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Abstract

Background: The human gut harbors trillions of microbes that play dynamic roles in health. While the microbiome
contributes to many cardiometabolic traits by modulating host inflammation and metabolism, there is an
incomplete understanding regarding the extent that and mechanisms by which individual microbes impact risk
and development of cardiovascular disease (CVD). The Framingham Heart Study (FHS) is a multi-generational
observational study following participants over decades to identify risk factors for CVD by correlating genetic and
phenotypic factors with clinical outcomes. As a large-scale population-based cohort with extensive clinical
phenotyping, FHS provides a rich landscape to explore the relationships between the gut microbiome and
cardiometabolic traits.

Methods: We performed 16S rRNA gene sequencing on stool from 1423 participants of the FHS Generation 3,
OMNI2, and New Offspring Spouse cohorts. Data processing and taxonomic assignment were performed with the
16S bioBakery workflow using the UPARSE pipeline. We conducted statistical analyses to investigate trends in
overall microbiome composition and diversity in relation to disease states and systematically examined taxonomic
associations with a variety of clinical traits, disease phenotypes, clinical blood markers, and medications.

Results: We demonstrate that overall microbial diversity decreases with increasing 10-year CVD risk and body mass
index measures. We link lifestyle factors, especially diet and exercise, to microbial diversity. Our association analyses
reveal both known and unreported microbial associations with CVD and diabetes, related prescription medications,
as well as many anthropometric and blood test measurements. In particular, we observe a set of microbial species
that demonstrate significant associations with CVD risk, metabolic syndrome, and type 2 diabetes as well as a
number of shared associations between microbial species and cardiometabolic subphenotypes.

Conclusions: The identification of significant microbial taxa associated with prevalent CVD and diabetes, as well as
risk for developing CVD, adds to increasing evidence that the microbiome may contribute to CVD pathogenesis.
Our findings support new hypothesis generation around shared microbe-mediated mechanisms that influence
metabolic syndrome, diabetes, and CVD risk. Further investigation of the gut microbiomes of CVD patients in a
targeted manner may elucidate microbial mechanisms with diagnostic and therapeutic implications.

* Correspondence: hera_vlamakis@hms.harvard.edu;
Stanley_Shaw@hms.harvard.edu; xavier@molbio.mgh.harvard.edu
"Broad Institute of MIT and Harvard, Cambridge, MA, USA

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-021-01007-5&domain=pdf
http://orcid.org/0000-0002-5630-5167
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:hera_vlamakis@hms.harvard.edu
mailto:Stanley_Shaw@hms.harvard.edu
mailto:xavier@molbio.mgh.harvard.edu

Walker et al. Genome Medicine (2021) 13:188

Page 2 of 16

Keywords: Framingham Heart Study, Gut microbiome, Cardiovascular disease, Type 2 diabetes, 16S rRNA gene

sequencing, Microbial taxonomy

Background

The gut microbiome’s direct contribution to health and
disease status has been well established. From its exten-
sive metabolic and synthetic capabilities and its intricate
interactions with host immune system development and
modulation, the microbiome greatly impacts host physi-
ology [1]. Cohort-based studies of the microbiome have
described substantial microbial variation even in the ab-
sence of disease [2]; established significant relationships
between specific microbes and a variety of dietary fac-
tors, lifestyle factors, and anthropometric measurements
[3, 4]; and demonstrated that microbial variability im-
pacts inflammatory cytokine production capacity [5] and
determines the level of immune education in early life
[6], among other immunological processes.

Significant changes in microbial community compos-
ition and taxonomic abundances have been associated
with different disease states across many organ systems
[7-9]. These include cardiovascular and metabolic phe-
notypes such as obesity [10-12], type 2 diabetes (T2D)
[13-17], and atherosclerotic cardiovascular disease [18—
21] as well as metabolic risk factors for cardiovascular
disease (CVD) such as hypertension [22, 23] and blood
lipid levels [24, 25]. While cardiometabolic conditions
are complex (with their etiology attributed to a combin-
ation of environmental, dietary, lifestyle, and genetic fac-
tors), the gut microbiome potentially provides a
mechanistic link between many of these non-genetic fac-
tors and nutrient metabolism and inflammation in
humans. A prominent example of this is the gut micro-
biota’s role in trimethylamine N-oxide (TMAOQO) produc-
tion from dietary choline, betaine, and L-carnitine,
coupled with studies implicating high levels of plasma
TMAO in the risk of developing atherosclerosis [26—30].
Intestinal bacteria can also metabolize cholesterol to the
biologically unavailable coprostanol, and the presence of
these microbes in the gut microbiome is associated with
decreases in both intestinal and serum cholesterol levels
in multiple human cohorts [25]. Microbes also affect gly-
cemic control, with specific taxa associated with higher
blood glucose levels post-meal, explaining interindivid-
ual variability in postprandial response to identical meals
[31]. The ability of the microbiome to exert multiple im-
mune phenotypes [32] also suggests a role in the de-
rangements of inflammation and innate and adaptive
immunity implicated in atherosclerosis [33-35] and
metabolic conditions such as obesity and T2D [36].
Taken together, clarifying microbial contributions to
cardiometabolic conditions and related subphenotypes

may provide mechanistic insights into disease and sug-
gest preventive or therapeutic hypotheses based on
modulating the microbiome.

The Framingham Heart Study (FHS) provides a unique
opportunity to examine such relationships. Since its in-
ception in 1948 as the first longitudinal, large-scale study
of cardiovascular disease risk, the FHS has led to the
identification of major risk factors for CVD such as
smoking, obesity, high cholesterol, hypertension, phys-
ical inactivity, and diabetes [37]. The FHS cohorts stud-
ied in this report (Generation 3, Omni Generation 2,
and New Offspring Spouse cohorts) represent a multi-
ethnic, community-based sample of middle-aged men
and women who have undergone genetic and phenotypic
characterization.

Here, we present the first cross-sectional microbiome
analysis of 1423 FHS cohort participants using 16S
rRNA gene-based sequencing of stool samples to explore
variation and function of the gut microbiome at the
population level. Integrative analyses of lifestyle, dietary,
and clinical factors with the microbiome reveal associa-
tions with overall microbial composition and diversity
across participants. We identify microbial taxa and pre-
dicted functional pathways associated with a variety of
clinical phenotypes, medications, and blood test mea-
surements, providing insights into the molecular mecha-
nisms by which microbiota influence health and
cardiometabolic disease.

Methods

Cohort

For this study, FHS participants were aggregated from
the Generation 3, OMNI 2, and New Offspring Spouse
cohorts, three ongoing cohorts within the larger FHS
study with examination cycles every 5-10 years. At
Exam 3 (2016-2019), participants of all three sub-
cohorts were informed of the microbiome study and
given a stool sample kit with related questionnaire along
with a variety of clinical tests, examinations, and health
questionnaires. The actual participants of this study were
those who returned a sample kit after the visit (N=1423).
We generated 16S microbiome data from all 1423 par-
ticipants using stool samples collected at Exam 3 of the
FHS project. Stool samples were aliquoted upon receipt
and stored until adequate batch sizes were met for ex-
traction and 16S rRNA gene sequencing. To test vari-
ability caused by aliquoting and storage durations, 279
samples were extracted twice, for a total evaluation of
1702 samples.
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FHS sub-cohort information is available at https://
framinghamheartstudy.org/participants/participant-
cohorts/ and summarized here. The sub-cohorts used in
this study—Generation 3, OMNI 2, and New Offspring
Spouse—reflect different enrollment criteria and efforts
of the larger FHS research project. FHS originally re-
cruited participants in their Original Cohort in 1948 by
randomly sampling 2/3 of the adult population of Fra-
mingham, Massachusetts; this cohort was followed until
2014. The Offspring Cohort was initiated in 1971 con-
sisting of offspring of the Original Cohort and their
spouses; it was concluded in 2014. The Original Cohort
and the Offspring Cohort were not a part of this study
but used in describing participants of the sub-cohorts
below:

e The Generation 3 Cohort represents the third
generation of the Original Cohort (participants had
at least one parent in the Offspring Cohort and were
at least 20 years old by the close of the first exam
cycle). Exam 1 began in 2002 and was completed in
2005. There were 4095 total participants in the
Generation 3 Cohort.

e The New Offspring Cohort represents the spouses
of an Offspring Cohort participant that were not
previously enrolled and have at least two biological
children who participated in Exam 1 of the
Generation 3 Cohort. Recruitment started in 2003
and ended after Exam 1 in 2005. There were 103
total participants in the New Offspring Cohort.

e The OMNI 2 Cohort represents an effort to
establish a group of participants that reflect diversity
in the community. In 1994, an OMNI 1 Cohort was
initiated and ended in 2014. To expand these efforts,
enrollment for a second cohort of OMNI
participants started in 2003 and ended in 2005.
OMNI 2 included many individuals related to
OMNI 1 participants as well as unrelated
participants. There were 410 total participants in the
OMNI 2 Cohort.

This study uses all sub-cohort participants providing a
microbiome sample (Generation 3: N=1267; New Off-
spring: N=31; and OMNI 2: N=137) as one large dataset
in all analyses described below.

Metadata

Medications

Due to participants taking a wide variety of medications
and many with similar mechanisms of action, we classified
cardiovascular-related medications into 4 categories: antihy-
pertensive agents, insulin and hypoglycemic medications,
low-density lipoprotein (LDL)-lowering medications, and
triglyceride (TG)-lowering medications. Antihypertensives
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included medications with FHS therapy group classification
as “antihypertensives,” “agents acting on the renin-
angiotensin system,” “beta blocking agents,” “calcium chan-
nel blockers,” and “diuretics.” Insulin and hypoglycemic
medications are all drugs with FHS therapy group classifica-
tion as “drugs used in diabetes,” which included insulin and
its analogs and non-insulin blood glucose-lowering drugs
such as metformin. LDL-lowering medications included
medications with FHS chemical group classification as sta-
tins (“atorvastatin,” “lovastatin,” “pitavastatin,” “pravastatin,”
“rosuvastatin,” and “simvastatin”), “alirocumab,” and “nico-
tinic acid” Triglyceride-lowering medications included
medications with FHS chemical group classification as
“colesevelam,” “colestipol,” “cholestyramine,” “ezetimibe,”
“fenofibrate,” “gemfibrozil,” and “omega-3 triglycerides.”

” «

” «

Diabetes status

Current diabetes status was defined as a study par-
ticipant under current treatment for diabetes or
with either a fasting blood glucose level of 126 mg/
dL or greater or a non-fasting blood glucose level of
200 mg/dL or greater. Fasting status was defined as
fasting for at least 8 h.

10-year CVD risk

A 10-year risk for atherosclerotic cardiovascular disease
was calculated for participants without a CVD diagnosis
from age, sex, race, total cholesterol, HDL cholesterol,
systolic blood pressure, blood pressure-lowering medica-
tion use, diabetes status, and smoking status based on a
previously described model [38].

Metabolic syndrome

Metabolic syndrome status was defined as a study par-
ticipant having 3 out of the 5 qualifications below, based
off of the National Heart, Lung, and Blood Institute/
American Heart Association guidelines [39].

1) Abdominal obesity: A waist circumference greater
than or equal to 40 in. for men and greater than or
equal to 35 in. for women.

2) High triglyceride levels: Triglycerides greater than
or equal to 150 mg/dL or taking triglyceride-
lowering drugs.

3) Low HDL levels: Less than 40 mg/dL for men and
less than 50 mg/dL for women or taking LDL-
lowering drugs.

4) High blood pressure: Either systolic blood pressure
greater than 130, diastolic blood pressure greater
than 85, or taking antihypertensives drugs.

5) High fasting blood sugar: Blood glucose levels
greater than or equal to 110 mg/dL, calculated only
for participants whose blood tests were performed
during a fasted state.
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Dietary recall

Dietary variables were taken from a questionnaire pro-
vided with the stool collection kit. Participants were asked
to return a stool sample with a completed questionnaire
of dietary intake within the last 7 days along with specific
medication intake for the last 2 weeks. Medications in-
clude antibiotics, chemotherapy, and immunosuppres-
sants. The dietary questionnaire gave a specific food
category (“tea/coffee,” “sugary drinks,” “diet soft drinks,”

» o«
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juice,” “water,” “alcohol,” “yogurt/foods with active bac-
terial cultures,” “dairy,” “probiotic,” “fruit,” “vegetables,”
“beans,” “whole grains,” “starch,” “eggs,” “processed meat,
”, “red meat,” “white meat,” “shellfish,” “fish,” and

“sweets”), and participants marked whether they did not
consume the product in the past 7 days (0) or whether
they consumed the product within the past 4 to 7 days (1),
within the past 2 to 3 days (2), yesterday 1 to 2 times (3),
or yesterday 3 or more times (4).

Physical activity

The physical activity questionnaire was given at Exam 3
and asked participants how many times per month they
performed a specific activity. The activities surveyed in-
cluded: “vigorous jogging or running,” “vigorous racket
sports,” “bicycle,” “vigorous swimming,” “vigorous exer-
cise class or dancing,” “vigorous activities: lifting, carry-
ing, or digging,” “weights: snow shoveling, moving heavy
objects, weight lifting,” “strenuous sports: basketball,
football, skating, skiing, soccer, etc.,” “nonstrenuous
sports,” “walk or hike,” “home exercise or calisthenics,”
and “nonstrenuous weight training.”

Sample handling and nucleic acid extraction

Stool samples were collected in 100% ethanol as previ-
ously described [7]. For DNA and RNA co-extraction,
the QIAamp 96 PowerFecal Qiacube HT Kit (Qiagen
Cat No./ID: 51531) was paired with the Allprep DNA/
RNA 96 Kit (Qiagen Cat No./ID: 80311) and IRS solu-
tion (Qiagen Cat No./ID: 26000-50-2) for a custom
protocol. For the initial lysis, 50—200 mg of stool per
sample were transferred frozen into individual wells of
the PowerBead plate, containing 0.1 mm glass beads
(Cat No./ID: 27500-4-EP-BP), on a dry ice block. 650 pl
of 55°C-heated PW1 buffer and 25 pL of freshly pre-
pared 1M DTT were added directly to each sample well
before lysis by bead beating on a TissueLyzer II at 20 Hz
for a total of 10 min (in two 5-min intervals with plate
rotation in between). Samples were pelleted by centrifu-
gation for 6 min at 4500xg, and supernatants were trans-
ferred to a new S block (supplied in PowerFecal Kit),
combined with 150 ul of IRS solution, and vortexed
briefly before a 1-min incubation. Sealed samples were
centrifuged again for 6 min at 4500xg, and up to 450 pl
of supernatant were transferred to a new S block,

Page 4 of 16

combined with 600 pl of Buffer C4 (PowerFecal Kit),
mixed by pipetting 10 times, and incubated for 1 min.
Samples were transferred into AllPrep 96 DNA plates on
top of clean S blocks and centrifuged for 3 min at
4500xg. The centrifugation step was repeated until all
samples passed through. The AllPrep 96 DNA plate was
stored at 4°C until ready for further processing.

The Allprep 96 DNA plate was removed from 4°C and
placed on top of a 2-mL waste block. A 500 pl of AW1
buffer was added to the DNA plate and sealed prior to
centrifugation for 4 min at 4500xg. The waste block was
emptied after each wash step. A 500 ul of AW?2 buffer
was added to the DNA plate prior to sealing with Air-
Pore tape and centrifugation for 10 min at 4500xg. The
Allprep 96 DNA plate was placed on top of an elution
plate. A 100 pl of 70°C-heated EB buffer was added to
each sample column and incubated for 5 min. The DNA
plate was sealed and then centrifuged for 4 min at
4500xg to elute, and DNA was stored at —20°C. All incu-
bation and centrifugation steps were performed at room
temperature.

16S rRNA gene sequencing

16S rRNA gene libraries targeting the V4 region of the
16S rRNA gene were prepared by first using qPCR to
normalize template concentrations and determine opti-
mal cycle number. Library construction was performed
in quadruplicate with the primers 515F (5'-AATGAT
ACGGCGACCACCGAGATCTACACTATGGTAATTG
TGTGCCAGCMGCCGCGGTAA-3’) and unique re-
verse barcode primers from the Golay primer set [40,
41]. After amplification, sample replicates were pooled
and cleaned via the Agencourt AMPure XP-PCR purifi-
cation system. Prior to final pooling, purified libraries
were normalized via qPCR in two 25 pL reactions, 2x iQ
SYBR SUPERMix (Bio-Rad, REF: 1708880) with Read 1
(5'-TATGGTAATTGTGTGYCAGCMGCCGCGG
TAA-3") and Read 2 (5'-AGTCAGTCAGCCGGACTA
CNVGGGTWTCTAAT-3") primers. Pools were quanti-
fied by Qubit (Life Technologies, Inc.) and sequenced on
an Illumina MiSeq with 2 x 150 base pair reads using
custom index 5 -ATTAGAWACCCBDG-
TAGTCCGGCTGACTGACT-3" and custom Read 1
and Read 2 primers mentioned above.

Operational taxonomic unit (OTU) construction and
taxonomic assignment

OTU clustering and taxonomic profiling of 16S rRNA
gene amplicon sequencing data were performed with the
16S bioBakery workflow built with AnADAMA?2 [42],
which incorporates ea-utils and the UPARSE pipeline
(version 8.1). Briefly, paired-end reads from all datasets
were first merged, filtered, and de-replicated. For
quality-filtering the UPARSE threshold of Emax=1, at
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which the most probable number of base errors per read
is zero for filtered reads, and a truncation quality thresh-
old of 15 were used. Further reads were trimmed to a
fixed length of 200 base pairs. OTUs were then sorted
by size, singletons were discarded, and OTUs were clus-
tered at 97% similarity. Subsequently, the representative
sequences for each cluster were mapped against the
Greengenes 16S rDNA database (version 13.5) to filter
chimeras and obtain taxonomic assignment.

Statistical analysis and visualizations

Analyses were performed in R (v 3.6.2) using the follow-
ing packages: phyloseq (v1.30.0) [43], vegan (v2.5-7) [44],
ape (v5.4-1) [45], microbiome (1.8.0) [46], MMUPHin
(v1.0.0) [47], g value (v2.18.0) [48], ggplot (v3.3.3) [49],
pheatmap (v1.0.12) [50], GGally (v2.1.0) [51], network
(v1.16.1) [52, 53], and MaAsLin2 [54].

Sample filtering and data quality control

The starting dataset consists of 1702 samples with 279
replicates (Additional file 1: Fig S1A). Replicates were
first examined and showed high concordance, with an
average Bray-Curtis distance between replicates of 0.1
and between non-replicates of 0.7 (Additional file 1: Fig
S1B). Therefore, for samples with technical replicates,
the replicate with the higher read depth was selected for
downstream analysis. Samples were then required to
have at least 15,000 mapped reads after OTU assignment
(Additional file 1: Fig S1C). Data was converted to rela-
tive abundances, normalizing for library size. OTUs were
filtered based on 5% prevalence, resulting in 1356 sam-
ples and 848 taxa, regardless of taxonomic classification
level. Rarefaction curves indicated that read depth was
sufficient to detect the majority of OTUs present in a
sample, as the number of OTUs detected by read depth
leveled off (Additional file 1: Fig S1D). Since samples
were sequenced across 16 batches, the data were nor-
malized for batch effects using MMUPHin, which takes
as input a feature by sample matrix of microbial abun-
dances, performs batch effect adjustment given provided
batch information, and returns the batch-adjusted abun-
dance matrix [47] (Additional file 1: Fig S1E). For the
848 identified OTUs, the most specific taxonomic as-
signment was available at the species level for 8.6% of
OTUs, genus level for 34.9% of OTUs, family level for
41.7% of OTUs, and order level for 14.7% of OTUs
(Additional file 1: Fig S1F).

Diversity

Alpha-diversity [the number of observed OTUs (rich-
ness) and Shannon index (diversity)] and beta-diversity
(Bray-Curtis dissimilarities) indices were calculated for
all 1356 samples at the OTU level using the phyloseq
package in R (version 1.30.0) [43]. We examined
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covariates of microbiome variation by calculating the as-
sociation between FHS traits and community level or-
dination [non-metric multidimensional scaling (MDS)
based on Bray-Curtis dissimilarities using metaMDS]
with the envfit function from the R package vegan (ver-
sion 2.5-6) [44]. We examined the effects of 25 variables:
age, sex, HbAlc, ALT, AST, albumin, cholesterol, HDL,
triglycerides, glucose, CRP, SBP, DBP, BMI, WHR, anti-
biotics, diabetes, CVD, CVD risk, metabolic syndrome,
antihypertensives, LDL-lowering drugs, triglyceride-
lowering drugs, insulin and hypoglycemic drugs, and
Shannon diversity. To include CVD risk for all samples
in this analysis, CVD risk for participants diagnosed with
CVD was set to 1. P values were determined by 9999x
permutations and adjusted for multiple testing of 25
traits using the Benjamini-Hochberg method. To exam-
ine how much variation could be explained by ordin-
ation, we also ran an MDS analysis using the phyloseq
ordination function with method set to MDS (Additional
file 1: Fig S2A). To examine which phylum-level taxo-
nomic features contributed the most to variation across
individuals, we performed pairwise Pearson correlations
using the R function cor across the top 5 MDS axes,
Shannon diversity, Simpson diversity, and all phylum-
level relative abundances. The correlation matrix was vi-
sualized using the corrplot function [55] from the corr-
plot R package (Additional file 1: Fig S2B).

To assess variance explained in Shannon diversity from
50 environmental and lifestyle factors, we first regressed
out the effects of age, sex, race, and antibiotic use on the
Shannon diversity index for each sample by running a lin-
ear model and taking residuals. Then, for each of the 50
variables, we fit a linear regression model testing microbial
diversity as a function of each variable to evaluate the vari-
ance in diversity explained by that variable. P values were
corrected using Benjamini-Hochberg correction with sig-
nificant associations identified at false discovery rate (FDR)
<0.05. The 50 variables examined include: blood and an-
thropometric variables (HbAlc, ALT, AST, albumin, chol-
esterol, HDL, triglycerides, glucose, CRP, SBP, DBP, BMI,
WHR, antihypertensives, LDL-lowering drugs, triglyceride-
lowering drugs, and insulin and hypoglycemic drugs), diet-
ary intake variables (tea/coffee, sugary drinks, alcohol, diet
soft drinks, juice, water, yogurt/active bacterial cultures,
dairy, probiotic, fruit, vegetables, beans, grains, starch, egg,
processed meat, red meat, white meat, fish, shellfish, and
sweets), and lifestyle variables measured as times per month
(jog, racket sports, bike, swim, exercise class, vigorous activ-
ity, weights, strenuous sports, non-strenuous sports, walk,
home exercise, and non-strenuous weights).

Statistical association analyses
Association analyses were performed using an additive
general linear model of OTU abundance for all 1356
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participants as a function of sample metadata using
MaAsLin2 [54]. To account for confounding effects, we
included age, sex, race, and antibiotic use as fixed effects
in the model in addition to the respective outcome vari-
able. Statistical significance was corrected for multiple
testing using the Storey-Tibshirani correction with sig-
nificant associations identified at FDR<0.05. Associations
with CVD risk were only performed on participants
without a history of CVD (N=1294). For the analysis of
anthropometric and blood analyte measurements, we ex-
amined 13 variables: HbAlc, ALT, AST, albumin, chol-
esterol, HDL, triglycerides, glucose, CRP, SBP, DBP,
BMI, and WHR. For the analysis of diagnostic condi-
tions and selected medications, we examined 27 vari-
ables: cardiometabolic traits (CVD, CVD risk, diabetes,
metabolic syndrome, aspirin, antihypertensives, LDL-
lowering drugs, triglyceride-lowering drugs, and insulin
and hypoglycemic drugs), diagnostic variables that were
at least 5% prevalent in the cohort (cancer, migraine,
thyroid disease, gynecological problems, asthma, GERD,
depression, and anxiety), and drugs related to these diag-
nostic variables with FHS therapy groups (analgesics, an-
tidepressants, anxiolytics, thyroid therapy, hormonal
contraceptives, progestogens, estrogens, antimigraine
preparations, drugs for acid related disorders, and drugs
for obstructive airway diseases).

Correlation network graphs

To visualize correlations among associations for specific
variables, all significant associated OTUs (FDR<0.05) for
the given variables determined by MaAsLin2 [54] were
plotted as nodes in the network with edges being defined
by Spearman’s correlation between the OTU and given
variables. The network was constructed using the ggnet2
function from the GGally R package [51].

Functional profiling

PICRUSt software was used to predict the metagenome
functional potential based on 16S marker genes [56].
First, OTU abundances were normalized by their known
or predicted 16S copy number. To reduce irrelevant
terms, KEGG pathway-level categories were summarized
and required to contain any of the following keywords:
“metabolism,” “synthesis,” “pathway,” “degeneration,” or
“bacterial.” We additionally removed terms specific to
fungi (N=142). Pathway-level categories were converted
to relative abundances to normalize library size and fil-
tered for prevalence of at least 10%, resulting in 134
pathways. Association analysis was performed on all
1356 samples using MaAsLin2 [54], correcting for covar-
iates of age, sex, race, and antibiotic use. Statistical sig-
nificance was corrected for multiple testing using
Storey-Tibshirani correction with significant associations
identified at FDR<0.05. Associations with CVD risk were
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only performed for participants without prevalent clin-
ical CVD.

Results

Study population and participant characteristics

From 2016 through 2019, FHS participants underwent
an extensive third examination cycle consisting of stool
sample collection for microbiome profiling along with
numerous clinical interviews, physical examination, la-
boratory tests, non-invasive tests, and health question-
naires (Fig. 1A). 16S rRNA gene amplicon sequencing
was performed on 1702 stool samples from 1423 partici-
pants, including 279 technical replicates (Additional file
1: Fig S1A). Technical replicates allowed for the examin-
ation of variability caused by aliquoting and storage du-
rations during the collection time period. Data for
replicates were generated with a gap of 4 to 20 months,
during which time samples were stored at —80°C. Simi-
larity analysis showed high concordance with an average
Bray-Curtis distance of 0.1, where the average Bray-
Curtis distance between non-replicate samples was 0.7
(Additional file 1: Fig S1B). This supports the validity
and robustness of our sample processing methods. After
selecting the replicate with the higher read depth and
downstream quality control (Methods, Additional file 1:
Fig S1A), the data consisted of 1356 participants. The
demographics of these participants were notable for
55.7% female, 89.9% self-reported race “white,” average
age of 55 years (range 32-89 years), and average BMI of
28 kg/m?* (range 15-51 kg/m?) (Fig. 1B). All participants
completed questionnaires surveying medical history, life-
style and dietary recall, and prescription and non-
prescription medications; underwent laboratory exams
of blood specimens; and reported hospitalizations or car-
diovascular events that were subjected to clinician re-
view and adjudication. Among study participants, the
rates of CVD (4.6%), T2D (9.1%), metabolic syndrome
(18%), and obesity (30%) were slightly lower than the
prevalence among adults in the USA (Fig. 1C) [57].

Microbial diversity correlations with participant
phenotypes

We examined microbial composition based on 16S
rRNA gene amplicon sequencing by first assessing rich-
ness and alpha and beta diversity indexes. The observed
richness of the cohort, assessed as the number of micro-
bial OTUs detected per participant, was on average 267
OTUs, ranging from 32 to 474 (Fig. 2A). While the ma-
jority of samples had a large number of taxa represented,
the evenness of the communities varied greatly between
individuals. The relative abundance of Bacteroidetes
ranged from 0 to 98%, while the relative abundance of
Firmicutes ranged from 2 to 99%, with the Shannon di-
versity index strongly correlated to Firmicutes (Pearson’s
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the estimate) ()*100. Asterisks indicate significance at corrected p<0.05

Fig. 2 Compositional diversity of the gut microbiome. a Histogram of alpha diversity. Richness of each sample is shown as the number of OTUs
detected per sample. b, ¢ Non-metric multidimensional scaling (NMDS) analysis of Bray-Curtis distances calculated from OTU-level relative
abundances. NMDS 1 and 2 are shown on the x- and y-axis, respectively. Each dot represents an individual and is colored by the proportion of
Bacteroidetes (b) or Firmicutes (c) abundance. d Overall phylum-level relative abundance composition across all samples binned by
cardiometabolic disease status of CVD, CVD plus diabetes (denoted C+D), diabetes, and no CVD or diabetes. Each sample is represented by one
stacked bar colored by phylum. e A 10-year CVD risk score calculated on all participants without a CVD diagnosis. Each dot represents an
individual that corresponds to a bar in d and indicates risk for developing CVD as a probability from 0 to 100%. f Boxplots of Shannon diversity
across cardiometabolic disease status. Wilcoxon test comparing each disease status to no CVD or diabetes found no significant (ns) difference
between Shannon diversity across these categories. g Boxplots of Shannon diversity across binned 10-year CVD risk scores. Wilcoxon test
comparing 0-4 to 5-14% and 15-19% CVD risk are significant (* indicates p<0.05). h Boxplots of Shannon diversity across BMI classification.
Wilcox test comparing normal BMI to all other BMI categories are significant (* indicates p<0.05). i NMDS analysis of Bray-Curtis distances
calculated from OTU-level relative abundances. NMDS 1 and 2 are shown on the x- and y-axis, respectively. Each dot represents an individual and
is colored by Shannon diversity. Factors were fit onto this ordination by the envfit function in R. Factors that significantly correlated with vector
projections in the ordination space are shown. The strength of the correlation is depicted by the length of the arrow, which points in the
direction of the variable that changes most rapidly and with maximum correlation with the ordination configuration. j A bar plot of percent
variance explained in Shannon diversity (x-axis) explained by each variable (y-axis). Each variable is colored by its corresponding category. Each
variable was tested for association with Shannon diversity by fitting a linear model, and the percent variance explained represents the (sign of

correlation r=0.71, p<2.2e-16) and negatively correlated
to Bacteroidetes (Pearson’s correlation r=-0.69, p<2.2e
-16). We used Bray-Curtis distance to calculate beta di-
versity and observed that the proportion of Bacteroidetes
and Firmicutes was the largest driver of variation across
individuals observed for taxonomic features at the
phylum level, as visualized by non-metric multidimen-
sional scaling (NMDS; Fig. 2B, C, Additional file 1: Fig
S2A, B). Complete phyla relative abundances showed
contributions from Proteobacteria to be high in a few
samples ranging from 0 to 89% but with an average rela-
tive abundance around 4% (Fig. 2D). Among the samples
with high Shannon diversity (>4), the relative abun-
dances of Bacteroidetes and Firmicutes were 27% and
64%, respectively.

We calculated an estimate of 10-year risk for athero-
sclerotic CVD for all participants without prevalent
CVD based on CVD-related factors including total and
high-density lipoprotein (HDL) cholesterol, systolic
blood pressure, medications for blood pressure, diabetes
status, and smoking status (Fig. 2E). While there was no
statistically significant difference between Shannon di-
versity among individuals with prevalent CVD and dia-
betes compared to the rest of the cohort (Fig. 2F), we
did find significant differences in diversity measures by
CVD risk (Fig. 2G). Additionally, consistent with previ-
ous reports [58], we observed decreased Shannon diver-
sity with increased BMI status (Fig. 2H).

To assess contributions of measured phenotypic vari-
ables on overall microbiome composition, we examined
anthropometric and blood test measurements as well as
medications related to managing diabetes and heart dis-
ease, along with CVD, diabetes, CVD risk, and metabolic
syndrome status. Each variable was fit onto an ordin-
ation plot to identify which variable changed in correl-
ation to the ordination configuration (Fig. 2I). While

Shannon diversity showed the strongest correlation (r*=
0.0931, FDR=0.0005), there were significant correlations
to the ordination plot with 16 additional variables,
though to a lesser degree (Additional file 2: Table S1).
Related variables such as triglycerides, glucose, HbAlc,
BMI, WHR, antihypertensives, insulin and hypoglycemic
drugs, diabetes, CVD risk, and metabolic syndrome
showed similarities in strength of correlation and direc-
tionality in the ordination plot, suggesting these associa-
tions may be driven by a unifying factor.

Next, we wanted to assess the contribution of environ-
mental and lifestyle factors on microbiome alpha diver-
sity. We analyzed 50 variables from the dietary recall
and physical activity questionnaires, anthropometric and
blood analyte measurements, and diabetic and cardiovas-
cular medications to test for associations with Shannon
diversity, while correcting for age, sex, race, and anti-
biotic use. Dietary factors showed the strongest associa-
tions with diversity; frequency of consuming fish,
vegetables, fruit, tea, and coffee within the last week
were positively associated with diversity. Blood triglycer-
ide concentration was the only significant variable nega-
tively associated with diversity. Factors with trending
significance (p<0.05, FDR>0.05) included leisure-time
exercise, HDL cholesterol, and starch consumption,
which were positively associated with microbial diversity,
and intake of diet soft drinks, processed meat, and dairy,
which were inversely associated with Shannon diversity
(Fig. 2], Additional file 2: Table S2).

Associations of anthropometric and blood analyte
measurements with the microbiome

To identify relationships between abundance of individual
microbial taxa with population-wide phenotypic measure-
ments, we related microbial OTUs to 13 anthropometric and
blood analyte measurements. After FDR correction and
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adjusting for age, sex, race, and antibiotic use, we detected
129 statistically significant associations, identifying 89 taxo-
nomic units across 11 phenotypic measurements (Fig. 3A,
Additional file 2: Table S3). We observed two clusters of host
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phenotypic measurements in which multiple phenotypes dis-
played similar patterns of OTU associations: (1) BMI with
WHR and (2) blood analyte measurements related to trigly-
ceride and glucose phenotypes.

a 10 Lachnosplraceae (OTU 177061)
ptostre()tacaccaceae SOTU 547714)

Clostridiales (

Parabacteroides d/stason/s OTU 186233)

Lachno%wraceae 8OTU 24)

Dorea (OT!

Ruminococcaceae TU 359984)

Clostridiales (OTU 2700687)

Bacteroides (OTU 364179)

Turicibacter (OTU 368490,

Ruminococcaceae (OTU 40862)

Blautia (OTU 52444

Clostridiales (OTU 5291922)

Ruminococcaceae (OTU 291017)
Oscillospira (OTU 53539 g
Ruminococcus (OTU 369555)
Rikenellaceae (OTU 5750 4£
Lachnospiraceae L}OTU 347226)
Clostridiales E_)OT
Oscillospira (OTU 1577 729?
Lachnospiraceae ( OTU 293389)
Oscillospira (OTU 581

K Clostridiales (OTU 358 43

Lactobac:llus (OTU 33271
Ffummococcus (OTU 586271)
Ruminococcaceae (OTU 195222)
Veillonellaceae (OT 22 954)
Sutterella (OTU 589923)
Lachnospiraceae (OTU 342777)
Clostridiales (OTU 562376
Lachnosplraceae (OTU 368698)
Eubacterium biforme (OTU 329820)
Lachnosplraceae l}OT 364034)
Clostridiales (O 96)
Bacteroides OTU 580629)
Oscillospira (OTU 585227
Lachnosp/raceae OTU 537661)
Bllophlla (OTU 35

Mogibacteriaceae (OTU 20734 3

K Lactobacillus ruminis (OTU 178213)
Rikenellaceae (OTU 21367 g
Lachnospiraceae (OTU 369227)
Clostridium (OTU 215963)
Actinomyces (OTU 787709
Lachnospiraceae (OTU 514996)
Ruminococcaceae (OTU 190301)
Streptococcus EOTU 608
Streptococcus (OTU 968954
Lachnospiraceae (OTU 368: 62?
Phascolarctobacterium (OTU 916143)

=

5

[ [ [l <]

S

el [ [ L el o] ] < [ ]«

]
[ <]
]

] ] <]

AST
HDL
CRP
BMI [+]+]
WHR BEH
]

Cholesterol
ALT

Albumin
SBP

DBP
Triglycerides
Glucose
HbA1c

Clostfiigi
(OTU5
pspira
04126)

Osg
(©r Lactobacillus
2718)  Lachno.

(OTU

iraceae v
072) 5

\
Et#bacteri
(OTU 22

Rikenellageae
(OTU 218671)
Mogibacterja
(OTU 20784Q

Ruminocegccus
(OTU 2979308

Parabacteroidgg di:
(OTU 588914)
Bilopi
(OTU 35

S/

80

2) ‘ R
Lachn@spiraceae
(OTU 537661)

Rumirg DCe 1!75«’3 S
B0
Oscillespira ¢ )

(OTU 585227) Lachnogplraceae
(OTU 342777) )
| Ruminod

Lachnospif@ceae (OTU
(OTU 364034)

blforme
20,

““(

QTU195222)

(e}

BMI (Normal weight vs Obese)

3
2
1
0 .

-1
-2

Fold change (log,)

Lachnospiraceae (OTU 350970)
Coprococcus (OTU 184905)
Lachnospiraceae (OTU 369227)
Clostridium (OTU 215963)

Lachnospiraceae (OTU 514996)
Ruminococcaceae (OTU 195222)

<]

D-arginine and D-ornithine metabolism
Inorganic ion transport and metabolism
K3 Porphyrin and chlorophyll metabolism
Bacterial toxins
Linoleic acid metabolism
Other glycan degradation
Biotin metabolism
Nitrogen metabolism
Fructose and mannose metabolism
Butirosin and neomycin biosynthesis
Aminoacyl-tRNA biosynthesis
Pantothenate and CoA biosynthesis
EIEIE Lipid biosynthesis proteins
EE Energy metabolism
HEH Ethylbenzene degradation

[+
-]

Lelel ]+ [« [l |

[+
HbA1c BIE

Glucose

HDL

Albumin
DBP
AST

Cholesterol
CRP
SBP

Triglycerides

20915)
Sutterella
(OT\4589923)
Bacteroides
0 80629)
Lachn piraceae
4996)

min@eoccus torques
U'883398)

ellac
aceae (OTU S250a4)

\G idiales
JTQQSZ
ach splraceae
(OY 368698)
aceae

997)

Fig. 3 Significant microbial and functional associations of blood test and anthropomorphic measurements. a A heatmap depicting the top 50
associations across 13 blood test and anthropomorphic measurements colored by the -log(g value)*sign(coefficient). Significant associations
(corrected p<0.05) are indicated by an asterisk. b Network of significant associations between microbial taxa (purple circles) and triglycerides,
glucose, and HbATc (orange circles). The thickness of edge (gray) is defined by the strength of Spearman correlation (r) between the relative
abundance of the OTU and each feature; heavier edge weight implies stronger correlation. ¢ Bar plot of the log fold change of the average
relative abundance for significant OTUs associated with BMI status of normal weight vs obese participants. A positive fold change corresponds to
OTUs with greater abundance in participants of normal weight, and a negative fold change corresponds to those with greater abundance in
participants who are obese. d A heatmap depicting the top 15 functional pathway associations predicted from PICRUSt across 13 blood test and
anthropomorphic measurements colored by the -log(g value)*sign(coefficient). Significant associations (corrected p<0.05) are indicated by
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The phenotypic measurements with the most micro-
bial associations were WHR, followed by blood triglycer-
ides and BMI. WHR and BMI displayed strong
overlapping associations with increases in OTUs repre-
senting Lachnospiraceae, Ruminococcaceae, Veillonella-
ceae, and Phascolarctobacterium and decreases in
Rikenellaceae. Triglycerides, glucose, and HbAlc were
associated with increases in a nexus of OTUs that in-
cluded Clostridiales, Lactobacillus, Oscillospira, Lactoba-
cillus  ruminis,  Ruminococcus,  Lachnospiraceae,
Rikenellaceae, and Mogibacteriaceae (Fig. 3B). Four
OTUs were significant across all three of these blood
markers, and five OTUs were significant among two of
the three measurements. Each had unique associations
as well.

BMI is a measure that has been widely examined in rela-
tion to the gut microbiome. We identified a total of 22
OTUs associated with BMI. To further explore this rela-
tionship, we compared participants with BMI classified as
normal weight (18.5-25 1<g/m2) and obese (=30 l<g/m2)
and evaluated a categorical-based association analysis.
Two OTUs (Lachnospiraceae and Coprococcus) were in-
creased among participants of normal weight, and four
OTUs (two Lachnospiraceae, Ruminococcaceae, and Clos-
tridium) were enriched in obese participants (Fig 3C, Add-
itional file 1: Fig S3A).

We then assessed the functional capabilities of the im-
plicated microbial communities by inferring the metabolic
potential of associated taxa from predicted metagenomic
content of 16S rRNA marker genes using PICRUSt [56].
We identified 130 statistically significant associations
among 64 KEGG pathway-level categories for nine of the
anthropometric and blood analyte measurements (Add-
itional file 2: Table S4). While many of the significant cat-
egories were non-discriminative and functions of all
bacteria, we observed similar enrichment patterns among
related phenotypic features such as BMI, WHR, ALT, glu-
cose, HbAlc, and triglycerides. Among these top associa-
tions, we found positive correlations with D-arginine and
D-ornithine metabolism and biotin metabolism as well as
negative correlations with ethylbenzene degradation
across the most features (Fig. 3D).

Disease diagnoses and medication associations with the
microbiome

To explore the relationship between disease risk and the
microbiome, we assembled a list of 27 diagnostic condi-
tions and selected medication variables. These included
CVD classification based on clinician-verified cardiovas-
cular events, a derived classification of diabetes (based
on fasting blood glucose levels and treatment for dia-
betes), the FHS 10-year CVD risk score (Methods), a de-
rived classification of metabolic syndrome (Methods),
questionnaire-based diagnoses for non-CVD and non-
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diabetes conditions with at least 5% prevalence in the
FHS cohort, and corresponding medications for the con-
ditions examined. After FDR correction and adjusting
for age, sex, race, and antibiotic use, we detected 281
statistically significant associations, identifying 848 taxo-
nomic units across 26 phenotypic measurements (Fig.
4A, Additional file 2: Table S5).

The two variables representing gastrointestinal pheno-
types (gastroesophageal reflux disease [GERD] and drugs
for peptic ulcers and GERD) had the most associations,
with 24 and 27 OTUs respectively, followed by anxio-
lytics (anti-anxiety drugs) with 27, analgesics (pain
killers) with 23, estrogens with 21, and insulin and
hypoglycemic drugs with 18 associated OTUs. Interest-
ingly, variables with the most OTU associations were
often oral medications that directly interact with the gut,
whereas diagnosis variables for the corresponding condi-
tions did not exhibit as many associations. For example,
participants with diabetes were defined as those who ei-
ther (1) were taking insulin or/and hypoglycemic drugs,
(2) had a fasting blood glucose level of 126 mg/dL or
greater, or (3) had a non-fasting blood glucose level of
200 mg/dL or greater. This group, therefore, included
more than just individuals taking medication for dia-
betes. All eight microbes associated with a diabetes diag-
nosis were also significantly associated with insulin and
hypoglycemic drugs (OTUs representing Enterobacteria-
ceae, Ruminococcaceae, Coprococcus, two Clostridiales,
Lachnospiraceae, Ruminococcus torques, and Phascolarc-
tobacterium), although the medication variable showed
stronger statistical significance and identified additional
microbial associations (Fig. 4B).

Of the eight associations with diabetes, three OTUs
representing Ruminococcaceae, Clostridiales, and Lach-
nospiraceae were also significantly associated with CVD
risk and metabolic syndrome (Fig. 4B). These three
OTUs were also associated with BMI, blood triglycer-
ides, and glucose levels (Fig. 3A), with additional over-
laps for a subset of the OTUs with antihypertensives or
LDL-lowering drug associations (Fig. 4B). However, the
four OTUs associated with prevalent CVD did not over-
lap with those associated with related diagnostic and
medication intake (diabetes, insulin and hypoglycemic
drugs, CVD risk, and LDL-lowering drugs) (Fig. 4C,
Additional file 1: Fig S3B). One of the four OTUs,
Streptococcus, was associated with BMI and non-
cardiovascular-related variables including analgesics,
asthma, GERD, and drugs for peptic ulcers and GERD.

We again inferred the functional potential of the mi-
crobial communities using PICRUSt [56] and assessed
how this corresponded with CVD- and diabetes-related
variables. We identified 88 significant associations
among 42 KEGG pathway-level categories for seven of
eight cardiovascular-related variables: diabetes, drugs for
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diabetes, triglyceride-lowering drugs, LDL-lowering
drugs, CVD risk, metabolic syndrome, and antihyperten-
sives but not CVD (Additional file 2: Table S6). Diabetes
and drugs for diabetes showed the strongest signal with
25 and 30 significant pathway associations, respectively.
We observed similar pathway-level categories significant
across cardiovascular-related variables as those associ-
ated with anthropometric and blood analyte measure-
ments, with related variables showing more overlap. For
example, the positive association with chlorocyclohexane
and chlorobenzene degradation that was observed with
diabetes, insulin and hypoglycemic drugs, antihyperten-
sives, and metabolic syndrome was also observed with
HbAlc (Fig. 4D).

Discussion

The extensive clinical profiling of the Framingham Heart
Study, along with its large sample size and variety of
data types collected on each participant, provides a
unique opportunity to characterize the gut microbiome
as it relates to cardiovascular and metabolic disease phe-
notypes. We utilized 16S rRNA gene sequencing to iden-
tify significant microbial associations with phenotypes
including blood laboratory analyte measurements, an-
thropometric measurements, medications, and prevalent
disease. We observed no phylum-level compositional
changes among participants with prevalent CVD and
diabetes relative to the rest of the cohort. Our analyses
(adjusted for age, sex, race, and antibiotic use) revealed
that OTUs representing Ruminococcaceae, Clostridiales,
and Lachnospiraceae were significantly associated with
CVD risk, diabetes, and metabolic syndrome, as well as
medications such as lipid-lowering, hypoglycemic and
antihypertensive agents (Fig. 4B), and cardiometabolic
phenotypes such as BMI, triglycerides, and glucose (Fig.
3A). A complementary analysis revealed that several car-
diometabolic phenotypes showed similar strength of cor-
relation and directionality in an ordination plot (Fig. 2I)
including CVD risk, diabetes, and metabolic syndrome;
hypoglycemic and antihypertensive medications; and
BMI, triglycerides, glucose, and HbAlc. While this
cross-sectional analysis of microbial associations is not
causal, these findings suggest that microbial-mediated
mechanisms could contribute to CVD risk and the car-
diometabolic phenotypes that comprise metabolic syn-
drome through shared mechanisms.

In addition, microbial diversity significantly decreased
with increasing a 10-year CVD risk as well as with in-
creasing BMI measures. When examining factors con-
tributing to microbial diversity, dietary factors of fish,
vegetables, fruit, tea, and coffee together explained 3.3%
of variance in Shannon diversity, highlighting the impact
of diet on the microbiome. Previous studies of the im-
pact of dietary factors on the gut microbiome identified
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the same food groups exhibiting similar effects on the
microbiome [4, 59]. These include food groups we found
associated with increased Shannon diversity (nuts, fish,
fruits, vegetables, and cereals/grains) exhibiting similar
microbial associations with bacteria known to be anti-
inflammatory through short-chain fatty acid production
as well as food groups we found associated with de-
creased Shannon diversity (processed meats, soft drinks,
and sugar) associating with three Firmicutes species im-
plicated in obesity [59, 60], which we also correlated
with decreased microbial diversity. Further examination
of dietary intake at the macronutrient level may provide
increased statistical power to detect diet-induced micro-
bial changes, as diet has a dominant and rapid influence
on microbiome composition [3, 61].

Given the wide variety of factors available through
clinical interviews, physical examinations, laboratory as-
says, and health questionnaires cohort-wide, we identi-
fied strong statistical associations with many risk factors
for cardiometabolic diseases, such as BMI, triglycerides,
blood glucose, and HbAlc. Numerous OTUs of the
order Clostridiales, including family classifications of
Ruminococcaceae, Lachnospiraceae, and Rikenellaceae,
associated with both BMI and triglycerides, have been
previously reported in multiple studies of 16S and meta-
genomic data [3, 14, 24]. In addition, an increase in
Lactobacillus abundance with HbAlc and glucose levels
in the blood has been consistently reported [62, 63].

We observed the strongest microbial signal for cardio-
metabolic diagnoses and corresponding drugs for insulin
and hypoglycemic drugs, with 18 associations, followed
by diabetes with eight associations. All eight of the
diabetes-associated OTUs were also significantly associ-
ated with insulin and hypoglycemic drugs, suggesting
that drug intake may influence the diabetes signal, as the
microbiome is known to interact with pharmaceuticals
[64]. Metformin, a common anti-diabetic medication,
exhibits a strong effect on the gut microbiome; its use is
associated with increased Akkermansia muciniphila,
Escherichia coli, and Bifidobacterium bifidum [65—-67].
While these species were not associated with insulin and
hypoglycemic drugs in our analysis, we did not specific-
ally examine effects of metformin alone. Participants
using metformin in the FHS cohort took on average
three additional drugs to treat cardiometabolic disease,
including statins and antihypertensives, which also inter-
act with gut microbiota [3, 68]. However, we associated
Coprococcus with both diabetes status and insulin and
hypoglycemic drugs; this genus has been previously asso-
ciated with metformin intake in the LifeLines-DEEP
population-based metagenomic study [3]. The LifeLines-
DEEP study also reports multiple Lachnospiraceae,
Ruminococcaceae, and Clostridiales species associated
with statins intake, which were associated with all LDL-
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lowering drugs in our cohort [3]. Of the four taxonomic
associations with CVD that we identified, an increase of
Streptococcus was previously reported in a metagenomic
study of atherosclerotic CVD patients [18], while Bifido-
bacterium and Clostridiaceae were both associated with
history of myocardial infarction in the LifeLines-DEEP
study [3]. Given the heterogeneity in the overall micro-
bial composition observed in participants with prevalent
CVD and diabetes, further participant recruitment tar-
geted for these diseases would provide statistical power
to detect additional connections between gut microbiota
and disease pathogenesis.

Large, community-based population studies of the
microbiome have the potential to increase our under-
standing of how the microbiome may be a mechanistic
mediator of environmental, dietary, lifestyle, clinical, and
genetic factors that are associated with susceptibility to
cardiovascular and metabolic diseases. Previous work on
microbial cholesterol metabolism and TMAO produc-
tion has demonstrated the utility of further interrogating
microbes identified by association studies, as this work
revealed mechanistic insight into how microbes impact
host biology [25, 27, 29]. While large cohorts with mul-
tiple prevalent diseases have advantages compared to
smaller case—control studies for single conditions, com-
plexity is also increased in community- and population-
based studies. For instance, we did not observe previ-
ously reported microbial associations with metformin,
which may be confounded by comorbidities and the use
of multiple medications. Furthermore, it remains chal-
lenging to disambiguate the potential effects on the
microbiome of a disease process (e.g., type 2 diabetes)
from the effects of medications that are taken to treat
the disease or reduce risk.

The data generated in this study will provide the trans-
lational research community a valuable resource to le-
verage for further examining the role of the microbiome
in the many other disease conditions and clinical vari-
ables collected at FHS. Despite the large sample size of
our cohort, its rich phenotyping and long-term follow-
up, study designs with greater racial and ethnic diversity,
sequential longitudinal stool sample collection, integra-
tion of host genetic data, more detailed molecular stool
and blood assessments, and deeper metagenomic se-
quencing will enable more mechanistic hypotheses to be
generated in the future.

Conclusions

We demonstrated that the gut microbiome is associated
with a variety of cardiometabolic phenotypes, with the
identification of both novel and previously reported as-
sociations between microbes and risk factors for disease
diagnoses, disease development, and pharmaceutical in-
take. We found that overall gut diversity changes were
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associated with increased risk for developing CVD and
increased BMI status, and we also showed that diversity
is influenced most by dietary factors. We further identi-
fied a set of microbial OTUs that overlap in their associ-
ations with CVD risk, metabolic syndrome and diabetes,
enabling hypothesis generation regarding shared micro-
bial mechanisms underlying metabolic syndrome, dia-
betes, and CVD. This sets the stage to further explore
how microbiome heterogeneity plays a role in the re-
sponse to dietary and lifestyle factors for cardiometabolic
disorders. In addition, higher resolution taxonomic
characterization of the microbiome by metagenomic se-
quencing and complimentary data types such as metabo-
lomics, as well as longitudinal assaying of participants
with increased risk for CVD and integration of host gen-
etic data, will allow for further identification and
characterization of microbial factors involved in the
pathogenesis of CVD and diabetes.
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