
ficients of POM are shown in Tables  9 and 10 for the 
oxidation score model and the metabolism score model, 
respectively.

After making the scores using three models with 
the KNHANES data, we plotted the 95% confidence 

ai =

ni∑

k=1

I(fi
(
xik , yik

)
< 0)

aij =

ni∑

k=1

I
(
fi
(
xik , yik

)
< 0

)
I(fj

(
xik , yik

)
< 0)+

nj∑

l=1

I
(
fi
(
xjl , yjl

)
< 0

)
I(fj

(
xjl , yjl

)
< 0)

HSI
(
i, j
)
=

aij/2

ai + aj − aij/2
·
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ellipse for each group in the two-dimensional HSs 
(Fig.  1-(a),(b),(c)) with the oxidation score in the x-axis 
and the metabolic score in the y-axis. The points in dif-
ferent colors mean the center of the ellipse. Blue, red, 
green, and brown mean healthy group (coded 0), 1-meta-
bolic risk factor group (coded 1), 2-metabolic risk factors 
group (coded 2), metabolic syndrome or oxidative stress 
relate diseases group (coded 3), respectively. As an indi-
vidual’s health condition becomes worse, the point moves 
to the top right of the HS.

To figure out how much overlaps exists between 
groups, we computed HSIs to compare the models. Fig-
ure  2-(a) shows all pairwise HSI between groups. For 
KNHANES data, HSI(0, 3) between healthy group (coded 
0) and lifestyle-related chronic diseases group (coded 
3) showed smaller HSIs than other pairs. Note that for 
HSI(0, 3) the POM had the smallest value among the 
three models, which holds for all other HSIs.

A validation study was conducted using two independ-
ent Ewha-Boramae cohort data and KARE data. HSs 
applied to Ewha-Boramae cohort data is shown in Fig. 1. 
(b). Like KNHANES data, HSI(0, 3) showed smaller HSIs 
than other pairs. Also, the POM had the smaller HSI val-
ues than other models for most pairs (Fig.  2-(b)). HSs 
applied to KARE data is shown in Fig.  1-(c). The same 
patterns were observed. That is, HSI(0, 3) showed smaller 
HSIs than other pairs and the POM had the smaller HSI 
values than other models for most pairs. (Fig. 2-(c)).

Simulation study
We compared the HSIs in the models with the boxplots 
(Figs. 3, 4) and trend graphs (Figs. 5, 6) of the mean of the 
HSI to the number of samples generated. In Scenario 1–1 
and Scenario 1–2, there was no difference between the 
LRM and the POM, as shown in the boxplot and trend 
graph. In scenario 1–3, there are significant difference 
between LRM and POM. In Scenario 1–4, because the 
difference between the location parameters is too large 
for the scale parameters, almost all of the HSI values were 
zero, and there is no difference between the two models.

Table 3  Estimated coefficients of the oxidation score from 
logistic regression model

coefficients Estimate Std. Error z value Pr( >|z|)

(Intercept) -2.69212 0.636162 -4.232 2.32E-05

age 0.063423 0.010459 6.064 1.33E-09

sex -2.69518 0.270967 -9.947  < 2e-16

sm_presnt -0.03549 0.153212 -0.232 0.81684

WBC 0.000454 0.072038 0.006 0.99497

GPT -0.91637 0.689613 -1.329 0.18391

age:sex 0.029996 0.003758 7.982 1.44E-15

sex:WBC 0.158739 0.026402 6.012 1.83E-09

age:sm_presnt -0.00561 0.002233 -2.512 0.012

WBC:GPT 0.469825 0.080383 5.845 5.07E-09

age:GPT 0.030028 0.009549 3.145 0.00166

sex:sm_presnt 0.154053 0.06537 2.357 0.01844

sm_presnt:GPT 0.226702 0.137561 1.648 0.09935

age:WBC -0.00137 0.000936 -1.464 0.14331

Table 4  Estimated coefficients of the metabolism score from 
logistic regression model

coefficients Estimate Std. Error z value Pr( >|z|)

(Intercept) -5.041e + 01 2.15E + 00 -23.446  < 2e-16

age 3.53E-01 1.83E-02 19.274  < 2e-16

sex 3.95E + 00 7.25E-01 5.445 5.18E-08

BMI 1.20E + 00 5.98E-02 20.047  < 2e-16

TG 5.10E + 00 7.43E-01 6.862 6.81E-12

HDLC 7.24E + 00 9.06E-01 7.987 1.38E-15

Glucose 1.92E + 00 2.58E-01 7.433 1.06E-13

age:BMI -1.01E-02 6.97E-04 -14.544  < 2e-16

TG:HDLC -2.118e + 00 2.03E-01 -10.417  < 2e-16

sex:HDLC -1.403e + 00 2.09E-01 -6.714 1.90E-11

age:TG -2.66E-02 4.77E-03 -5.573 2.50E-08

BMI:HDLC -1.90E-01 3.51E-02 -5.403 6.56E-08

sex:Glucose -3.43E-01 1.27E-01 -2.702 0.0069

age:sex 7.70E-03 4.26E-03 1.808 0.0705

TG:Glucose 1.90E-01 1.30E-01 1.453 0.1462

Table 5  The portion of the random effect of the estimated coefficients in the logistic mixed effect model of the oxidation score

Groups Name Variance Std.Dev Corr

age_gr (Intercept) 5.84E + 00 2.41609

sm_presnt 9.92E-02 0.31491 -0.95

WBC 1.25E-03 0.03541 -9.00E-01 0.73

GPT 6.77E-02 0.26016 -0.98 0.87 0.93

sex (Intercept) 1.51E-01 0.38887

sm_presnt 9.37E-04 0.0306 -1.00E + 00

WBC 1.86E-03 0.04312 -1.00E + 00 1

GPT 8.91E-05 0.00944 1 -1 -1
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In Scenario 2–1 and Scenario 2–2, the HSI(0,2) in the 
LRM and the POM was similar, but in the LMM it had 
a value larger than the previous two models. In Scenario 
2–3 and Scenario 2–4, the HSI(0,1) and HSI(1,2) in the 
POM were smaller than those of LRM and LMM.

Discussion
We presented that POM outperformed LRM and LMM 
in discriminating different health groups in terms of 
oxidative and metabolic stresses not only in the simula-
tion, but also in the Korean general adult population. The 
previous HSs [7] were based on the small sample sizes 
simply including axes and points and were only refer-
ring to approximate differences between groups. On the 
other hand, our HS is based on large sample size and 
uses the more systematically derived statistical mod-
els. Furthermore, we validated our result using the data 

from two different independent population studies: the 
Ewha-Boramae cohort [13] and the KARE data [14]. This 
indicates that individual’s health condition positioned on 
the HS can be distinctive from the others in terms of oxi-
dative and metabolic stresses. Our finding also suggests 
that the two-dimensional HS might enable to distinguish 
different health status of target individuals from healthy 
individuals: i.e., subjects at risk having metabolic risk or 
lifestyle-related chronic diseases.

We estimated the confidence ellipses of each group 
and visualized them in HS. By quantifying how much 
they are overlapped on basis of the HSI, we compared 
the performance of HS created using different statistical 
models. The simulation study indicated that the POM 
model tended to have the smallest index among three 

Table 6  The portion of the fixed effect of the estimated 
coefficients in the logistic mixed effect model of the oxidation 
score

coefficients Estimate Std. Error z value Pr( >|z|)

(Intercept) -1.64E + 00 1.12E + 00 -1.465 0.1429

sm_presnt -2.41E-01 1.47E-01 -1.646 0.0997

WBC 3.05E-01 3.67E-02 8.313  < 2e-16

GPT 3.86E + 00 1.66E-01 23.184  < 2e-16

Table 7  The portion of the random effect of the estimated coefficients in the logistic mixed effect model of the metabolism score

Groups Name Variance Std.Dev Corr

sex (Intercept) 0 0

BMI 2.49E-03 0.04991 NaN

Glucose 3.96E-03 0.06293 NaN -1

HDLC 3.69E-01 0.6072 NaN -1 1

TG 5.09E-02 0.22551 NaN 1 -1 -1.00E + 0

Table 8  The portion of the fixed effect of the estimated 
coefficients in the logistic mixed effect model of the metabolism 
score

coefficients Estimate Std. Error z value Pr( >|z|)

(Intercept) -17.74525 0.39072 -45.417  < 2e-16

BMI 3.27E-01 3.64E-02 8.993  < 2e-16

Glucose 2.14E + 00 7.24E-02 29.554  < 2e-16

HDLC -2.00E + 00 4.40E-01 -4.543 5.54E-06

TG 1.94E + 00 1.69E-01 11.473  < 2e-16

Table 9  Estimated coefficients of the oxidation score from 
proportional odds model

coefficients Estimate Std. Error z value Pr( >|z|)

(Intercept):1 3.85E + 00 9.62E-02 39.992  < 2e-16

(Intercept):2 5.05E + 00 9.79E-02 51.608  < 2e-16

(Intercept):3 5.69E + 00 9.90E-02 57.458  < 2e-16

age -6.89E-02 8.22E-04 -83.86  < 2e-16

sex 7.37E-02 3.00E-02 2.458 1.40E-02

sm_presnt 4.19E-02 1.77E-02 2.364 1.81E-02

WBC -2.16E-01 7.21E-03 -29.994  < 2e-16

GPT -2.42E + 00 6.08E-02 -39.767  < 2e-16

Table 10  Estimated coefficients of the metabolism score from 
proportional odds model

coefficients Estimate Std. Error z value Pr( >|z|)

(Intercept):1 1.26E + 01 1.78E-01 70.71  < 2e-16

(Intercept):2 1.43E + 01 1.83E-01 78.57  < 2e-16

(Intercept):3 1.53E + 01 1.85E-01 82.47  < 2e-16

BMI -3.19E-01 4.72E-03 -67.59  < 2e-16

Glucose -9.35E-01 2.20E-02 -42.4  < 2e-16

HDLC 1.91E + 00 4.65E-02 41.01  < 2e-16

TG -7.22E-01 1.82E-02 -39.7  < 2e-16

sex -4.20E-01 2.60E-02 -16.18  < 2e-16

age -5.95E-02 9.03E-04 -65.95  < 2e-16
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models and outperformed on differentiating the tar-
get risk groups from the healthy group. Furthermore, in 
each data, except in LRM for Ewha-Boramae cohort data, 
HSI (0,3) in the HS from POM takes the smallest values 
among all the other HSIs’, indicating that the HS of POM 
performed best.

Our findings are consistent with the literature 
regarding the significance of components in the both 
axes for predicting lifestyle-related chronic diseases 
and their outcomes. It was reported that the signifi-
cant predictor variables for mortality in older adults 
with diabetes included age, gender, smoking status, 

Fig. 1  The health spaces developed from KNHANES data. a is health spaces made with LMM, b is health spaces made with LRM, and c is health 
spaces made with POM. The x-axis represents the oxidation score and y-axis represents the metabolism score. Each ellipses in different color 
represents the confidence region of each groups on the health space and bold dots represents the center of ellipses. Each blue, red, green, and 
brown color represents healthy group, 1 metabolic risk factor group, 2 metabolic risk factors group, metabolic syndrome or oxidative stress related 
diseases group

Fig. 2  Results of validation study using KNHANES data as a training set. The x-axis represents the pair of compared groups, and the y-axis refers to 
the HSI. Each red, blue, and green bar represents HSI made with LMM, LRM and POM. HSI(0,3) tends to have maximum value among others and 
greatest with POM
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Fig. 3  Boxplots for two models LRM and POM of scenario 1 with 50 samples. Box shows the Q1 to Q3 interquartile range and bold horizontal line 
show the median

Fig. 4  Boxplots for three models LRM, POM, and LMM of scenario 2 with 50 samples. Box shows the Q1 to Q3 interquartile range and bold 
horizontal line show the median
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BMI, fasting glucose, WBC, and GPT [23]. A role of 
smoking status was also shown in predicting mortal-
ity outcomes, in particular for cardiovascular mortal-
ity [24]. In addition, GPT, WBC, HDL, TG, and fasting 
glucose were presented as significant components for 
cardiovascular outcomes including stroke prediction 
[25, 26]. WBC might serve as a potential predictor for 
type 2 diabetes, hypertension [27], and atherosclero-
sis in the patients with metabolic disorders [28]. The 
Asian diabetic risk score was developed including age, 
gender, smoking status, BMI, fasting plasma glucose, 
HDL-cholesterol and TG [29]. Another risk-prediction 
model for new-onset hypertension included age, sex, 
BMI, and smoking status [30]. These models were sug-
gested to form the foundation of personalized health-
care system [25]. Likewise, our HS model may also 
be implemented for decision making in personalized 
healthcare.

The strengths of the present study include the utili-
zation of comprehensive clinical data from the gen-
eral population. However, there are several limitations 
that warrant discussion. We examined cross-sectional 
data, which limits the ability to infer causal relationship 
between the predictor variables and lifestyle-related 
chronic diseases. Study population is representative 
of the age spectrum of the entire adult population in 

South Korea, but which may limit the generalizabil-
ity to other populations. The presented HS was built 
through classical logistic regression models. Further 
consideration of data mining algorithms is also needed 
such as support vector machines, k-nearest neighbors 
algorithm, and deep learning to improve the classifica-
tion accuracy. Our finding also warrants further pro-
spective evaluation to determine whether the suggested 
HS model can be utilized as a prognostic model for pre-
dicting the onset of lifestyle-related chronic diseases.

The result is in line with the idea that a composite bio-
marker may enable better monitoring of disease pro-
gression as compared to single measures [31]. Since 
our model considered the interrelationships of multiple 
markers, it may help to improve the prediction of disease 
progression, which is complex multidimensional biologi-
cal systems. It may also help avoid erroneous conclusions 
and provide effective summative evaluation of individu-
al’s health outcome [31]. More importantly, a prediction 
model needs to provide accurate and validated estimates 
of probabilities of specific health conditions or outcomes 
in the targeted individuals [32]. Building a model based 
on affordable and easily obtainable clinical data could 
improve a major public health problem using a quick, 
simple, and inexpensive approach that is both safe and 
acceptable to the target population.

Fig. 5  Trend graph of scenario 1. The x-axis is number of samples and y axis is corresponding HSI. Each red and blue line represents the model 
made by LRM and POM



Page 11 of 12Park et al. BMC Public Health         (2022) 22:1701 	

Conclusions
HS model is an effective way to visualize individual’s 
health status in an objective way. Through empirical 
studies, we successfully validated the usefulness of our 
proposed HS model using two independent datasets. 
Our HS model might show a great promise in encour-
aging behavioral change and improving healthy life-
styles or reducing risk factors. This suggests that the 
presented HS model may not only potentially be used 
to stratify individuals at risk having metabolic risk or 
lifestyle-related chronic diseases, but also help the indi-
viduals to perceive their health status and to engage in 
empowered way.
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