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African trypanosomes are single-celled extracellular protozoan parasites transmitted by

tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans

and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order

to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward

transmission occurs when differentiated and insect pre-adapted forms are ingested

by the fly during a blood meal. Between these transmission steps, trypanosomes

access the systemic circulation of the vertebrate host via the skin-draining lymph nodes,

disseminating into multiple tissues and organs, and establishing chronic, and long-lasting

infections. However, most studies of the immunobiology of African trypanosomes have

been conducted under experimental conditions that bypass the skin as a route for

systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the

importance of these initial interactions between trypanosomes and the skin at the site

of initial infection, and the implications for these processes in infection establishment,

have largely been overlooked. Recent studies have also demonstrated active and

complex interactions between the mammalian host and trypanosomes in the skin

during initial infection and revealed the skin as an overlooked anatomical reservoir for

transmission. This highlights the importance of this organ when investigating the biology

of trypanosome infections and the associated immune responses at the initial site of

infection. Here, we review the mechanisms involved in establishing African trypanosome

infections and potential of the skin as a reservoir, the role of innate immune cells in the

skin during initial infection, and the subsequent immune interactions as the parasites

migrate from the skin. We suggest that a thorough identification of the mechanisms

involved in establishing African trypanosome infections in the skin and their progression

through the host is essential for the development of novel approaches to interrupt disease

transmission and control these important diseases.
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INTRODUCTION

African trypanosomiasis has historically been the cause of
large outbreaks of human disease, likely contributing to the
deaths of millions of people across sub-Saharan Africa in
the early twentieth century (1, 2) and inflicting substantial
economic damage on the African agriculture industry to this
day (3, 4). African trypanosomes include an array of vector-
borne, single cell hemoflagellate protozoa (order Kinetoplastida),
although three species cause major disease: Trypanosoma brucei,
T. congolense, and T. vivax. Two subspecies of T. brucei,
T. b. rhodesiense, and T. b. gambiense, cause human African
trypanosomiasis (HAT), also known as sleeping sickness (5–
7), with more than 57 million people at risk of infection (6,
8). T. congolense, T. vivax, and T. brucei are also the most
significant contributors to disease in livestock animals (animal
African trypanosomiasis or AAT). Classically, the trypanosome
lifecycle starts with the tsetse fly (Glossina spp.) depositing an
inoculum of metacyclic trypomastigotes in the skin when taking
a blood meal (9–11). Following intradermal (i.d.) inoculation
of metacyclic forms, the parasites differentiate into long-slender
trypomastigotes that are proliferative and able to establish patent
infections in the vertebrate host. However, the timing and the
mechanisms controlling these events remain unclear (3, 12, 13).
From the initial site of infection, the proliferative long-slender
form trypanosomes travel to the local draining lymph nodes
via afferent lymphatic vessels before disseminating systemically
and establishing a patent infection in the bloodstream (14–
17). African trypanosomes (and T. brucei in particular) also
actively colonize multiple tissues in the vertebrate host, including
the skin. Skin-dwelling parasites functionally and behaviorally
adapt to their microenvironment, allowing them to thrive and
persist (18, 19). These recent studies demonstrate that there is
a previously underappreciated heterogeneity in the population
of parasites residing within the vertebrate host, with important
implications for understanding the biology of trypanosomes and
the way in which the host responds to infection. The presence of
trypanosomes in the skin has been demonstrated in both animal
models of infection and human clinical samples, suggesting
that it is a central aspect of transmission. Nonetheless, the
mechanisms deployed by trypanosomes to inhabit and migrate
from the cutaneous environment, and the interplay between
resident skin cells (including immune cells), and trypanosomes
during the onset of the infection, remain largely unexplored.
In this review, we aim to (i) highlight current knowledge
on trypanosome establishment of infection in the skin; (ii)
examine the interactions between the host immune system
and trypanosomes in the skin; (iii) explore the mechanisms of
trypanosome migration from the skin toward systemic infection
and further transmission; and finally (iv) discuss the potential of
novel therapeutic and intervention strategies being developed as
a consequence of these studies.

Skin as the Initial Barrier—From Immune
Response to Systemic Dissemination
Upon infection, metacyclic trypomastigotes must circumvent
several environmental challenges in order to develop into

the proliferative long-slender form trypomastigotes. This
series of events ultimately leads to parasite dissemination in
the host bloodstream but involves interactions between the
developmental stages of the parasite, the host cells in the
dermis, and the immune cells recruited to the site of infection.
Mammalian skin is a large, highly complex organ that acts
as a protective barrier between the internal components of
the host and the external environment (Figure 1) (20, 21).
The mechanism by which the skin protects the host is not
simply through providing a physical barrier, but also the
collection of immune cells, biological factors, layers of tissue,
and networks of lymphatic and blood vessels (21–23). The
three main components of the skin are the epidermis, dermis,
and subcutaneous layer, each containing various immune cells
involved in innate responses, inflammation, and surveillance
(Figure 1A) (21, 24). The dermis is primarily connective tissue
produced by dermal fibroblasts. Local immune responses
generated within the tissue are initiated by dermal macrophages,
dermal dendritic cells, natural killer (NK) cells, mast cells, αβ/γδ

T cells, and natural killer T (NKT) cells (25, 26). The skin also
contains numerous blood and lymphatic vessels, nerves, and
(in humans but not mice) sweat glands (23, 27, 28). Together,
these layers create a highly organized body compartment that
represents a strong physical and biological barrier to pathogens
and systemic infections.

The Tsetse Fly Vector, the Feeding Bite,
and the Site of Infection
Within an infected tsetse fly, T. brucei undergoes a range of
complex developmental stages (29). When first taking a blood-
meal from an infected mammalian host, parasites are ingested,
and become proliferative procyclic trypomastigote forms in
the midgut of the tsetse fly. These procyclic trypomastigotes
divide rapidly before transforming into mesocyclic forms in
the alimentary tract that then invade the salivary glands and
transform into the rapidly proliferating epimastigotes. Tsetse
saliva provides an environment that promotes trypanosome
adherence to epithelial surfaces, the initiation of binary fission,
and also triggers their transformation into mammal-infective
metacyclic trypomastigotes (29–31). Without the presence of
these salivary components, metacyclic trypomastigotes have
reduced infectivity (32). Following an infected tsetse fly feeding
on a mammalian host, trypanosomes are deposited into the
dermis of the host skin (11). During this process, the tsetse fly
proboscis inflicts significant trauma on the skin and associated
tissues, while also introducing a concoction of active compounds
via the saliva (33). In humans, a trypanosome-filled lesion
known as a chancre often develops 5–15 days post-inoculation,
which comprises indurated and inflamed patches of skin (34,
35). Similar lesions also occur in goats and cattle (36). The
development of a chancre may be related to several components
of tsetse saliva that have been shown to affect inflammation at the
site of infection, including 5′nucleotidase-related (5′Nuc), tsetse
thrombin inhibitor (TTI), and both thrombin serine protease,
and esterase inhibitors (30, 37–40). This altered immune state is
characterized by elevated interleukin IL-4 and IL-10 production
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FIGURE 1 | The skin, draining lymphatics, and lymph nodes. (A) Diagram of the cellular composition of the epidermal, dermal, and subcutaneous layers of

mammalian skin. The outermost epidermal layer consists of a layer of corneocytes above a layer of keratinocytes. These cells manage the tight junctions and the

stratum corneum. Langerhans cells and intraepithelial T cells survey the epidermis for antigen to be presented. The central dermal layer contains fibroblasts that

produce extracellular matrix proteins to provide structural support and elasticity. Immune responses are initiated by dermal macrophages, dermal dendritic cells, NK

cells, and T cells. The inner subcutaneous layer primarily consists of adipocytes. Local lymphatic and blood vessels allow for the trafficking of cells, proteins, and

waste. The initial tsetse fly bite injects trypanosomes into the dermis. From the dermis, the parasites exhibit tropism that leads to migration toward the afferent lymph

vessels in the skin disseminating to the blood and other regions of the body. (B) The mechanism behind directional migration of trypanosomes from the skin to the

lymphatics is unknown. Parasites may be responding to an unreported chemical cue in a chemotactic manner and they may crawl along lymph vessels, access open

junctions, or are drawn into the lymphatics through hydrodynamic flow force and pressure. (C) Afferent lymphatic vessels in the skin allow for the drainage of

leukocytes and antigen into the draining lymph node. Lymph, containing activated T and B cells, plasma cells, and antibody, passes into the medullary sinus, before

exiting via efferent lymphatic vessels. Trypanosomes enter the draining lymph nodes, causing lymphadenopathy, and exit via the efferent lymphatics. Systemic

dissemination of the host is reached via the main lymphatic ducts.

(30, 32, 40–42). Murine models of infection have also shown
that tsetse saliva suppresses T and B cell responses systemically,
skewing the host toward a Th2 immune environment, leading
to increased IL-4 and IL-10, alongside decreased interferon-
γ (IFN-γ) titers, in the draining lymph nodes of infected
mice. There is also an associated immunoglobulin (Ig) IgG1
and IgE antibody response. In addition, bites from tsetse

flies infected with trypanosomes showed significantly reduced
thrombin inhibition and less anticoagulation compared to bites
by naïve tsetse flies. This results in a more prolonged feeding
period that contributes to an increased likelihood of parasite
transmission (9). Together, these anti-inflammatory and anti-
coagulative processes act to increase the efficiency of parasite
transmission from the fly vector to the mammalian host (32),
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leading to the induction of microenvironmental conditions more
suitable for metacyclic trypomastigotes. This facilitates their
differentiation into proliferative long-slender trypomastigotes. In
this context, it appears likely that metacyclic trypomastigotes are
equipped with various molecular tools (e.g., secreted virulence
factors) to initiate tissue colonization events and overcome the
acute response elicited by skin-resident and recruited immune
cells. This leads to a scenario in which the acute immune response
at the site of infection may act as a bottleneck that selects for
more infectious parasites. Consequently, the route of infection
could potentially shape downstream interactions and responses
in other body compartments, affecting parasitaemia and longer-
term infection dynamics.

Influence of the Infection Route for
Trypanosome Dissemination
Despite the skin being the first point of contact between
metacyclic trypomastigotes and the vertebrate host, the
importance of the skin-stage of disease in trypanosome
infections has largely been overlooked in experimental studies.
The majority of prior experiments have examined infections
initiated via needle challenge, predominantly by intraperitoneal
(i.p.) or intravenous (i.v.) routes (Table 1). However, a small
number of comparative experiments have revealed that
inoculation routes can substantially affect outcome (43, 44). For
example, it has been shown that the percentage of BALB/c mice
with detectable parasitemia after infection by T. brucei differed
between animals infected i.p. vs. i.d. This study also found that
the proportions of mice displaying detectable parasitemia were
significantly reduced in the i.d. infected mice compared to i.p.
infected mice, and that i.d. infected mice were 100-fold less
susceptible to trypanosome infection than i.p. infected mice in a
dose-dependent manner (43). Moreover, the impact of infection
route on infectivity also differs between trypanosome species
(44). For example, T. congolense infected intramuscularly (i.m.)
had an earlier onset of parasitemia compared to those infected
via an i.d. route. However, animals in which T. brucei parasites
were administered i.p. led to an earlier onset of parasitemia than
both i.m. and i.d. administration. These observations suggest
that parasites face tissue-specific challenges in the skin (e.g.,
resident immune cells or nutrient availability) that delineate
their capacity to disseminate systemically within the vertebrate
host (44).

In addition to infection route, inoculum dose has also been
shown to influence the outcome of trypanosome infection (44).
For example, goats infected i.d. with T. congolense showed a
delay in the onset of a local skin reaction (chancre formation) as
the inoculum dose decreased (66), with a concomitant decrease
in the size of the chancre. Consistent with these observations,
a similar effect was reported for BALB/c mice infected i.d.
with T. brucei, showing reduced infection rates at lower doses
compared to higher doses (43). In this study, all animals infected
with doses ranging from 1 × 105 to 1 × 104 parasites developed
detectable parasitemia. Conversely, doses of 1× 102 parasites led
to no patent infections and 1 × 103 parasites resulted in only
50% of the animals developing a patent infection. In contrast, all

the mice infected with 1× 102 parasites i.p. developed detectable
parasitemia at the same time point, indicating that the skin poses
a significant barrier for systemic dissemination and infection
dynamics. These results suggest that there is a minimal infective
parasite dose able to survive the initial challenge mounted by the
local immune response in the skin.

The dose and route of infection has been shown to affect
the dynamics of several protozoan infections, including the
related trypanomastid Leishmania. These parasites are similarly
transmitted to the skin of the mammalian host through
the bites of female sand fly vectors (67), although they
differ from extracellular African trypanosomes in that the
inoculated lifecycle stage invades mammalian cells and replicates
intracellularly. Upon feeding, the sand fly regurgitates metacyclic
promastigote forms into the skin that are then phagocytosed by
host macrophages. Promastigotes then develop into amastigote
forms and replicate within the host cell. Subcutaneous (s.c.)
injections of Leishmania major and L. tropica in mice result
in a lower systemic parasite burden and increased protective
immunity compared to i.p. and i.d. infections (68, 69). An
increased Th1-associated resistance to Leishmania infection was
induced in BALB/c mice following a low dose of parasite
inoculum administered either i.d. or s.c. (69, 70), whereas a
high inoculum induced a more Th2-skewed immune response
that led to higher susceptibility and systemic parasite burden.
These observations in related parasites highlight the importance
of the initial parasite dose and site of infection for disease
outcome. More importantly, these initial interactions might
favor further dissemination (e.g., by infecting recruited immune
cells) or the formation of quiescent parasite foci relevant for
diagnostics and infection recrudescence upon treatment. It is
likely that there are similar effects occurring during the initial
skin stages of African trypanosome infections, although the
factors determining parasite survival and migration remain to be
fully explored.

Immunity to African Trypanosomes in
the Skin
African trypanosomes exist entirely extracellularly within the
mammalian host and are constantly exposed to the host innate
and adaptive immune systems. Previous studies examining
systemic immune responses in mice using artificial inoculation
routes (primarily i.p. and i.v.) have found numerous components
that are vital to controlling the initial stages of trypanosome
infection, including macrophages, monocytes, dendritic cells,
neutrophils, and NK cells (Figure 2) (71–75). The early immune
response (<2 weeks) is characterized by an induction of a strong
pro-inflammatory profile, including the expression of IFN-γ,
tumor necrosis factor (TNF), IL-6, and the production of nitric
oxide (NO) (3, 76–82). An adaptive B cell response is also
elicited, leading to the production of antigen-specific antibodies
that target the immunodominant variant surface glycoprotein
(VSG) at the parasite surface. However, the artificial inoculation
routes used in these studies overlook the events that occur
in the skin early during infection. Through understanding the
processes involved in establishing infection in the mammalian
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TABLE 1 | Susceptibility of various animal models to different trypanosome strains represented by the proportion of animals displaying a patent infection, depending on

route and dose.

Trypanosome species and

strain

Mammalian host

species

Animal

strain/breed

Inoculation

route

106

dose

105

dose

104

dose

103

dose

102

dose

References

T. b. brucei, strain 10–26 Mouse BALB/c i.p. – 100% 100% 100% 100% (43)

T. b. brucei, strain 10–26 Mouse BALB/c i.d. – 100% 100% 50% 0%

T. congolense, Trans Mara, TC13 Mouse BALB/c i.p. – – 100% 100% 100%

T. congolense, Trans Mara, TC13 Mouse BALB/c i.d. – – 100% 100% 0%

T. b. brucei, strain 10–26 Mouse C57BL/6 i.p. – 100% 100% 100% 100%

T. b. brucei, strain 10–26 Mouse C57BL/6 i.d. – 100% 100% 50% 0%

T. congolense, Trans Mara, TC13 Mouse C57BL/6 i.p. – 100% 100% 100% 100%

T. congolense, Trans Mara, TC13 Mouse C57BL/6 i.d. – – 100% 100% 0%

T. b. brucei, KETRI 2710 Mouse Swiss white i.p. – – 100% – – (44)

T. b. brucei, KETRI 2710 Mouse Swiss white i.v. – – 100% – –

T. b. brucei, KETRI 2710 Mouse Swiss white i.m. – – 100% – –

T. b. brucei, KETRI 2710 Mouse Swiss white s.c. – – 100% – –

T. b. brucei, KETRI 2710 Mouse Swiss white i.d. – – 83% – –

T. congolense, KETRI 2765 Mouse Swiss white i.p. – – 67% – –

T. congolense, KETRI 2765 Mouse Swiss white i.v. – – 50% – –

T. congolense, KETRI 2765 Mouse Swiss white i.m. – – 100% – –

T. congolense, KETRI 2765 Mouse Swiss white s.c. – – 100% – –

T. congolense, KETRI 2765 Mouse Swiss white i.d. – – 100% – –

T. (Dutonella) vivax, IL 1392 Mouse CD-1 i.p. – – – – 100% (45)

T. (Dutonella) vivax, IL 1392 Mouse CD-1 s.c. – – – – 100%

T. congolense (GVR 12/1), Mouse CD-1 i.v. 100% 100% 100% 100% – (46)

T. congolense, Trans Mara, TC13 Mouse BALB/c i.p. – – – 100% 100% (47)

T. congolense, Trans Mara, TC13 Mouse BALB/c i.d. – – – 0% 0%

T. congolense, IL 3274 Mouse Swiss white i.v. 100% 100% 100% 100% 100% (48)

T. b. rhodesiense, EATRO 1886 Cattle Boran i.v. – 100% – – – (49)

T. vivax, ETBD-1/ETBS 1 Cattle Zebu i.v. 100% – – – – (50)

T. vivax, Y58 Cattle Zebu i.v. – – 100% – – (51)

T. congolense, TREU 112 Cattle Holstein i.v. 100% – – – – (52)

T. evansi, Olmisor isolate Goat East African i.v. – 100% – – – (53)

T. congolense, Ea-Tc, IL 1180 Goat West African

Dwarf

i.d. – – 100% – – (54)

T. congolense, ITC 84 Goat West African

Dwarf

i.d. – – 100% – –

T. congolense, IL 957 Goat East African s.c. – 100% – – – (55)

T. congolense, IL 958 Goat Galla s.c. – 100% – – –

T. congolense, UTRO 170491-B Goat Kigezi i.v. – 100% – – – (56)

T. congolense, UTRO 170491-B Goat Mubende i.v. – 100% – – –

T. congolense, UTRO 170491-B Goat Small East African i.v. – 100% – – –

T. congolense Goat Galla i.v. – 100% – – – (57)

T. congolense Goat East African i.v. – 100% – – –

T. congolense Goat Saanaen i.v. – 100% – – –

T. congolense Goat Saanen x Galla i.v. – 100% – – –

T. congolense Sheep Merino i.v. – 100% – – –

T. congolense Sheep Blackhead Persian i.v. – 100% – – –

T. congolense Sheep Red Masai i.v. – 100% – – –

T. brucei, CT 70 Sheep Yankassa rams s.c. 100% – – – – (58)

T. vivax, CT 128 Sheep Yankassa rams s.c. 100% – – – –

T. congolense, GT 12 Sheep Yankassa rams s.c. 100% – – – –

T. brucei, Strain 8/18 Sheep West African

Dwarf

i.v. 100% – – – – (59)

(Continued)
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TABLE 1 | Continued

Trypanosome species and

strain

Mammalian host

species

Animal

strain/breed

Inoculation

route

106

dose

105

dose

104

dose

103

dose

102

dose

References

T. vivax, Zarkwai/84/ NITR/11.1 Sheep Uda i.v. – 100% – – – (60)

T. congolense, Ea-Tc, IL 1180 Sheep Djallonke i.d. – – 100% – – (54)

T. congolense, ITC 84 Sheep Djallonke i.d. – – 100% – –

T. b. brucei Rabbit New Zealand

white

i.p. 100% – – – – (61)

T. b. brucei Rabbit Chinchilla White i.p. 100% – – – –

T. rhodesiense, EATRO 1886 Rabbit New Zealand

white

i.v. – – 100% – – (62)

T. b. gambiense, MBA ITMAP

1811

Monkey Vervet i.v. – – – 100% – (63)

T. b. brucei, GUTat 1 Monkey Vervet i.v. – – 100% – – (64)

T. b. rhodesiense, KETRI 2537 Monkey Vervet i.v. – – 100% – – (65)

i.p., intraperitoneal; i.d., intradermal; i.v., intravenous; i.m., intramuscular; s.c., subcutaneous.

host and establishing how the immune system interacts with the
parasites in the initial stages, skin-targeted research could provide
important information on how the disease progresses within the
host. This additional information may reveal methods to develop
novel methods for controlling disease transmission in humans
and animals. It is also likely that the immune responses in the
skin have wider impacts on the systemic infection, similar to
those observed in Leishmania infections (69, 70) and recent data
have shown that there is a population of African trypanosomes
present in the skin of the host (11, 18, 83). These parasites are
integral to transmission, but their persistence suggests that the
parasites can avoid or co-opt the immune response in the skin.
Understanding how this is achieved could lead to methods to
limit this population, reducing transmission. This skin-dwelling
population also presents issues for new therapeutics targeting
African trypanosomes that have been developed for parasites
in the bloodstream and CNS. Although there has been little
work to date on skin immune responses during trypanosome
challenge, inferences can be made from systemic studies and
related parasites, in addition to the small number of studies that
have been performed.

Neutrophils and Natural Killer (NK)
Cells—the First Responders
It is likely that some of the earliest cellular responders to
trypanosome inoculation in the skin are neutrophils, NK cells,
and NKT cells (3, 84, 85). Neutrophils are some of the most
ubiquitous leukocytes in the human immune system and are
involved in the killing of many pathogens (including protozoa).
They act through phagocytosis, the release of reactive oxygen
species, and neutrophil extracellular traps (NETs) (86–89). They
are also important mediators of tissue repair and wound healing,
producing various pro-inflammatory cytokines that include
transforming growth factor-β (TGF-β), IL-4, IL-12, and IL-13
(88). They may also potentially release IFN-γ, although it is
unclear whether neutrophils are a true source of IFN-γ, especially
in humans (90). As such, our understanding of these mechanisms
relies heavily on murine data that may not be applicable to

human mechanisms of immunity. In these model experiments,
neutrophils have been shown to be the primary responders to
tsetse fly bites and are recruited to the dermal bite site within
4.5 h (85). At the same time as neutrophil recruitment, there is
an induction of pro-inflammatory IL-1β and IL-6, as well as anti-
inflammatory IL-10 (85), from unidentified sources. Neutrophils
may also produce trypanolytic antimicrobial peptides, such as
cathelicidins and defensins (91), although this early neutrophil
response does not appear to contribute to trypanosome killing in
the skin (85).

Cytotoxic NK and NKT cells are also commonly employed
during the earliest periods of pathogen infection. However,
the roles of NK cells during trypanosome infection are poorly
understood and investigation is limited to systemic studies. NK
cell-deficient mice infected with T. congolense are unable to
control the levels of parasitemia due to lower levels of IFN-γ
and TNF, leading to rapid onset of death due and uncontrollable
parasitemia (92). This lethal phenotype was rescued when NK
cells were transferred into the NK cell-deficient mice prior to
infection. Moreover, mice infected i.p. with T. congolense show
a systemic recruitment of NK cells that are thought to provide
early production of IFN-γ and TNF in the blood, spleen, lungs,
and liver (92). NK cell activity in trypanotolerant strains of mice
(strains that display reduced clinical disease when infected with
trypanosomes compared to susceptible counterparts) infected
with T. congolense has been suggested to be due to an
increase in the production of IFN-γ during infection (72).
The activation of neutrophils, NK cells, and NK/T cells in the
skin following exposure to trypanosomal pathogen-associated
molecular patterns (PAMPs) also results in the production of
IFN-γ and TNF that can induce the activation of classically
activated macrophages (93). In this context, we speculate that
recruitment of NK cells in the skin also provide early protective
immunity in trypanotolerant hosts, utilizing pro-inflammatory
cytokines to promote further immune activation and parasite
killing. Studies regarding the spatio-temporal recruitment of
immune effectors to the skin during T. brucei infection might
shed lights into these processes.
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FIGURE 2 | The role of innate immune cells during African trypanosomiasis. During early trypanosome infection, a strong Th1 immune response is initiated by the

host. In the skin, neutrophils and NK cells are the first to respond to trypanosomal pathogen-associated molecular patterns (PAMPs), such as VSG and CpG DNA.

Neutrophils are heavily involved in repairing the initial wound caused by the tsetse fly bite and also produce pro-inflammatory IL-1β and IL-6. NK cells produce

pro-inflammatory TNF and IFN-γ that results in the classical activation of pro-inflammatory macrophages (Mθ) via iNOS activation. Macrophages can also be activated

through interactions with trypanosomal PAMPs. Classically activated macrophages produce further pro-inflammatory molecules, including TNF, nitric oxide (NO), and

reactive nitrogen intermediates (RNIs) and reactive oxygen intermediates (ROIs). These chemicals can directly kill trypanosomes in extravascular spaces and tissues

and allows for parasite control. Macrophage secretion of TNF can also recruit and activate T cells which self-renew via autocrine IL-2 secretion. T cells produce IFN-γ

to further activate macrophages and IL-4 to activate B cells. Macrophages and dendritic cells (DCs) will further activate B cells during a Th1 response, via IL-6, IL-12,

and IFN-γ, to promote the production of antibodies that can target the VSG trypanosomes, inducing waves of parasite clearance in the bloodstream. However,

antigenic variation hinders the effective clearance of trypanosome populations. Macrophages can also become alternatively activated, resulting in a Th2

immunosuppressive response. Cytokines such as IL-10, IL-4, and TGF-β initiate this type of response by promoting arginase activation in macrophages. As a result,

alternatively activated macrophages produce immunosuppressive IL-10 and suppress production of trypanostatic NO and IFN-γ. This promotes parasite growth and

survival, leading to a chronic infection.

Similar to African trypanosomes, Leishmania spp. are
transmitted into the subdermal layer of the skin by female
phlebotomine sand flies (67, 94). In this case, it has been
shown that neutrophils in the skin are the initial responders to
infection and phagocytose Leishmania metacyclic promastigotes

(95). Two-photon intravital imaging has shown that 40–60min
post-infection, a rapid early recruitment of neutrophils is induced
at the site of infection in the skin following sand fly feeding
(96). Here, the neutrophils occupy the epidermis in large
numbers where they directly kill promastigotes using NETs (86,
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97) and active phagocytosis of parasites (96). However, there
is substantial evidence that promastigotes can persist within
neutrophils, escaping effective killing, and potentially taking
advantage of neutrophils as a means to continue their life cycle
within the mammalian host (98, 99). The promastigotes in the
infected neutrophils are in turn phagocytosed by macrophages
and dendritic cells where they develop into the amastigote form
and replicate (94, 95). This neutrophil recruitment response
is similar to that observed following an infected tsetse fly
bite (85). However, while direct killing by neutrophils has
been shown with Leishmania parasites, it has not been shown
during African trypanosome infections. One hypothesis is
that the rapid recruitment of neutrophils during trypanosome
infection occurs in response to the tissue damage inflicted
by the tsetse fly and is required for wound repair. In this
regard, the initial recruitment of neutrophils upon T. brucei
infection in mice (via i.p.) is prolonged after the initial peak
of parasitemia. This is thought to contribute to the suppression
of NK, NK/T cells, and both T and B lymphocytes in the
spleen at later stages of infection (100). This may be through
disruption of the splenic microarchitecture due to significant
pro-inflammatory responses. How these immunosuppressive
mechanisms relate to early infection in the skin, as well as
the activation of the skin-resident immune population, remain
unknown and should therefore be an important area for
further investigation.

Macrophages—the Big Players
The skin contains an abundance of macrophages with the
potential to combat infection but again, little is known about the
role of skin-resident macrophages during trypanosome infection.
During systemic infections, macrophages are considered to play
an essential role in combating African trypanosome infections in
the mammalian host and are central to mediating the immune
response in the extravascular tissues (Figures 2, 3) (3, 74, 101–
110). After infection, trypanosome associated PAMPs trigger
the activation of these innate mononuclear phagocytes via
interactions with pattern recognition receptors (PRRs) on the
surfaces of host immune cells. These are triggered by parasite-
derived molecules such as CpG DNA (recognized by TLR-9)
and soluble glycosylphosphatidyl inositol (GPI)-anchored VSG
(recognized by scavenger receptor PRRs) (36, 74, 84, 103, 105,
108, 111–115). The release of soluble VSG further stimulates
immune cells in a type 1-dependent manner (112). These
trigger signaling pathways that lead to the acquisition of a
classically activated phenotype in macrophages (and the release
of pro-inflammatory cytokines such as IFN-γ and TNF), which
is important for quickly controlling invading trypanosomes
(Figure 3) (36, 84, 103, 105, 108, 112–114).

The strong pro-inflammatory type 1 (Th1) immune response
initiated during the early onset of infection, characterized by
elevated levels of IFN-γ and IL-2, leads to an increase in
macrophage numbers in the spleen, liver, and bone marrow
(106). During clinical disease, macrophage migrating inhibitory
factor (MIF) mRNA levels are also increased in the blood of
infected patients (116). This could explain the elevated levels of
recruited macrophages observed in peripheral immune organs.

Macrophages and liver-resident Kupffer cells phagocytose
trypanosomes that are opsonized by parasite-specific Ig. These
cells are aided by various soluble factors derived from the
host complement system (106, 117–119). Experiments using
T. brucei-infected mice have shown that Kupffer cells in the
liver are involved in most of the parasite clearance that occurs
via complement and antibody-mediated phagocytosis (120).
Classically activated macrophages can also utilize the inducible
nitric oxide synthase (iNOS) enzyme to produce highly reactive
and toxic nitric oxide (NO) via the L-arginine metabolic
pathway (Figure 3) (121, 122). Additionally, these mononuclear
phagocytes can produce further pro-inflammatory cytokines
such as TNF, IL-1, IL-6, IL-8, and IL-12 (93). Interestingly, several
pro-inflammatory cytokines have been shown to display potent
trypanostatic activities, further highlighting the importance
of these cytokines during the onset of the infection (3, 72,
84, 123–130). One such trypanostatic effect is believed to be
mediated by NO as experimental infections with T. congolense
and T. brucei have shown that NO production can inhibit
trypanosome growth and specifically control the first wave of
parasitemia (131, 132). However, the role of NO is contentious
as in vivo studies have reported that NO readily binds to
hemoglobin and interacts with red blood cells (76–78). This
would mean that NO would be quickly quenched in the
bloodstream, removing its inhibitory effect. However, NO may
still be effective in the microenvironment of extravascular spaces
in which hemoglobin is much reduced or absent, such as the skin
(133). Importantly, not all interactions with cytokines appear
to be detrimental to trypanosomes. Trypanosomes are known
to secrete trypanosome lymphocyte triggering factor (TLTF)
that can trigger the production of IFN-γ from CD8+ T cells
(134, 135), inducing a potent classically-activated macrophage
response. This seemingly contradictory effect may suggest that
African trypanosomes can benefit from this specific T cell
interaction for survival, or alternatively, that TLTF might play
an important role in inducing the development of a more
immunotolerant environment for the parasite to sustain survival.
This remains speculative but merits further investigation.

The induction of type 2 macrophages is a prominent feature
of the immunosuppression that occurs during chronic T. brucei
infections. Studies have shown that trypanosomes trigger a
switch in macrophage activation from pro-inflammatory (or
classically-activated) cells to a more anti-inflammatory (or
alternatively activated) state (74, 104, 110, 136, 137). This switch
in macrophage character skews the host immune response from
Th1 to Th2, resulting in an anti-inflammatory environment that
promotes parasite survival in the host (138). The implications
for this profound switch in immunological state are a matter
of active research but the process may contribute to reducing
the deleterious effects on the host of sustained inflammation,
as well as favoring tissue repair and regeneration (93, 139–
143). Macrophages can become alternatively activated through
stimulation by macrophage colony-stimulating factor (CSF-1),
IL-4, IL-10, IL-13, and TGF-β (Figure 3) (93, 144–146). One
of the main hallmarks of alternatively-activated macrophages
(AAM) is the expression of arginases upon stimulation, which
in turn compete with iNOS and induce ornithine and urea
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FIGURE 3 | The roles of classically and alternatively activated macrophages. (Left) Pro-inflammatory stimuli, such as IFN-γ, TNF-α, and LPS, classically activates

macrophages. Classically activated macrophages induce the expression of the inducible nitric oxide synthase (iNOS) enzyme, which catabolizes the substrate

L-arginine to produce NO and citrulline. This results in a pro-inflammatory Th1 immune response that can effectively control the initial parasitaemia peak. (Right)

Anti-inflammatory stimuli, such as CSF, IL-4, IL-10, IL-13, and TGF-β, alternatively activate macrophages. These induce the expression of the arginase enzyme that

catabolizes the substrate L-arginine to produce ornithine. The enzyme ornithine decarboxylase (ODC) catalyzes the breakdown of ornithine to produce polyamines,

resulting in an anti-inflammatory Th2 immune response and tissue repair. This type of response typically leads to an immune environment that promotes trypanosome

growth and survival.

production via the L-arginine pathway instead of NO and
citrulline (147).

A recent study has also shown that T. brucei can actively skew
macrophage and glial cell activation by secreting metabolites
that suppress their pro-inflammatory functions (148). These
macrophage responses varied depending on the strain of the
parasite, suggesting it is a parasite-derived factor determining
host response, supporting earlier work describing the existence
of a parasite-driven virulence factor (149). These trypanosomal
factors can trigger macrophages to switch toward a Th2
phenotype and include the T. brucei kinesin heavy chain
isoform (TbKHC1) that actively induces IL-10 production

and arginase activity, resulting in decreased NO production
(150). When wild-type mice were infected with TbKHC1 KO
trypanosomes, parasitemia was reduced and the survival of the
host enhanced (150). These data suggest that the release of
TbKHC1 by T. brucei enables the parasites tomanipulate host cell
metabolism by biasing the L-arginine pathway toward arginase
enzyme activity, although it remains unclear whether TbKHC1
is constitutively released by viable parasites or is a byproduct
from decaying or dead parasites. It has also been suggested that
immunosuppression in the skin during intradermal trypanosome
infection could be mediated by the combination of a mixed
classical/alternative macrophage response and suppressor T cell
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response (151). These findings suggest that a pro-inflammatory
macrophage/Th1 response is needed for the effective control
of trypanosomes in the skin, although a Th2 response seems
necessary to sustain host survival in the face of a chronic
infection. As such, these specific macrophage-trypanosome
interactions should be investigated thoroughly for opportunities
for blocking disease progression.

Dendritic Cells—Primers of Adaptive
Immunity
Dendritic cells (DCs) are a group of antigen-presenting cells
(APCs) that recognize and capture antigen for presentation
to T cells (152, 153). Studies using i.p. T. b. rhodesiense
infections in mice have shown that splenic DCs may be the
primary APCs involved in activating VSG-specific T helper
(Th) cell responses in trypanotolerant mouse lines through the
upregulation of co-stimulatory receptors, the presentation of
VSG peptide antigen, and the production of IL-12 (154, 155).
However, subsequent VSG antigen processing and presentation
was notably reduced during high parasite burdens in the mice,
suggesting a trypanosome factor may be interfering with the
ability of APCs to process and present antigen to T cells.
Alternatively, there may be a potential impairment of the
antigen presentation capacity or DC maturation during chronic
infection. This remains speculative for African trypanosome
infections but has been described for other infections associated
with immunotolerant states (156, 157).

Skin-residing DCs include epidermal Langerhans cells and
dermal DCs (158–160). Langerhans cells sample and present
antigen from the epidermis to promote the adaptive immune
response (161, 162). They have been shown to have a suppressive
function in Leishmania infections by modifying the behavior of
regulatory T cells (Tregs) but their role in Africa trypanosomiasis
is completely unknown and remains to be established (163).
Langerhans cells and dermal DCs migrate from the epidermis
and dermis, respectively, to the local cutaneous draining lymph
nodes to present sampled pathogen antigen to T cells (158–
160, 162). Dermal DCs have also been shown to act rapidly
to dermis invading protozoan parasites such as L. major (164).
It has previously been reported in L. major-infected mice
that epidermal Langerhans cells localized at the sand-fly bite
site become activated and upregulate major histocompatibility
complex molecules and co-stimulatory receptors (165). This
results in cytokine release (IL-12) and the promotion of a
Th1 cellular response. African trypanosomes have recently been
shown to form active foci in the skin and it is likely that this would
be modulated and controlled by resident DCs and Langerhans
cells, similar to related trypanomastids (11, 83). Moreover, DCs
might elicit a more immunotolerant state in the skin, ultimately
allowing the persistence of skin foci. However, the specific roles
of skin resident DCs during trypanosome infection remain to
be elucidated.

T Cells—Surveying the Damage
Skin-resident T cells are another group of immune cells that
survey the tissue for pathogens. The epidermal layer is patrolled
by αβ effector T cells and more innate-like γδ T cells, in

addition to group 2 innate lymphoid cells (ILC2s) (166–168).
The γδ T cell population act with innate cells to survey tissue
during the early stages of infection before the more conventional
adaptive immune cells become involved. Dermal γδ T cells
also express many receptors and cytokines that can alter Th1
and Th17 responses and affect extracellular pathogen, including
IFN-γ, TNF, and IL-17 (169–171). ILC2s are dependent on IL-
7 and constitutively secrete IL-13, thought to be central for
interaction with granulocytes (167). Although T cells during
skin diseases have been well-studied, particularly for psoriasis
and allergies (172–174), the roles of specific γδ T cells, ILC2s,
and their associated cytokines during human trypanosome
infections are unclear. A study using cattle found that tsetse-
transmitted T. congolense infection leads to the increased
numbers of γδ T cells and that these cells are activated in the
trypanotolerant N’Dama breed but not the more susceptible
Boran breed (175). However, cattle and other ruminants possess
a substantially higher proportion of γδ T cells in the peripheral
blood mononuclear lymphocyte population (15–60%) than both
humans and mice (<5%) (176) and their role may differ between
these different hosts. Importantly, due to the induction of AAM
activity observed during chronic infection, a reduction in IL-
2 secretion and expression of the α-chain of the IL-2 cytokine
receptor in lymph node T cells leads to inhibition of immune
responses during T. brucei and T. congolense infections in mice
and cattle (177–181).

While it is unclear what the potential role of skin-resident
T cells may be during African trypanosome infection, insights
could be gained from the pathogenesis of other parasites. For
example, during infection with Plasmodium spp., sporozoites
induce rapid immunosuppression in the skin (182–184) that
affects both T and B cell functionality. Plasmodium-specific Tregs
are also induced in the skin that expand upon re-exposure
to Plasmodium antigens and suppress immunity to infection
(185). This was found to be linked to parasite specific factors
and when the sporozoite surface protein CSP was injected into
the skin at low doses with CpG DNA, Plasmodium-specific
CD8+ effector T cells were significantly inhibited (182). This is
hypothesized to involve regulatory B cells (Bregs) that produce
immunosuppressive IL-10 and TGF-β as depletion of B cells
rescued effector T cell function during malaria infection (186).
Similarly, it is possible that the suppressive phenotypes observed
during African trypanosomiasis also occur in the skin, hindering
the successful elimination of trypanosomes. Indeed, very little
inflammation or other immune responses were observed in the
skin of mice with heavy burdens of skin-dwelling T. brucei
parasites (83).

Lymphatic Invasion and Systemic
Dissemination
Following skin infection, trypanosomes trigger a series of
immunological events that activate resident immune cells
and promote recruitment to the site of infection. This in
turn delineates long-term disease outcome, specifically by
determining how the parasite will disseminate systemically and
establish infection. In order to achieve this, trypanosomes must

Frontiers in Immunology | www.frontiersin.org 10 June 2020 | Volume 11 | Article 1250

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alfituri et al. Trypanosomes in the Vertebrate Skin

overcome the initial immunological challenge mounted in the
skin and travel to the afferent lymphatics, entering the local
draining lymph nodes (Figure 1) (11, 14–17, 151). Historical
studies using dogs found that T. brucei equiperdum leaves the
dermis via the afferent lymphatics, spreading into the draining
lymph nodes before reaching the bloodstream (15). A similar
sequence of events has also been shown in cattle, goats (14, 187),
and recently mice (11). In this recent mouse study, trypanosomes
were first detected within the local draining lymph nodes prior
to their detection in the bloodstream (18 h compared to 42 h
post-infection, respectively) (11). Intravital imaging of infected
mice following tsetse fly bites of the skin has also been used to
elucidate some of these mechanisms (17). In these experiments,
a large number of parasites exhibited directional migration
following trypanosome injection into the skin, traveling back
and forth toward the lymphatic vessels. In addition to parasites
found in the skin interstitium, parasites were also found within
the afferent lymphatic vessels of the dermis. These parasites
were characterized by significantly higher velocities than their
extravascular counterparts, suggesting behavioral diversity. This
is similar to the diverse ranges in parasite motility previously
described for T. carassii in zebrafish (188). This would indicate
that there are unknown mechanisms through which African
trypanosomes are attracted toward and then invade the afferent
lymphatics of the skin, allowing their subsequent systemic
dissemination in the host (Figures 1B,C). Similar to African
trypanosomes, large numbers of Plasmodium sporozoites have
been shown to remain in the dermis while others drain to the
local lymph nodes (189). These skin-resident sporozoites “glide”
through the dermis and can invade the local dermal blood and
lymphatic vessels before reaching the liver (190–192). Imaging
studies in rodents have shown that skin sporozoites largely
drain via the lymphatics having been phagocytosed by dendritic
cells. Conversely, a minority enter directly into the bloodstream
(193). Intravital imaging has shown that immunization of mice
with attenuated sporozoites and P. berghei circumsporozoite
protein inhibits sporozoite motility in the skin, resulting in
inhibition of dermal blood vessel invasion (194). In addition,
Leishmania parasites are known to form reservoirs in the skin
that enhance their onward transmission to the sand fly vector
(195). However, several species of Leishmania also disseminate
systemically around the host and this has been suggested to
involve infected macrophages or dendritic cells carrying the
parasites to the local draining lymph nodes (94). Although
African trypanosomes do not invade cells in the host, it is possible
that they may be chaperoned into the local draining lymph nodes
via macrophages or dendritic cells, either through an unknown
attachment mechanism or a chemical cue.

It is also plausible that lymphatic accumulation may be driven
by hydrostatic pressure, protein and/or chemical gradients, or
the sensing of lymph flow (196–201). These environmental
cues could direct trypanosomes toward open junctions in the
lymphatic epithelium, similar to the systems used by lymphocytes
for lymphatic invasion (199, 202, 203). For example, dendritic
cells have been shown to respond to gradients of CCL19 and
CCL21 chemokines expressed in the lymphatic vessels (204),
facilitating entry into the lymphatics in the skin (205), and

CXCL12 gradients have been shown to be important for the
initiation of dendritic cell responses in the skin (206). However,
there was no evidence for the role of several host-derived
chemokines in attracting trypanosomes in a recent study (17).
As African trypanosomes possess chemosensory capabilities
through receptors found on the flagellum and flagellar pocket
(207), it is feasible that they could respond to non-chemokine
chemical gradients within the host to reach the lymphatics. For
example, glucose is crucial for the metabolism of bloodstream
form trypanosomes (208) and glucose concentrations in canines
have been shown to be higher in the lymph than the blood
(209). Glucose, lipids, or other factors essential for trypanosome
metabolism, could therefore act as chemical chemoattractants
for trypanosomes. The identification of potential these (tissue-
specific) parasite chemoattractants merits further investigation
as these might be key for understanding tissue colonization
and the development of transmission-inhibiting therapeutics.
Recent in vivo imaging has also shown that the presence of a
hydrodynamic flow impacts substrate binding and swimming
in trypanosomes, suggesting that the forces acting on these
parasites can directly lead to changes in behavior that promote
dissemination (188). Regardless of mechanisms involved, two
central questions remain: (i) what are the processes deployed
by trypanosomes to circumvent the immunological and physical
barriers that they encounter in the skin en route to the
lymphatic system? And (ii) are these interactions established
by direct cell-cell contact between trypanosomes and host cells,
or mediated by secreted factors (e.g., soluble virulence factors
or extracellular vesicles)? An intriguing hypothesis is that upon
differentiation, the proliferative long-slender trypomastigotes,
in addition to immune cells recruited to the site of infection
(e.g., neutrophils and macrophages), may actively remodel
tissue architecture in a manner that facilitates movement from
the site of infection and the establishment of a systemic
infection. Understanding these mechanisms could again lead
to tools that disrupt these behaviors, affecting transmission
and the establishment of systemic infections in humans
and animals.

In summary, lymphatic tropism leads to the accumulation
of trypanosomes within the lymph nodes, triggering a myriad
of adaptive immune responses before systemic dissemination
(17, 94, 189–195). Ultimately, entry into the lymphatic system
enables direct access to the bloodstream as fluids and cells
drain through the thoracic duct and right lymphatic ducts
re-joining the systemic circulation via the subclavian veins.
Dissemination of the parasite and continued interaction
with the host immune system would drive many of the
consequent pathologies associated with infection. Recirculation
through the dermal capillary beds also presents accessible
trypanosomes to infect the tsetse fly vector, facilitating
transmission and disease persistence. However, recent evidence
has emerged of extravascular, skin-dwelling parasites that are
also involved in transmission (11, 18, 83). Understanding this
new anatomical niche has therefore become key to ongoing
efforts to control the disease, particularly in the context of
recently described latent HAT infections that may also be
infective (210, 211).
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Trypanosome Reservoir in the Skin
Historically, the presence of African trypanosomes in the
host skin was a widely recognized aspect of infection that
has been largely supplanted by the repeated description of
T. brucei as a bloodstream parasite (212). Re-discovering this
overlooked anatomical reservoir, and the potential implications
for transmission, treatment, and control, has become a focus
of trypanosome research (213). This reassessment includes the
description of a metabolically unique population of T. brucei
parasites found in the adipose tissues of various organs in
the mammalian host (18). These adipose tissue form (ATF)
parasites metabolize fatty acids through β-oxidation and utilize
the tricarboxylic acid cycle rather than glycolysis, making them
more similar to the procyclic forms found in the tsetse fly midgut
rather than mammalian bloodstream forms (214). While this
study did not directly find ATF trypanosomes resident in the
skin, the large deposits of subcutaneous adipose (particularly in
non-murine hosts) would make it an ideal environment for the
parasites. Further studies have since confirmed that T. brucei
parasites are indeed present in the skin, both interacting with
adipocytes (11) and throughout the extravascular space between
the panniculus carnosus and the dermis (83). However, it is
currently unclear whether these skin-dwelling parasites are ATF
or transcriptionally distinct.

Nevertheless, video evidence demonstrates that skin-resident
African trypanosomes are motile and undergo division (83, 215).
There is little overt inflammation associated with trypanosome
numbers in the skin (83), although there is a rise in temperature
that may serve to attract tsetse flies to sites of infection (11).
Within the skin, the number of parasites cycles with the
characteristic peaks and troughs associated with trypanosome
infections but the cycle does not appear linked to numbers in
the blood, suggesting limited transfer between compartments
(83). The extent of parasite exchange between the extravascular
compartment and the blood is an aspect of infection that
requires further study as this has implications for treatment and
pathogenesis. Skin-dwelling parasites also proceed through their
life cycle and develop into characteristic “stumpy” forms that are
pre-adapted to survive in the tsetse fly vector (216). The presence
of stumpy trypanosomes was unequivocally demonstrated via the
detection of the stumpy-specific marker PAD-1 (217) in parasites
in the skin (83). Importantly, these extravascular trypanosomes
contribute to tsetse fly transmission, revealing that the skin is
not a “dead-end” for this supposed blood parasite. Initially, a
study involving dual infection with two fluorescently tagged
trypanosome strains used RT-qPCR quantification to establish
that tsetse flies were predominantly infected by parasites resident
in the skin rather than the blood (11). Subsequent experiments
comparing infectivity with tsetse flies fed on patches of mouse
skin, either with or without tissue resident trypanosomes, showed
that blood and skin parasites contribute to infection, with both
required for maximal transmission (83). These experiments
also showed that tsetse flies could be infected by skin-resident
trypanosomes in apparently aparasitemic hosts.

As HAT approaches elimination in humans, there has been an
increased emphasis on understanding how the disease avoided
elimination in the past. In addition to animal reservoirs (218,

219), the role of asymptomatic or latent human infections has
begun to receive attention (210, 211). Counter to decades of
dogma, field studies have now shown that there are individuals
able to tolerate T. b. gambiense as latent infections without
developing symptoms (211). This latent period can be extremely
protracted, with a patient recently described who was infected
for at least 29 years without symptoms (220). Latent individuals
rarely display detectable blood parasites and are diagnosed via
serology (211). However, murine experiments demonstrating
that skin-dwelling trypanosomes can infect tsetse flies raise
the possibility that these latent infections can contribute to
transmission and act as a reservoir of infection. Recent predictive
modeling also indicates that aparasitemic but infective hosts
are required for a disease focus to be stable in the absence
of an animal reservoir (221). This hypothesis is supported by
xenodiagnosis experiments showing tsetse flies can be infected by
apparently aparasitemic hosts (222, 223) and the identification of
trypanosomes in historical skin samples from HAT foci (83). To
date, there has been no thorough examination of trypanosomes
in the skin of domestic or peri-domestic animals and this large
potential reservoir requires further study to fully understand the
impact on both human and animal disease.

In summary, the notion that African trypanosomiasis is
a disease of just the lymphatic and circulatory systems
is being re-assessed. There is strong evidence for skin-
resident parasites prior to and long after systemic parasite
burden, with the potential for transmission from apparently
asymptomatic hosts. This has wider impacts for understanding
pathogenesis, developing new therapeutics, and identifying
overlooked reservoirs. These field and laboratory data also
suggest that overlooked parasites in the skin of human and
animal reservoirs threaten the WHO goal of eliminating HAT
transmission by 2030 (218). Fully understanding the role
of the skin as a biological niche for African trypanosomes
will therefore likely continue to shape the field of African
trypanosomiasis research.

CONCLUDING REMARKS

African trypanosomes have evolved sophisticated mechanisms to
swiftly adapt to rapid changes in their microenvironment, like
those encountered by metacyclic trypomastigotes delivered by
the tsetse fly in the vertebrate skin when taking a blood meal.
These changes are not only physical (e.g., changes in temperature
and oxygen pressure) but also mechanical (e.g., transitioning
from tsetse fly saliva to solid tissues such as the skin), and
immunological (e.g., activation and/or recruitment of immune
cells upon infection). In this scenario, it seems plausible that
a combination of extrinsic factors, such as those encountered
in the skin, exerts a selection pressure for trypomastigotes
that are able to overcome these barriers when migrating to
nearby lymphatics, leading to the establishment of systemic
infections. The skin is therefore the natural point of first contact
between trypanosomes and hosts, playing an active role in
infection establishment and disease outcome. However, several
questions remain unanswered. For example, it is unclear whether
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metacyclic trypomastigotes use different environmental cues in
the skin as drivers for differentiation, and if so, what the chemical
nature of these differentiation signals may be. It also remains to
be determined whether the initial parasite population at the site
of infection remains in the skin, forming a skin-resident parasite
subpopulation that is distinct from the parasites found in other
tissues and organs (e.g., bloodstream forms), or whether the skin
is colonized multiple times as a results of parasite migration to
and from the bloodstream.

From the perspective of host-pathogen interactions, it is
clear that trypanosomes release a myriad of virulence factors,
including soluble products and extracellular vesicles, thought to
be critical to modulate the immune response against them (224–
228). In this case, it would be important to understand whether
the secretion of virulence factors differs between metacyclic
and long slender trypomastigotes and to what extent these
secreted molecules aid in the establishment of chronic infections
in the skin. Similarly, it is still unclear whether the local
immune response in the skin at the site of infection helps
shape the population structure of parasites that systemically
disseminate within the host, and the mechanisms involved in the
activation of resident skin immune cells (e.g., Langerhans cells
and γδ T cells). The application of novel approaches to identify
cellular heterogeneity (e.g., single cell transcriptomics and spatial
transcriptomics) would help to clarify the series of events that
take place in the skin before parasite dissemination; from parasite
differentiation and diversity, to the activation of resident and
recruited immune cells.

Finally, it is now clear that the parasites residing in the skin
are central to disease transmission and present in both murine
models and human clinical samples. Screening of the skin in
both humans and animals is likely required to fully understand
the true extent of African trypanosome infections in the field,
especially as latent infections are likely still infective to tsetse
flies due to skin-dwelling parasites. However, our understanding
of the skin as an active immune organ delineating disease
outcome in human African trypanosomiasis is in its infancy,
and we anticipate that future studies should address a myriad
of key basic questions in this novel field of research. As such,
we need to better understand the specific mechanisms involved

in establishing infection in the skin, parasitic migration from
the skin, and their subsequent invasion of the lymphatics that
leads to systemic infection of the host. It is also important
that newly developed drugs targeting the parasite can enter
the skin and remain functional, otherwise transmission will
be maintained alongside increasing treatment failures as skin-
dwelling parasites are selected for. In addition, it is also important
to understand the host-parasite interactions that are occurring
in the skin and whether they can be manipulated to act as a
potential therapeutic or transmission limiting tool? How are
trypanosomes reaching the lymphatics from the skin and can
they be inhibited from doing so? These are all questions that need
to be addressed to if we are to better understand the pathogenesis
of African trypanosomiasis and develop new methods of
controlling and limiting disease transmission in humans
and animals.
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