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Abstract 
This paper presents a visual deep learning approach to automatically determine hock and knee angles from sow images. Lameness is the 
second largest reason for culling of breeding herd females and relies on human observers to provide visual scoring for detection which can be 
slow, subjective, and inconsistent. A deep learning model classified and detected ten and two key body landmarks from the side and rear profile 
images, respectively (mean average precision = 0.94). Trigonometric-based formulae were derived to calculate hock and knee angles using the 
features extracted from the imagery. Automated angle measurements were compared with manual results from each image (average root mean 
square error [RMSE] = 4.13°), where all correlation slopes (average R2 = 0.84) were statistically different from zero (P < 0.05); all automated 
measurements were in statistical agreement with manually collected measurements using the Bland–Altman procedure. This approach will be 
of interest to animal geneticists, scientists, and practitioners for obtaining objective angle measurements that can be factored into gilt replace-
ment criteria to optimize sow breeding units.
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INTRODUCTION
Leg weakness in sows is a pertinent issue in swine breeding 
units that results in economic loss due to longer wean to 
service intervals and higher culling rates (Stalder et al., 2000). 
Signs of leg weakness manifest early in a sow’s lifetime and 
can be detected by observing the conformation, stance, frame, 
and gait of a sow (Grindflek and Sehested, 1996; Koning, 
1996; Van Steenbergen, 1989). Culling rates for gilts range up 
to 40% due to physical lameness, and in adult sows, a quarter 
of sow culling’s are attributed to problems with the sow’s feet 
and leg conformation (Stalder et al., 2003). Furthermore, 
Stalder et al. (2003) determined that sows reach positive net 
present value after their third parity with peak reproductive 
performance in the third through the sixth parity, but on av-
erage, are culled before their fourth parity. These decisions to 
selectively reduce female breeding stock are made by human 
observers, yet studies (Van Steenbergen, 1989; Main et al., 
2000) have indicated that visual appraisal is highly subjec-
tive and dependent on many factors, including the evaluator’s 
years of experience. Therefore, a more objective technique is 
needed for evaluating feet and leg conformation in gilts and 
sows due to subjectivity with human evaluators.

The hock and knee joint angles of sows are common 
conformation traits that are visually assessed by human 
evaluators. Draper et al. (1988) examined the effects of di-
vergent selection for leg weakness in sows to find that the 
joint angle of the hock and knee are significantly different 
between the high and low genetic lines, suggesting that these 
angles can be potential indicators for risk of leg weakness. 

Additional genetic studies indicate that other feet and leg 
conformation traits range from low to moderate herita-
bility (Reiland et al., 1978; Bereskin, 1979; Rothschild and 
Christian, 1988; Morrow et al., 1991; Serenius et al., 2001; 
Serenius and Stalder, 2004; Fan et al., 2009). Implementing 
an objective technique for quantifying feet and leg confor-
mation traits can provide a more accurate estimate of herit-
ability due to the higher repeatability of these measurements 
(Stock et al., 2017). Together, these studies indicate that with 
improved heritability estimates from an objective measure-
ment technique, these traits can be included in genetic se-
lection programs to improve hock and knee conformation, 
which is associated with sow longevity and productivity. This 
study demonstrates the application and repeatability of using 
a trained object detection deep learning model called You 
Only Look Once (YOLO) (Redmond et al., 2016) to objec-
tively measure joint angles for the knee and hock in the side 
and rear stance position of sows.

MATERIALS AND METHODS
This section begins with data collection of sow images and 
describes the process of manually annotating biologically sig-
nificant body landmarks. First, all images will be manually 
annotated for body landmarks. These images will be used 
to train an object detection model for these annotated body 
landmarks. The output of the deployed model is predicted 
detections on test images which can be used to objectively 
measure the angle between the landmarks (Fig. 1).
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Data Collection
Two raw image datasets consisting of side and rear profile 
images from 45 multiparous sows were collected using the 
procedure described by Stock et al. (2017). The raw image 
dataset comprised of 150 side view images and 100 rear 
view images. All images of the sows were captured using 
a digital camera (PL20, Samsung Electronics Co., Ltd. 
Yongin-City, Gyeonggi-Do, South Korea) in default por-
trait mode without the use of the zoom feature to maintain 
consistency across sows. The technicians held the camera 
approximately 2.4 m from the sow and 1.0 m above the 
ground.

Manual Annotation
Each image dataset required all images to be manually 
annotated for 10 body landmarks in the side view and 2 
body landmarks in the rear view. An example of a manually 
annotated image is displayed in Fig. 2. These body landmarks 
are described in Table 1. Four augmentation methods 

artificially expanded the raw image dataset for increased 
variation throughout the training images: (1) horizontal 
flip, (2) saturation (between −25% and +25%), (3) hue (be-
tween −25 degrees and +25 degrees), and (4) exposure (be-
tween −25% and 25%). Augmentation assists with overfitting 
of the model and provides a more expansive set of possible 
scenarios to train from. Table 2 contains the final numbers of 
swine images in each of the three image datasets: train, vali-
date, and test for the side and rear image dataset (total of six 
image datasets across the rear and side image datasets). The 
final dataset for the side portrait model uses 363 images while 
the rear view model uses 211 images after the artificial expan-
sion of the image dataset through augmentation.

Deep Learning Approach
Introduction to the “You Only Look Once” algorithm.
The deep learning model YOLO is a one stage object de-
tection algorithm that uses convolutional neural networks 
(CNNs) to detect objects in images or video. The YOLO 

Figure 1. A figure summarizing the main components for determining hock and leg angles using the YOLO object detection algorithm for the side view. 
The automated measurement procedure requires raw images to be manually annotated. These images will be the training dataset that YOLO will use 
for training. The trained model localizes the location of each detected body landmark within a boundary box. From provided centroid and boundary box 
coordinates, a geometric algorithm determined hock and knee angles between body landmarks. These automated measurements are compared to 
those collected manually on the same image. Statistical tests determined the statistical significance of the slope (different from 0 and 1) between the 
automated and manual measurements and the statistical agreement between the two measures using the Bland–Altman tests.

Figure 2. Example annotation for the side and rear view images. Numbers correspond to class labels described in Table 1. There are two cases of feet 
in the side image, and two cases of hock and feet in the rear image. The geometric algorithm will identify which are the left and right based on their x 
and y coordinate.
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model can be used in real time applications, unlike tra-
ditional object detection models that use time expensive 
iterations of the sliding box windows. YOLO models im-
plement a single pass (you only look once) of an image for 
faster predictions through a CNN to output a label and con-
fidence probabilities (Fig. 3).

Overview of the proposed deep learning architecture.
The YOLOv5 object detection network (Fig. 4) can be under-
stood in three parts: (1) a backbone, (2) a neck, and (3) a head. 

The backbone is where images are passed through CNNs, 
which in short, are pattern recognition algorithms that lev-
erage deep learning techniques to predict boundary boxes for 
detected class objects and their probabilities. The YOLOv5’s 
backbone is an open-source neural network framework called 
Cross Spatial Partial Darknet53, used for feature extraction 
and model training. Darknet-53 contains 53 convolutional 
layers, where the common spatial patterns connections find 
spatial patterns, splitting each layer into two. Through the 
neck, one layer passes through the remaining convolution 
layers, but the others do not. Like the original Darknet, all 
results are then aggregated for final predictions outputted by 
the head.

Statistical metrics are commonly used in deep learning.
Deep learning studies conventionally use three common sta-
tistical metrics: (1) Intersection of Union (IoU), (2) precision, 
and (3) recall. IoU is a popular metric to measure the localiza-
tion accuracy of boundary boxes. This is the probability that 
the classifier found an anchor box containing a class object, 
determined by first calculating the IoU (Eq. 1) and illustrated 
in Fig. 5. Predicted boundary boxes that closely match the 
area of the annotated boundary box will receive a higher IOU 
than those with little overlap. Together, the IoU and confi-
dence score determines if the classifier’s prediction is a true 
positive or false negative.

IoU =
Area of Intersection (shaded)

Total area of union� (1)

Precision and recall are two statistical metrics that are used 
to evaluate potential models during the training phase. 
Precision is defined as the number of true positives di-
vided by the sum of the true positives and false positives. 
Recall is defined as the ratio of true positives, and sum of 
true positives and false negatives. Figure 6a displays the 

Table 1. Labels and class names for the side and rear view

View Label Class

Side 0 Rump

1 Back hock

2 Foot

3 Teat

4 Front hock

5 Shoulder

6 Elbow

7 Neck

8 Front Elbow

Rear 0 Hock

1 Foot

Table 2. Final number of images across the rear and side for the train, 
validate, and test image datasets

Train Validate Test

Rear 211 16 16

Side 363 20 16

Figure 3. Example output from YOLO v5 model. Through a single pass of the CNN, the YOLO model predicts the labels (green box), boundary boxes 
(orange box), and the confidence probabilities (blue box) for predicted objects detected in the image.
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inverse trend between confidence score and recall in our side 
view model, and shows that the two metrics follow an in-
versely proportional relationship. This trend is the result of 
the critical values increasing as confidence increases, which 
widens the confidence interval, and results in less precision. 
Alternatively, Fig. 6b shows the proportional trends between 
confidence score and precision for our side view model, 

indicating that as the confidence score increases, recall will 
increase.

Average precision (AP) is a statistical metric used to com-
pare models with different parameters, such as different 
epoch sizes, test image sizes, or changes to model architecture. 
This metric is defined as the area under the precision-recall 
curve, which can be manually calculated using integration to 
find the area underneath the curve. The mean average pre-
cision (mAP) for a class, is the average of the AP for that 
class, across all test images. The overall mean average preci-
sion (overall mAP) is the average of all average APs of each 
class. Machine learning models benefit from both a larger 
training image dataset and a greater number of epochs, which 
is the number of passes a model undergoes during training. 
Models using different parameters can be compared by using 
the overall mAP. In Table 3, the overall mAP of each model 
increases with increased training image dataset size. The mean 
average precision increases with increased epoch size (Fig. 7) 
which follows a similar trend to training image dataset size. 
The default—patience function sets an early truncation, acti-
vated at a plateau when setting the number of epochs to 500, 
curtailing the final epoch count to 331 for the side images, 
and 221 epochs for the rear images.

Training, validation, and test image datasets.
The raw image dataset comprised of 150 side view images 
and 100 rear view images for training the model. Images that 
were unable to be manually annotated were removed. A pre-
liminary calculation using the Bland–Altman test (Altman 
et al., 1983; Bland and Altman, 1986) indicated that for an 
alpha value of 0.05 at a 95% confidence interval, 11 and 
16 test images were needed to measure the statistical differ-
ence between the two measures for the rear and side, respec-
tively. For higher confidence, test image dataset for the rear 
increased to 16. This study used a ratio of 70-15-15 for rear 
view model, and 70-20-10 for the side view, model where 
there were 16 test images for each of the side and rear-view 
image datasets.

The training dataset consists of the largest proportion of 
the total images (70%) because the manual annotations la-
beled on the training images are specifically used to guide 
the parameters of the new model during the training phase. 
Using algorithms such as the tensors previously described, the 
model determines pixel elements of the test image anchor box 
that is common with elements within the annotated boundary 
box. It is possible, that if the model is trained purely on test 
images, then overfitting can occur resulting in a trained model 
that cannot accurately detect objects in images that are dif-
ferent from images found in the training dataset. For ex-
ample, the model developed on a dataset trained purely on 
pigs in one barn may not work when using images from a 
different barn at a different time of day. Therefore, a valida-
tion test set is used to determine validation mAP of the model 
which provides an indicator of how well the model is when 
trained on images different than those in the training dataset. 
While the validation dataset traditionally comprises 15% of 
the total dataset, it influences the loss functions that are used 
to modify the hyperparameters for each model. The valida-
tion mAP after each epoch is used to determine which model 
is considered the best. Since these parameters are influenced 
by the metrics obtained by the validation dataset, it is im-
portant to create a test dataset separate from the other two 

Figure 4. Parts to the YOLO v5 network. The neck features many roles, 
but primarily serves as an aggregation step. Features like the pyramid 
pooling and path aggregation are featured in the neck. One of the 
advantages of later versions of YOLO is increased accuracy due to 
improvements in the neck. Finally, the head is used to implement feature 
detection of the sow body landmarks through predicted annotations in 
each test image.

Figure 5. An example depicting IoU) calculation. The blue box is the 
predicted boundary box, and the orange is the ground truth label. The 
orange and blue dot is the centroid of the detected hock for the ground 
truth and predicted boundary box. The IoU metric is calculated as the 
ratio of the area of overlap between a predicted boundary box and 
the manual annotation, over the area of the union between the two 
boundary boxes (Eq. 1).
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datasets. The test dataset traditionally comprises 10% of the 
dataset but provides an overall mAP metric that is used to 
measure how well the model works overall, that is not biased 
by the validation test dataset.

Determining hock and knee angles from training model 
output.
The trained YOLO v5 model outputs a.txt file that consists of 
localization data for each detected object in every test image. 
The.txt file is organized where each row is an instance of a 
detected class object. These labels follow the same numerical 
labeling in annotation and in Table 2. There are by default, 
five columns that represent the label, x and y coordinate for 
the centroid and the height and width of the boundary box. It 
is challenging to set a custom IoU and non-maximal suppres-
sion threshold without knowing the IoU for each boundary 
box. Therefore, this model enabled the –IOU parameter 
during output, so each.txt file output would include the IoU 
as well. Therefore, six parameters for each output are utilized 
and listed below:

1.	 Label (Refer to Table 2)
2.	 x Centroid Coordinate

3.	 y Centroid Coordinate
4.	 Height of Boundary Box
5.	 Width of Boundary Box
6.	 IoU of Boundary Box

Hock and Knee Angles
This paper uses a geometric algorithm to obtain two hock an-
gles from the rear profile and four hock and knee angles from 
the side profile using data outputted from a YOLOv5 model 
trained on images of sows collected from two barns. The 
hock angles from the rear view are Left (denoted Hock-Left; 
H-L) and Right (denoted Hock-Right; H-R). The four hock 
and knee angles from the side view are denoted Side-Back-1 
(back  side of the back leg, abbreviated S-B-1), Side-Back-2 
(front side of the back leg, abbreviated S-B-2), Side-Front-1 
(back side of the front leg, abbreviated S-F-1), and Side-
Front-2 (front side of the front leg, abbreviated S-F-2). These 
angles are derived based on previous literature from Stock et 
al. (2017), Nakano et al. (1987), and Van Steenbergen (1989), 
as well as by the PIH 101 Feet and Leg Soundness in Swine 
(Wood and Rothschild, 2001) guide from the National Swine 
Improvement Federation.

Rear hock angles.
In the rear view, the two angle measurements are determined 
using the feet and hocks. In quadruped mammals, the hock is 
a backward protrusion between the tarsal bones and the tibia 
of the posterior side of the animal. The H-L angle is deter-
mined by calculating the angle between the left foot and the 
right hock, where the vertex of H-L is the left hock. The H-R 
angle is determined by calculating the angle between the right 
foot and left hock, where the vertex of H-R is the right hock.

Rear hock algorithm.
For each of the 16 rear view test images, four boundary 
boxes are detected in each image. These four boundary boxes 

Figure 6. Trends between (a) recall and confidence and (b) precision and confidence for each class in the side view. The thicker blue line represents the 
average across all classes. Recall for all class objects decreases as confidence increases due to changes in confidence intervals. The inverse occurs 
where precision increases as confidence decreases. Pink (the neck) followed erratic patterns in later epochs due to possible overfitting in the training 
and validation dataset.

Table 3. Evaluating model performance over varying numbers of training 
images (only side view model shown). The mAP values increase with an 
increasing number of training images. Maximum number of epochs is 
dependent on the number of training images. The trained model using 
363 training images over 331 epochs received an overall mAP of 0.94

# Training images Overall mAP Patience enabled final epoch count

10 0.48 72

121 0.87 278

242 0.88 310

363 0.94 331
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are the feet (left/right) and the hock (left/right). The trained 
model provided an output of centroid coordinates for each 
detected body landmark. For calculating the left hock angle, 
the centroids of the left foot, left hock, and right hock are 
used, where the vertex of the angle is the left hock. Euclidean 
distances between the centroid of the left foot, the left hock, 
and the right hock are calculated using a derivation of the 
Pythagorean theorem (Eq. 2):

distance =
»

(x2 − x1)
2
+
»

(y2 − y1)
2

� (2)

Angles are calculated using a derivation of the Law of Cosines 
(Eq. 3):

c2 = a2 + b2 − 2ab · cos(C)� (3)

where a, b, and c are distances of a triangle, and C is the angle 
opposite of vertex c (Eq. 4). The inverse of the derivation can 
then be directly used to calculate the angle when provided 
distances of each side of the triangle (Eq. 5).

cos (C) =
a2 + b2 − c2

2ab� (4)

arccos (a) =
a122 + a132 − a232

2(a12 · a13)� (5)

where a12 is the distance between the left foot and the left 
hock, a13 is the distance between the right hock and left hock, 
and a23 is the distance between the left foot and right hock.

Calculation of the right hock angle follows the same geo-
metric approach used in Eq. 4 but uses the centroids of the left 
foot, left hock, and right hock, where the vertex of the angle is 
the right hock. An example is shown in Fig. 8.

Side hock and knee angles.
For each of the 16 test images in the side view, the trained 
model identified and localized 10 body landmarks to use in 

Figure 7. Relationship between mAP and the number of epochs (a: side, b: rear). The number of epochs plateaued at the start of 300 for the side 
images, and at the start of 200 for the rear images. Triangles in orange are the early truncation point automatically enabled by the patience function.

Figure 8. Centroids detected by the trained YOLO model, and body 
angles calculated from the detected body landmarks, for the rear view 
image. Centroids used for the angles are in blue, where the vertex of the 
angles are highlighted.
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hock and knee angle measurements. The side view angles 
are calculated using the same derivation of the Pythagorean 
theorem and Law of Cosines as described previously for the 
rear view. All four sets of hock and knee angles in the side 
view required three body landmark locations. The first set 
of body landmarks are used to detect the posterior hock 
angle. This angle required the centroid coordinates of the 
rump, the hock, and the back foot. The second set of body 
landmarks are used to detect the anterior hock angle. This 
angle required the centroid coordinates of the teats, the 
front hock, and the back foot. The third set of landmarks 
made the posterior knee angle, which required the centroid 
coordinates of the shoulder, the back knee, and the front 
foot. The fourth set of landmarks made the anterior knee 
angle, which required the centroid coordinates of the neck, 
the front knee, and the front foot. An example of a side view 
is shown in Fig. 9.

Side Hock and Knee Algorithm
In the side view, four angles are determined, starting from the 
posterior side of the animal. The S-B-1 and S-B-2 angles are 
the angle between the tarsal bone and the tibia/fibula. The 
knee of the sow is a hinge joint, made up of various muscles 
and ligaments that connects the humerus with the radius and 
carpals. The S-B-2 angle deviates slightly from the one used in 
Stock et al. (2017), where the upper vertex is the maximum 
of curvature that defines the conflux between the loin, the leg, 
and the side. The S-F-1 and S-F-2 angles are determined by 
the angle between the pig’s humerus with the radius/carpal. 
The S-F-1 angle deviates from the one used in Stock et al. 
(2017), where the upper vertex is shifted to the maximum 
of the curvature that defines the shoulder, and the vertex is 
shifted directly above the shoulder joint.

Both models considered the body landmark “foot” as one 
class and later renamed front and back foot using the coor-
dinates provided by the model output. Previously, the model 
trained using images annotated with both “front foot” and 
“back foot,” had difficulty discerning between the front and 
back foot which resulted in multiple simultaneous predictions 
of the front and back foot, even with non-maximal suppres-
sion enabled. Therefore, a different iteration of the model 
found higher mAP when foot is annotated as one class, where 
each test image is annotated with two instances of foot. The 
foot coordinate is later preprocessed into front and back foot 
by determining which foot coordinate for the x centroid is 
closest to the rump and the neck.

The feet centroids underwent coordinate adjustment 
using the boundary box height and width to determine 
the southernmost vertices. The model accurately measured 
foot centroid in each image, yet the hock and knee angle 
did not directly use the centroid of the foot. However, the 
boundary box corners indicated the end vertices of each 
hock and knee angle. Therefore, the upper left corner of 
each foot boundary box became the foot coordinate of the 
posterior angle measurements. Subtracting half the width 
and height of each boundary box from the centroid coor-
dinate provides the upper left corner of the boundary box. 
For the anterior angles, subtracting half the height of the 
boundary box from the foot centroid yielded the foot cen-
troid. All angles are found using the same arccosine func-
tion described previously. An example of adjusting foot 
angles is displayed in Fig. 10.

Manual Evaluation
Three human evaluators manually calculated all six hock and 
knee angles independently using J-image (Rasband, 2018), a 

Figure 9. Centroids detected by the trained YOLO model, and body angles calculated from the detected body landmarks, for the side view image. 
Centroids used for the angles are in blue and the red centroids represent the centroid of the class foot. Angle vertexes are highlighted in yellow.
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software used for simple image analysis that calculates angles 
by manually clicking three points. Instructions were provided 
so evaluators knew where the ideal vertex and two endpoints 
were located on each image. For quality control, all datasets 
contained three duplicate images, which were used to check 
that labelers were consistent across the same image. The 
three duplicate images were found to be effective in deter-
mining the quality of the human evaluator, as the observed 
measurements would either be similar to each other or dif-
ferent. These angle measurements were averaged across the 
three evaluators to obtain a total average for each manually 
obtained angle measurement.

Manual evaluation methodology

1.	 Using J-Image, click the angle button at the top to access 
the angle measurement tool.

2.	 The mouse will now change to indicate the angle tool has 
been enabled.

3.	 For each body part, please observe the image provided.
4.	 Then, click the three points that best match the three 

points displayed in the example image.
5.	 On a new version of the provided excel template, write 

this value down under the correct file name.

Statistical Analysis for Comparing Automated and 
Manual Methods
Evaluating the reliability of the manual methodology.
Interclass correlation coefficient (ICC) measures the strength 
of the evaluation methodology by measuring how strongly 
the angles obtained from each evaluator resembled each 
other. The ICC indicates if the hock and knee angles can be 
reliably determined by different evaluators. The ICC was de-
termined by performing a two-way ANOVA test. Values of 
ICC that approach 1 indicate high reliability of an experi-
mental method, while values that approach 0 indicate poor 
reliability across different raters. Using the values obtained 
from the test, the ICC was determined using Eq. 6 (Fisher et 
al., 1950).

ICC =
Variance of Interest

Total Variance� (6)

Hypothesis testing for the regression slope.
Pearson correlation coefficient quantified the relationship be-
tween the manual and automated measurements and was used 
to test if the regression slope is statistically significant from zero 
and one. A regression slope hypothesis test where, the null hy-
pothesis assumes that the slope is equal to zero, tests if there is 
a significant linear relationship between the automated meas-
urement X and the manual measurement Y. The result of the 
test is a confidence interval that may or may not include 0. 
When testing for difference from zero, a confidence interval 
that contains 0 indicates that 0 is a likely candidate for the true 
value of the difference. While the P-value is unknown, it can 
be inferred that the P-value will be less than alpha, 0.05. A sig-
nificance level of 0.05 was used for the linear regression t-test. 
Standard error of the slope was calculated using Eq. 7.

SEslope =

√∑ (yi−yi)
2

n−2»∑
(xi − xi)

2
� (7)

where n is the number of observations, yi is the automated 
measurement for observation i, yi is the estimated automated 
measurement for observation i, xi is the manual measurement 
for observation i, xi is the estimated manual measurement for 
observation i.

Degrees of freedom for a simple linear regression is equal to 
n−2. The t statistic is determined using the following formula:

t =
b1

standard error of slope� (8)

The P-value to test for difference from zero is calculated using 
the t statistic (Eq. 8) and the degrees of freedom.

Root mean squared error is a statistical metric used to com-
pare the distance of individual measurements from the regres-
sion line. This is calculated using Eq. 9.

RMSE =

 
Σ (Pi −Oi)

2

n� (9)

where n is the number of observations, Pi  is the automated 
measurement for observation i, Oi is the manual measure-
ment for observation i.

Figure 10. Calculation of adjusted foot coordinates (blue) from origin (red). Boundary box in gray. Where xcb, ycb are the centroid coordinates of the back 
foot, and xcf, ycf are the centroid coordinates of the front foot.
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Bland–Altman test for determining statistical agreement.
The Bland–Altman test is considered the standard for 
comparing two quantitative measurement techniques (Altman 
and Bland, 1983; Bland and Altman, 1986) and is used in this 
study to test for statistical agreement between automated and 
manual measurements on the same sow image. This proce-
dure quantifies the agreement between two measures on the 
same, individual unit and is conducted by plotting the differ-
ence between the automated and manual measurements on 
the y axis, regressed on the average of the values on the x axis. 
The technique recommends limits of agreement set at 1.96 
±SD of the mean difference. Evaluation of the two methods is 
based on how many points are outside the borders set by the 
limits of agreement.

RESULTS
Interclass Correlation Coefficient
Table 4 presents the ICC across all 16 images, between the 
three evaluators. This study found an interclass correlation 
of 0.92 for the side profile and 0.93 for the rear profile. 
Further breakdown of these two groups indicates that most 
of the angle measurements are moderately to highly repeat-
able (ICC = 0.82 to 0.94), with the exception of S-B-1 (ICC 
= 0.69).

Correlation Between Manually and Automated 
Measurements
Table 4 presents the coefficient of determination (R2), slope 
(±SE), intercept (±SE), RMSE, the P-value to test if the slope 
is significantly different from zero, and the confidence interval 

for alpha = 0.05. Correlations between the automated and 
manual measurements ranged from 0.67 to 0.95 across all an-
gles. The greatest correlation is 0.95 for the H-L angle, while 
the lowest correlation is 0.69 for the S-B-1 angle. All P-values 
were found to be less than 0.05, and therefore interpreted as 
significantly different from zero. The confidence interval for 
alpha = 0.05 is used to test if the slope is statistically different 
from zero. If the confidence interval includes 0, it suggests that 
the true value can reasonably be 0. However, in this study, 
all confidence intervals did not include zero, indicating that 
the slope for all angles were statistically different from zero. 
The resulting P-values are less than the alpha value (0.05), 
which is considered the conventional threshold for statistical 
significance.

Bland–Altman Plots
Table 5 presents the results obtained from the Bland–
Altman analysis between the manual and automated angle 
measurements. The average difference between auto-
mated and manual measurements ranged from −0.04 to 4.51. 
H-L, and S-F-1 had the smallest mean of difference, at −0.04 
and −0.01, respectively. S-B-1 and S-F-2 had the largest dif-
ference, at 4.51 and 3.65, respectively. All means are posi-
tive or close to zero, indicating that on average, automated 
measurements generally are larger than manually collected 
measurements. Figure 11 displays the Bland–Altman plots, 
with bounds described in Table 5. The Bland–Altman plots 
indicate that all angle measurements are statistically similar 
to each other. S-B-1 had three points outside the threshold, 
which is five points below the 50% threshold required. S-B-2, 
S-F-1, and S-F-2 had two points that are in close proximity to 
the threshold border.

Table 4. Summary statistics with ICCs, regression coefficient (R2), slope (± standard error [SE]), intercept (±SE), root mean squared error (RMSE), the 
P-value to test if the slope is significantly different from zero, and confidence interval of the slope

ICC1  ICC2 R2 Slope (±SE) Intercept (±SE) RMSE P value CI

H-L 0.93 0.93 0.95 1.35 (0.08) −32.80° (7.77°) 5.84° <0.01 (0.50, 0.91)

H-R 0.94 0.86 1.08 (0.11) −7.18° (9.52°) 3.07° <0.01 (0.76, 1.24)

S-B-1 0.92 0.69 0.74 0.97 (0.16) 8.71° (24.00°) 5.66° <0.01 (0.40, 1.21)

S-B-2 0.82 0.67 0.70 (0.14) 42.41° (19.46°) 2.66° <0.01 (0.41, 1.59)

S-F-1 0.87 0.75 0.94 (0.15) 10.05° (25.90°) 2.82° <0.01 (0.58, 1.19)

S-F-2 0.84 0.86 0.85 (0.09) 27.55° (15.23°) 4.73° <0.01 (0.57, 1.12)

1ICC by group (rear profile and side profile) calculated using Eq. 6.
2ICC by individual angle calculated using Eq. 6.

Table 5. Statistical parameters used to create the Bland–Altman plots for each knee and hock angle (Hock-Left, Hock-Right, Side-Back-1, Side-Back-2, 
Side-Front-1, Side-Front-2). Means of difference indicate average offset, where negatives indicate that the automated measured less on average, and 
positives indicate the automated measured higher on average. Upper and lower bound thresholds are calculated using a 95% confidence interval. 
Points in close proximity to the threshold border are also noted. All manual measures are averaged across three evaluators

Mean of difference 
(degrees)

Upper bound 
(degrees)

Lower bound
(Degrees)

Points outside
Threshold

Points on 
border

Are methods in 
statistical agreement?

H-L −0.04 −12.27 12.18 0 0 Y

H-R 0.88 −6.74 8.50 1 1 Y

S-B-1 4.51 −2.41 11.43 3 1 Y

S-B-2 0.27 −5.11 5.65 0 2 Y

S-F-1 −0.01 −5.73 5.70 0 2 Y

S-F-2 3.65 −2.43 9.74 1 2 Y
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DISCUSSION
A statistical analysis of the angle measurements obtained 
through manual evaluation and the trained object detec-
tion model found four major findings that indicate that an 
automated approach can be used to obtain reliable angle 
measurements of the hock and knee that can be useful in gilt 
replacement selection procedures to replace less reliable sub-
jective methods currently used to evaluate breeding herd re-
placement females and ultimately be used to evaluate both 
elite breeding boars and sows.

Finding 1: The automated approach resulted in feature 
extractions that were as accurate as human evaluators. As seen 

in Table 5 and Fig. 11, according to the Bland–Altman plots, 
all automated measures are in statistical agreement with those 
obtained manually. In five of the six angles, one or two points 
approached the border, however, decreasing the threshold to 
one standard deviation did not make significant changes to 
the number of points outside the threshold, indicating that 
these results are robust.

Finding 2: The Bland–Altman plot is a more reliable indi-
cator of statistical agreement than the correlation coefficient. 
Correlations between the automated and manual measures 
are displayed in Table 4 and Fig. 12a–f. Many studies of 
this nature use the simple Pearson correlation coefficient to 

Figure 11. Bland–Altman plots for each knee and hock angle (Hock-Left, Hock-Right, Side-Back-1, Side-Back-2, Side-Front-1, Side-Front-2). The plots 
visualize the differences between pair of automated and manual points against the mean of each pair. The middle bold line represents the overall mean. 
The top and bottom dashed lines represent the limits of agreement, set at 1.96 standard deviations above and below the mean.
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determine statistical agreement, however this poses two main 
disadvantages. First, the correlation coefficient measures the 
strength of a relationship between the automated and manual 
measures but does not imply statistical agreement or cause 

and effect relationships. One observation concluded that di-
viding the obtained automated measures by a factor of 0.5 
yields the same correlation as if it was multiplied by a factor 
of two. Regardless of the same correlation, both conversions 

Figure 12. Correlations between automated and manual measurements (in degrees) by knee and hock angle (Hock-Left, Hock-Right, Side-Back-1, Side-
Back-2, Side-Front-1, Side-Front-2). Correlations and the corresponding angle are depicted in the upper right corner.
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of the automated results are not the same as the original, 
and therefore should not be used as an alternative to manual 
methods. The Bland–Altman plot uses the difference between 
each pair of measurements to independently assess agreement 
between two measures. Therefore, the Bland–Altman plots 
are able to identify large quantitative differences between the 
automated and manual measurements, unlike the correlation 
coefficient. Second, the simple Pearson correlation coefficient 
is inherently affected by the range of data. This was discovered 
early in the study, when the back and front legs were origi-
nally averaged to yield only two angles from the side view. 
This reduced the range of side angles from 85° to 95°. As a re-
sult, all resulting correlations were found to average less than 
0.05, however, the Bland–Altman plots from the averaged 
angle data suggested that all measurements were still in sta-
tistical agreement. These results indicate that correlation can 
conceal statistical agreement between two measures.

Finding 3: Statistical metrics (ICC and mAP) indicate that 
the manual evaluation and trained model is reliable for fea-
ture extraction in side and rear view images of sows. The ICC 
of each sow angle is displayed in Table 4 and the mAP’s of 
the two trained models for the side and rear view are dis-
played in Table 3. These statistical metrics are important in 
assessing the system used to collect data. The ICC measures 
how reliable the in-person evaluation is for collecting manual 
angle measurements, while the mAP measures how accurate 
the trained object detection model is for collecting automated 
angle measurements. The ICC across the side and rear images 
are 0.96 and 0.93 which indicates that the manual measure-
ment system is reliable. The mAP across all detected body 
parts is 0.94 indicating that the automated measurement 
system is reliable.

Finding 4: The range of joint angle measurements of the 
hock and knee are similar to those found in previous studies. 
The hock and knee joints in sows have a normal biological 
range of motion. One genetic study compared the range of 
knee and hock angles from divergent lines for leg weakness 
(Draper et al., 1988). This study found that across the di-
vergent lines, the knee joint angles range from 167.8° to 
174.5°, while the hock angles range from 142.7° to 151.0°. 
Another study by Stock et al. (2017) found that across dif-
ferent parities, the least square means of the knee and hock 
joint angle of standing crossbred, multiparous sows, ranged 
from 157.6° to 161.9° and 142.3° to 151.5°, respectively. The 
range of hock and knee joint angles from both Draper et al. 
(1988) and Stock et al. (2017) are similar to the range of an-
gles found in this study (Fig. 12).

The performance and robustness of the trained model 
can be improved by increasing the variation of unique 
images of pigs. In this study, only 45 multiparous sows were 
photographed due to resource constraints and challenges as-
sociated with live data collection. All pigs used in this study 
were cross bred from two genetic suppliers and were con-
sistently a similar color (off white) and surface texture (light 
colored pelage). Therefore, this model would have similar 
performance when deployed on images of pigs of different 
breeds that had similar observable visual characteristics as 
the pigs used in the training dataset, such as the Landrace, 
Yorkshire, or Large White. However, this model would per-
form poorly when deployed on images of pigs that are of dif-
ferent color and skin texture, such as the Duroc, Hampshire, 
Berkshire, or Large Black. This is because these pigs have 
not been introduced to the model in the training dataset and 

will likely be unable to identify the pig when deployed on 
images of these breeds. Increasing the frequency of pigs with 
different colors can help train the model to recognize new 
colors and textures of pigs which will expand the model’s 
ability to identify key body landmarks on pigs of differently 
colored breeds.

Another observation found that while overall mAP of the 
trained model was moderately high, the neck consistently re-
ceived the lowest mAP out of the detected body landmarks, 
likely due to overfitting of neck. This is likely due to ambi-
guity and variability of the neck shape and is reflected in the 
precision recall curves previously discussed in the methods 
(Fig. 6). These curves reveal that the neck followed an incon-
sistent pattern with the other landmarks, which may have af-
fected the results of the correlation and Bland–Altman tests 
for S-F-2. It is possible that this error is a result of overtraining 
a dataset limited in variety of sow feeding stances. In the 
training and validation datasets, nearly all pigs are in sim-
ilar feeding positions, where the neck is scrunched together 
as the pig consumed feed. This was done to keep the sow still 
for raw image data collection. In the test images where the 
neck was incorrectly labeled, it appeared that the heads of the 
sows were pointed upwards. Since most images in the training 
and test data set are in a downward feeding stance, the error 
associated with neck landmark identification is likely due to 
overfitting and may be resolved by expanding the dataset to 
include images of sows in different stances, such as sows with 
their heads facing up.

Future studies would benefit from increasing the volume 
of images by introducing images of pigs of different sizes, 
breeds, and of varying hock and knee angles. Furthermore, 
all images used in this study were from two barn locations 
during two photoperiods. Increasing the variation of the 
background, such as lighting or background complexity can 
increase the robustness and performance of the model. While 
there was no record of lameness in the pigs used in the current 
study, the tool described in this paper can be implemented in 
future research to measure the hock and knee angles of pigs 
with different degrees of lameness quickly, objectively, and 
automatically.

CONCLUSIONS
To summarize, this study shows that a deep learning ap-
proach to identifying key body landmarks on rear and side 
images of sows can be leveraged to objectively obtain hock 
and knee angle measurements. The hock angles from the rear 
view are Left (denoted Hock-Left; H-L) and Right (denoted 
Hock-Right; H-R). The four hock and knee angles from the 
side view are denoted Side-Back-1 (back side of the back leg, 
abbreviated S-B-1), Side-Back-2 (front side of the back leg, ab-
breviated S-B-2), Side-Front-1 (back side of the front leg, ab-
breviated S-F-1), and Side-Front-2 (front side of the front leg, 
abbreviated S-F-2). Statistical tests compared the angles de-
rived from the localization output from the YOLO algorithm 
with the angles obtained from manual evaluators on J-Image.

The trained rear and side view models obtained an overall 
0.94 mAP across each body landmarks from the rear and side 
view images. From the coordinate data obtained from the 
trained model output, four angle measures derived from the 
deep learning process were found to be with manually obtained 
measurements on the same image (H-L, H-R, S-F-1, S-F-2). The 
slope of H-L is found to be statistically similar to 1, indicating a 
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strong correlation between the manual and automated H-L an-
gles. A Bland–Altman test compared the angles obtained from 
the deep learning process and angles obtained from manual 
evaluators for each individual sow and found agreement 
across all six hock and knee angles (H-L, H-R, S-B-1, S-B-2, 
S-F-1, S-F-2). This comparison test has two key advantages 
over using correlations, (1) correlation does not change when 
scaling one set of measures, and (2) correlation is affected by 
narrowing the range of values. In summary, interpreting the 
Bland–Altman test indicates that the automated angle meas-
ures agree with manually derived angles and is recommended 
for comparing future automated measurement techniques with 
subjective manual measurement systems. Overall, these results 
will be of interest to swine breeders and veterinarians inter-
ested in integrating hock and leg angles with replacement gilt 
selection and for use in genetic breeding programs where there 
is a focus on improved feet and leg soundness.
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