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Canonical Correlation Analysis (CCA) is an increasingly used approach in the field of Steady-State Visually Evoked Potential
(SSVEP) recognition. The efficacy of the method has been widely proven, and several variations have been proposed. However,
most CCA variations tend to complicate the method, usually requiring additional user training or increasing computational load.
Taking simple procedures and low computational costs may be, however, a relevant aspect, especially in view of low-cost and high-
portability devices. In addition, it would be desirable that the proposed variations are as general andmodular as possible to facilitate
the translation of results to different algorithms and setups. In this work, we evaluated the impact of two simple, modular variations
of the classical CCA method. The variations involved (i) the number of canonical correlations used for classification and (ii) the
inclusion of a prefiltering step by means of sinc-windowing. We tested ten volunteers in a 4-class SSVEP setup. Both variations
significantly improved classification accuracy when they were used separately or in conjunction and led to accuracy increments up
to 7-8% on average and peak of 25–30%. Additionally, variations had no (variation (i)) or minimal (variation (ii)) impact on the
number of algorithm steps required for each classification. Given the modular nature of the proposed variations and their positive
impact on classification accuracy, they might be easily included in the design of CCA-based algorithms that are even different from
ours.

1. Introduction

ABrain-Computer Interface (BCI) is a system enabling direct
communication between the brain and the outside, as it
directly translates the recorded neural activity into a control
signal for an external device (e.g., a computer, a machine,
or a speller) [1]. Among noninvasive systems, electroen-
cephalography- (EEG-) based BCIs are the most widespread
[2], and they can rely on four possible electrophysiological
sources: slow cortical potentials (SCPs), event-related de-
synchronization/synchronization (ERD/ERS), event-related
potentials (as P300), or Steady-State Visually Evoked Poten-
tials (SSVEPs) [3]. Among these, SSVEP-based BCIs are
appealing for their high accuracies and information transfer
rate (ITR), thanks to the high signal-to-noise ratio of SSVEPs
even without user training [4]. For this reason, SSVEP-based
BCIs have been raising increasing attention over the years
[5, 6].

SSVEPs are periodic brain signals elicited over the occipi-
tal cortex by visual stimulations with frequencies higher than

6Hz [7]. In case different flickering objects (LEDs, symbols,
and squares) are simultaneously presented, an analysis of
the SSVEP spectral content permits to reconstruct which
stimulus the user is focusing on.

Traditionally used methods perform SSVEP recognition
based on power spectral density analysis (PSDA) [7]. In
PSDA-based approaches, spectral powers are estimated from
the EEG spectrum at the target stimulation frequencies and
used as a feature for classification [8–10]. However, PSDA-
based methods can suffer from noise sensitivity if few
channels are acquired, besides requiring relatively long signal
portions (e.g., >3 s) to estimate the spectrum with a sufficient
frequency resolution [11–13]. A promising and increasingly
used approach, which has recently attracted the interest of
researchers [14–17], is the one based on Canonical Correla-
tion Analysis (CCA) [7].

CCA is a multivariate statistical method able to reveal
the underlying correlation between two sets of data [18].
For SSVEP recognition, CCA is performed several times
between the considered EEG segment and a set of sine-cosine
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reference signals modeling the pure SSVEP responses to each
stimulation frequency [7]. The frequency response showing
highest correlation with the analyzed EEG portion is finally
recognized as the observed one.

The efficacy of theCCAapproach has beenwidely proven,
and its superiority to PSDA in terms of speed, accuracy, and
computational load has been shown [19, 20]. For this reason,
several CCA variations have been proposed over the years
[11–13, 15, 21–26].

Some CCA variations, as [11–13, 15, 21, 23], modified
the SSVEP reference signals by including subject-specific
features from each user’s EEG.The work in [24] enriched the
algorithm with incorporating intersubject information from
the signals of multiple subjects. In [25], an effort was made
towards compensating the natural decrease in signal-to-
noise ratio of SSVEPs at higher stimulation frequencies by
correcting classification gains based on the shape of indi-
vidual background EEG. Finally, in [22, 26], CCA was
repeated multiple times for each stimulation frequency,
each time processing the signal with a different IIR band-
pass filter, to combine different aspects of the same EEG
response.

Although each introduced variation produced significant
increments of classification accuracy, all of them tended to
increase the complexity of the algorithm. They indeed either
required additional user training, to incorporate information
from individual EEG data [11–13, 15, 21, 23], or increased
computational load by multiplying the number of CCAs
to assess each stimulation frequency [22, 26]. However,
we believe that even taking simple procedures and low
computational costs may be relevant, especially to favor the
spread of low-cost and high-portability devices. In addition,
it would be desirable that variations are as general or scalable
as possible to facilitate the translation of results to different
setups.

Given these premises, this work presents two simple and
modular variations based on the classical CCA method. The
variations regard (i) the number of correlations considered
for classification and (ii) the preprocessing of the signals.
We show that both modifications can significantly improve
classification accuracy but still leaving the whole procedure
training-free andwith no (variation (i)) orminimal (variation
(ii)) impact on the number of steps required for each SSVEP
identification.

2. Materials and Methods

2.1. The Standard CCA Method for SSVEP Recognition. Ca-
nonical Correlation Analysis (CCA) is a multivariate statis-
tical method [18] used to reveal the underlying correlation
between two sets of data. Given two sets of random variables
X ∈ R𝐼1×𝐽 and Y ∈ R𝐼2×𝐽, CCA finds the two corresponding
setsU =AX ∈ R𝐼1×𝐽 andV = BY ∈ R𝐼2×𝐽 (linear combination
of the original ones through A ∈ R𝐼1 and B ∈ R𝐼2), called
canonical variables, so that the correlation between each pair
or rows (𝑈𝑖, 𝑉𝑖) is maximized:

𝜌𝑖 = max
cov (𝑈𝑖, 𝑉𝑖)√var (𝑈𝑖) var (𝑉𝑖)= max

𝐴,𝐵

cov (𝐴𝑋𝑖, 𝐵𝑌𝑖)√var (𝐴𝑋𝑖) var (𝐵𝑌𝑖)
(1)

with leaving (𝑈𝑖, 𝑉𝑗), (𝑈𝑖, 𝑈𝑗), and (𝑉𝑖, 𝑉𝑗) uncorrelated if 𝑖 ̸=𝑗. Each CCA leads to a number of solutions 𝜌𝑖 equal to the
minimum between the numbers of rows in A (𝐼1) and B(𝐼2). The solutions 𝜌𝑖, sorted in descending order, are called
canonical correlations and are a measure of the similarity
between the two sets of original data.

The use of CCA in the field of SSVEP recognitionwas first
proposed by Lin et al. in [7]. Given𝐾 stimulation frequencies
to be distinguished, CCA is performed𝐾 times, one for each
stimulation frequency 𝑓𝑘, between the multichannel EEG
signal in X ∈ R𝑁ch×𝐽 (𝑁ch acquired channels, 𝐽 time samples)
and a set of sine-cosine reference signals in Y𝑘 ∈ R2𝑁harm×𝐽

modeling the pure SSVEP responses. Each setY𝑘 is composed
as follows:

Y𝑘 =
(((((((((
(

cos (2𝜋𝑓𝑘𝑡)
sin (2𝜋𝑓𝑘𝑡)
cos (2𝜋2𝑓𝑘𝑡)
sin (2𝜋2𝑓𝑘𝑡)...

cos (2𝜋𝑁harm𝑓𝑘𝑡)
sin (2𝜋𝑁harm𝑓𝑘𝑡)

)))))))))
)
, 𝑡 = 1𝐹𝑠 , 2𝐹𝑠 , . . . , 𝐽𝐹𝑠 , (2)

where 𝑓𝑘 is the stimulation frequency, 𝐹𝑠 is the sampling
rate, and 𝑁harm is the number of harmonics included in the
analysis.

Every CCA generates a vector of canonical correlations(𝜌𝑘1, 𝜌𝑘2, . . . , 𝜌𝑘min(𝑁ch ,2𝑁harm)), of which only the first and
largest one, 𝜌𝑘1, is used as a feature for classification. The
analyzed EEG segment in X is indeed assigned to the
stimulation frequency leading to the maximum correlation𝜌𝑘1: 𝑓target = max

𝑓𝑘
𝜌𝑘1. (3)

2.2. Variation 1: Number of Considered Canonical Correla-
tions. Although the efficacy of the CCA method for SSVEP
recognition has been widely proven [14, 16] and many vari-
ations have been proposed [11–13, 15, 21–27], the majority of
approaches consider only the first canonical correlation as a
feature for classification.Nevertheless, as already noted by Lin
et al. [7], since real EEG signalsmay be contaminated by noise
and show phase transitions, the information might be spread
over more than one correlation coefficient.

As a first variation of the algorithm, we evaluated the
impact of taking a combination of more than one correlation
coefficient as a feature for classification, following prelimi-
nary results in [28]. Since the canonical variables in U and
V are estimated so that each couple (𝑈𝑖, 𝑈𝑗) and (𝑉𝑖, 𝑉𝑗)
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are uncorrelated for 𝑖 ̸= 𝑗 and the sine-cosine waves in
the reference signals Y𝑘 are orthogonal between each other,
the information contained in each set of canonical variables
will always be in quadrature with respect to the others.
For this reason, we propose combining the 𝑁corr considered
correlations with using the Euclidean norm:

𝑟𝑘 = √𝑁corr∑
𝑖=1

𝜌2
𝑘𝑖
. (4)

The resulting combination 𝑟𝑘 would be used as a feature for
classification in place of the largest canonical correlation 𝜌𝑘1
only. The number 𝑁corr can range from 1 to the minimum
between 𝑁ch and 2𝑁harm, with 𝑁ch number of acquired
channels and𝑁harm number of considered harmonics. In this
work, we employed𝑁ch = 8EEG channels (see Section 2.4 for
details) and𝑁harm = 3 harmonics, so we explored the impact
of taking all the possible numbers of considered correlations
between 1 and 2𝑁harm.

2.3. Variation 2: Preprocessing with Sinc-Windowing. Another
possible variation with respect to literature may consist in
adding a preprocessing step to the EEG segments before per-
forming CCA. If we exclude the works in [22, 26], employing
IIR filter banks, CCA is indeed typically applied without
any prefiltering of the EEG signals. Nevertheless, we believe
that a narrow-band prefiltering step around the 𝐾 employed
stimulation frequencies and their 𝑁harm harmonics might
be useful to increase the signal-to-noise ratio, expectantly
enhancing classification accuracy.

As a second variation, we evaluated the influence of
such type of prefiltering with using a sinc-windowing imple-
mentation. The technique of sinc-windowing consists in
the convolution of the analyzed signal with an adequately
modulated sinc function. As it is known, the inverse Fourier
transform of an ideal rectangular band-pass filter centered in𝑓0 and with𝑀 bandwidth is

rect(𝑓 − 𝑓0𝑀 ) + rect(𝑓 + 𝑓0𝑀 )
𝐹−1→ 2𝑀 sinc (𝑀𝑡) cos (2𝜋𝑓0𝑡) , (5)

where f is the frequency and 𝐹−1 is the inverse Fourier
transform. Thus, the filtering around the 𝑓𝑘 stimulation
frequencies and 𝑁harm harmonics can be accomplished by
means of a convolution with the following function:

ℎ (𝑡) = 2𝑀 sinc (𝑀𝑡)( 𝐾∑
𝑘=1

𝑁harm∑
𝑛=1

cos (2𝜋𝑛𝑓𝑘𝑡)) , (6)

where𝑀 is the bandwidth (in this work,𝑀 = 1Hz),𝑁harm is
the number of harmonics, and 𝑓𝑘 are the 𝐾 stimulation
frequencies.

2.4. Data Acquisition. The EEG was recorded from 8 elec-
trodes (PO7, PO8, PO3, PO4, O1, O2, POz, and Oz),
positioned according to the international 10-20 system. The

signals were acquired using a Brainbox EEG-1166 amplifier,
with a 256Hz sampling frequency and a 50Hz Notch filter
on.

SSVEP stimulationwas provided through four blue LEDs,
arranged around a PC monitor. Each LED flickered at a
different stimulation frequency (𝑓1 = 8Hz, 𝑓2 = 9Hz, 𝑓3 =
10Hz, and 𝑓4 = 11Hz). The four stimulation frequencies were
selected before the beginning of the study and were the same
for all subjects. All stimulations were provided with a 50
percent duty-cycle. The behavior of the LEDs was controlled
by a LabVIEW-Arduino interface.

2.5. Experimental Paradigm. Ten healthy volunteers (aged 22
to 26, 4 males and 6 females) participated in the study. All of
them had normal, or corrected to, normal vision. During the
experiment, the participants sat on a comfortable chair, with
their arms relaxed and their head still, approximately 60 cm
distant from the PC monitor.

The experiment was organized into runs and the runs
were organized into trials. Each participant underwent a total
of 4 runs, each comprising 16 trials. Each trial consisted of
three subsequent phases: a 1 s preamble, a 12 s stimulation,
and a 2 s break period. During the preamble, a yellow square
appeared on the screen indicating the target LED; then all
LEDs started simultaneously flickering during stimulation,
and the trial ended with a break period, where the LEDs
shut off and the square disappeared. The order of the target
LEDs was randomized and counterbalanced in each run, so
that each LED was gazed for the same amount of time. To
summarize, each experiment included a total of 4 runs × 16
trials × 12 seconds = 768 seconds of stimulation, that is, 192
seconds for each class.

2.6. Performance Evaluation. For each subject, we evaluated
the average classification accuracy at the end of each run.
To highlight the impact of the two proposed variations
(composition of the feature vector and sinc-windowing), all
accuracies were recomputed using all the possible combina-
tions of methods, that is, a number of considered correlations
from one to 𝑁corr = 6, with or without sinc-windowing.
To evaluate the influence of considering different lengths
of EEG signal for SSVEP recognition, all accuracies were
recomputed with considering signal portions ranging from
0.5 s to 5 s, although the detailed results of statistical tests will
be reported only in the case of a 1.5 s window length.

Another commonly used measure of BCI performance,
encompassing the concepts of speed, accuracy, and number
of choices, is the measure of information transfer rate (ITR),
expressed in bit/min. For reasons of completeness, ITR was
also provided, and it was computed according to [29]

ITR (bit/min)
= 60𝑇 (log2𝑁 + 𝑝 log2𝑝 + (1 − 𝑝) log2 ( 1 − 𝑝𝑁 − 1)) , (7)

where𝑁 = 4 is the number of choices, 𝑝 is the classification
accuracy (expressed between 0 and 1), and 𝑇 is the epoch
duration (in seconds).



4 Computational Intelligence and Neuroscience

CC
A

 (1
 co

rr
)

CC
A

 (1
 co

rr
) +

 sw

CC
A

 (2
 co

rr
)

CC
A

 (2
 co

rr
) +

 sw

CC
A

 (3
 co

rr
)

CC
A

 (3
 co

rr
) +

 sw

CC
A

 (4
 co

rr
)

CC
A

 (4
 co

rr
) +

 sw

CC
A

 (5
 co

rr
)

CC
A

 (5
 co

rr
) +

 sw

CC
A

 (6
 co

rr
)

CC
A

 (6
 co

rr
) +

 sw

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
) ∗∗∗∗∗∗∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

n.s.
n.s.

n.s.

∗∗∗∗
∗∗

++

+
+

++ ++

+

+
+ ++

+

+ +

+
+

+

++

+

+

+
+

+ ++
+ ++

++ + + +
+

Figure 1: A boxplot showing the classification accuracy distribu-
tions for all the considered combinations of methods. The asterisks
mark statistical significance, ∗∗𝑝 < 0.01 and ∗∗∗𝑝 < 0.001, while
“n.s.” indicates the absence of significance. The horizontal, dashed
line marks the upper confidence interval for chance level (𝛼 = 1%).

For the sake of comparison with other CCA-based lit-
erature methods that might be related to ours, we finally
recomputed classification accuracies with the method of
Chen et al. in [26], employing IIR filter banks, while we omit
the comparison with [22] as not reasonably adaptable to our
setup.

2.7. Statistical Analyses. At first, we compared each accuracy
to chance level. The value of chance level was obtained by
running the simulations as descripted in [30] in the case of
a 4-class BCI and taking the upper bound of the confidence
interval at 𝛼 = 1% significance, as an analytical expression
of chance level was not available for the multiclass case. As
concerns statistical comparison between methods, we had
to account for the fact that multiple data came from the
same subject; that is, the samples could not be assumed to
be completely independent. For this reason, instead of using
paired-samples 𝑡-test to compare each method against the
others, we ran all evaluations as post hoc tests of a repeated-
measures ANOVA. The ANOVA design included both the
factors “method” (the within-subject factor) and “subject,”
thus taking into consideration all dependencies among data.
Post hoc tests were carried out using Bonferroni correction.
The use of parametric statistical tests was justified by the nor-
mality of data distributions, as confirmed by the application
of a preliminary Kolmogorov-Smirnov test.

3. Results

The classification accuracies of each subject, run, andmethod
are detailed in Table 1 and summarized in Figure 1. The last
two rows of Table 1 indicate the average andpeak increment of

eachmethodwith respect to standardCCA (first column). All
the obtained accuracies were significantly higher than
chance, as the upper bound of the confidence interval for
chance level (with a significance of 𝛼 = 1%) in this particular
setup was 30.27%. In Table 2, the results of the post hoc
comparisons (Bonferroni-corrected) between each pair of
methods are reported. In Figure 2, the accuracy curves of all
the considered methods, evaluated with different windows
lengths, are shown. In order to avoid redundancies, the
detailed ITRs for each subject, run, and method are omitted,
as they can be easily computed from the accuracy results in
Table 1 and according to (7). Nevertheless, Table 3 reports
the average and peak ITR of each combination of methods,
together with the average and peak increment in ITR with
respect to classical CCA, in the same manner as reported in
the last rows of Table 1.

Both proposed variations were able to significantly
improve classification accuracy. As regards variation 1, the
results in Tables 1 and 2 and Figure 1 clearly show how
the consideration of more than one canonical correlation
significantly increases classification accuracy in both the
sinc-windowing and no-sinc-windowing conditions. Never-
theless, while accuracy significantly increases (𝑝 < 0.001,
both with or without sinc-windowing) when switching from
one to two canonical correlations or from two to three
canonical correlations (𝑝 < 0.001, in the no-sinc-windowing
condition), the increment generally becomes insignificant
when taking four, five, or six canonical correlations, with
respect, for example, to three. As concerns variation 2, that
is, the inclusion of a prefiltering step around the 𝐾 stimu-
lation frequencies and 𝑁harm harmonics by means of sinc-
windowing, the results show how this kind of preprocessing
always outperformed (with statistical significances ranging
from 𝑝 < 0.001 to 𝑝 < 0.01) the corresponding version
without processing. Accordingly, when variation 1 and vari-
ation 2 were combined, classification accuracy was a fortiori
significantly (𝑝 < 0.01 or𝑝 < 0.001) increasedwith respect to
the standardCCAmethod. To give an example, the accuracies
obtained with using four canonical correlations and sinc-
windowing were averagely increased by 8.20% with respect
to the standard CCA method, with a peak increment of even
31.25% (in S08, run 2).

When varying the length of the EEG portions used to rec-
ognize the SSVEPs, the behavior of the proposed variations
on classification accuracy tended to be confirmed, with the
only exception of the 0.5 s window length (Figure 2). While
the consideration of more than one canonical correlation
always outperformed the use of the largest one only, the
positive impact of sinc-windowing emerged only for window
lengths greater than 0.5–1 s.

When finally recomputing accuracies with the filter bank
CCAmethod proposed in [26], we confirm that the latter per-
formed significantly (𝑝 < 0.001) better than standard CCA.
However, the increase in accuracy produced by [26] was not
statistically different from some of our proposed variations.
Notably, accuracy results obtained with the combinations of
four, five, or six canonical correlations and sinc-windowing
processing were not statistically different from the results of
filter bank CCA [26].
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Table 2: 𝑝 values from the post hoc comparisons between each pair of methods. The asterisks mark statistical significance: ∗𝑝 < 0.05,
∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001.

CCA (1 corr) CCA (2 corr) CCA (3 corr) CCA (4 corr) CCA (5 corr) CCA (6 corr)
CCA (1 corr) — 𝑝 < 10−5∗∗∗ 𝑝 < 10−9∗∗∗ 𝑝 < 10−9∗∗∗ 𝑝 < 10−10∗∗∗ 𝑝 < 10−10∗∗∗
CCA (2 corr) — — 𝑝 < 10−4∗∗∗ 𝑝 < 10−5∗∗∗ 𝑝 < 10−5∗∗∗ 𝑝 < 10−5∗∗∗
CCA (3 corr) — — — 𝑝 = 0.32 𝑝 = 0.13 𝑝 = 0.017∗
CCA (4 corr) — — — — 𝑝 = 1 𝑝 = 0.017∗
CCA (5 corr) — — — — — 𝑝 = 0.90
CCA (6 corr) — — — — — —

CCA (1 corr) + sw CCA (2 corr) + sw CCA (3 corr) + sw CCA (4 corr) + sw CCA (5 corr) + sw CCA (6 corr) + sw
CCA (1 corr) + sw — 𝑝 < 10−3∗∗∗ 𝑝 < 10−5∗∗∗ 𝑝 < 10−6∗∗∗ 𝑝 < 10−6∗∗∗ 𝑝 < 10−6∗∗∗
CCA (2 corr) + sw — — 𝑝 = 0.21 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 = 0.0022∗∗
CCA (3 corr) + sw — — — 𝑝 = 0.041∗ 𝑝 = 0.053 𝑝 = 0.19
CCA (4 corr) + sw — — — — 𝑝 = 1 𝑝 = 1
CCA (5 corr) + sw — — — — — 𝑝 = 1
CCA (6 corr) + sw — — — — — —

CCA (1 corr) CCA (2 corr) CCA (3 corr) CCA (4 corr) CCA (5 corr) CCA (6 corr)
CCA (1 corr) + sw 𝑝 = 0.0014∗∗ 𝑝 = 1 𝑝 = 1 𝑝 = 1 𝑝 = 1 𝑝 = 1
CCA (2 corr) + sw 𝑝 < 10−8∗∗∗ 𝑝 = 0.0015∗∗ 𝑝 = 0.22 𝑝 = 0.77 𝑝 = 1 𝑝 = 1
CCA (3 corr) + sw 𝑝 < 10−10∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 = 0.0025∗∗ 𝑝 = 0.0082∗∗ 𝑝 = 0.018∗ 𝑝 = 0.042∗
CCA (4 corr) + sw 𝑝 < 10−10∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗
CCA (5 corr) + sw 𝑝 < 10−10∗∗∗ 𝑝 < 10−6∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗
CCA (6 corr) + sw 𝑝 < 10−10∗∗∗ 𝑝 < 10−6∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−4∗∗∗ 𝑝 < 10−3∗∗∗ 𝑝 < 10−3∗∗∗
4. Discussion

Our results show how the simple consideration of more
than one canonical correlation can significantly improve the
achievable accuracy without any increment of computational
load. As already suggested by Lin et al. [7], real EEG signals
are affected by noise and can show phase transitions; there-
fore the information might be spread over more than one
correlation coefficient.

From a theoretical point of view, if the EEG signals (in
theXmatrix) were almost unaffected by noise and shared the
same phase across electrodes (i.e., the rows in X), then the
consideration of only the first canonical correlation would
be sufficient to capture the majority of information. As
indeed the sine-cosine waves in the rows of each Y𝑘 are an
orthogonal basis, CCA would be able to find that particular
linear transformation of Y𝑘 able to explain the behavior of
the SSVEP response inX throughmaximizing the correlation
between a linear combination of X (the EEG signals) and
Y𝑘, without leaving information behind. However, as X is a
multichannel set of data, if we suppose that the SSVEP
response might show a different phase across electrodes (i.e.,
X rows), then at least a second set of canonical variables
would be needed to explain the data, and the second set(𝑈2, 𝑉2) would contain a complementary information with
respect to (𝑈1, 𝑉1). If we further suppose that, at the same
EEG location, the different harmonics of the same SSVEP
response might show different delays between each other,
then at least another set of canonical variables (𝑈3, 𝑉3)would
be needed to capture the information of the SSVEP response
not included in the first two sets.

We suggest that all the above-introduced suppositions are
likely to be true in real EEG signals. Supposing indeed that the

SSVEP response is generated in a limited area of the occipital
cortex, it will undergo different delays to reach the different
locations of electrodes, due to a delay in spatial transmission.
However, we suggest that the second supposition also is
reasonable in real EEG. Given indeed the origin of SSVEP in
the occipital cortex, the signal has to pass through multiple
tissue layers (fluids, bone, and skin) before reaching eachEEG
location. This is likely to produce phase distortion between
different frequency components, besides the well-known
spatial blurring effect.

The above-described interpretation fits the experimental
results well; indeed the accuracy significantly increased when
switching from one to three canonical correlations. We
consequently suggest that the consideration of more than
one canonical correlation permits to encompass a more
complete information on the investigated frequency 𝑓𝑘, and
this finally translates in an increased accuracy, revealed in
almost every subject and run. From the third set of canonical
variables on, we hypothesize that the amount of informa-
tion described by each correlation depends on each user’s
individual characteristics, for example, the amount of delay
across different harmonics and electrodes, as well as the dif-
ferential amplitude of the SSVEP response between different
harmonics of the same stimulation frequency. According to
this hypothesis, from the fourth canonical correlation on,
there would not be a group effect anymore, and this would
explainwhy the accuracy increments in the experimental data
are not significant anymore.

Besides recommending the consideration of more than
one canonical correlation, our results also highlight the
positive impact of prefiltering before CCA performance.
The presence of a filtering stage around the 𝐾 stimulation
frequencies and related𝑁harm harmonicsmay have permitted
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Figure 2: Grand average across subjects and runs of the classification accuracies (a) and ITR (b) for all the considered methods. The black-
dashed line indicates the upper confidence interval of the chance level (𝛼 = 1%) (a) and its corresponding ITR (b). Note that chance level is
slightly different for the different time windows, as the consideration of a larger time window implies a reduction in the number of trials per
class.

to enhance the SSVEP response from the background EEG,
and this finally translated in a significantly increased accuracy
in every considered comparison between corresponding ver-
sions of the method, with or without prefiltering. The idea of
exploiting band-pass filters to enhance different SSVEP com-
ponents had been already introduced in the works of Chen et
al. [26] and Islam et al. [22], suggesting the use of IIR filter
banks. However, both algorithm implementations in [22,
26] were proposed to perform multiple prefilterings of the
same EEG portion, thus multiplying the number of CCAs to
assess each stimulation frequency. Despite being able to
produce a significant increase in classification accuracy, this
implies a multiplication of the total number of steps required
in each SSVEP recognition, with a related sensible increment
of computational load. Besides being a novelty with respect
to literature, the implementation of the prefiltering by means
of sinc-windowing has the advantage of being able to filter
multiple frequency components in one single step, by simply

modulating the composition of the convolved function. This
implies that one more single step is added to each SSVEP
recognition independently from the number𝐾 of stimulation
frequencies or 𝑁harm considered harmonics, thus overall
remaining computationally light.

A potential limitation of the sinc-windowing technique
might be related to the length of the considered signal
portions, due to the Gibbs truncation effect [31]. As indeed
shown in Figure 2, while for segment lengths longer than
1 s sinc-windowing increased the achievable accuracy, it
turned to have even a negative impact when considering a
short signal portion of 0.5 s. Figure 2(b) integrates the
information of Figure 2(a), reminding that an increase in
window length may cause a decrease in ITR (as deducible
from (7)), in case the accuracy increase is not enough to
contrast the decrease of number of classifications per time. It
results that the maximum ITR can be achieved, for each
considered comparison, with window lengths of 1.25–1.5 s,
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while the positive impact of sinc-windowing is most evident
up to 2.5–3 s window length. As final comment on the sinc-
windowing technique, it might be noted that its efficacy was
generally confirmed despite the closeness of the chosen
stimulation frequencies (8, 9, 10, and 11Hz).

As regards the obtained accuracies in absolute terms, our
results are in line with literature regarding multiclass SSVEP
recognition with the standard CCA technique [7, 14, 20, 26,
32], although a subject-specific calibration of the stimulation
frequencies and/or their duty cycles [33] could have further
increased the performances. In addition, we verified that the
combination of our proposed variations could produce the
same accuracy increments as other CCA-related methods in
literature and particularly the same improvements as filter
bank CCA of Chen et al. [26].

As a final comment, we believe that, beyond making a
comparison of our methods to literature, the main aim and
contribution of this workwere giving a systematic study of the
effect of two simple, modular, and computationally light vari-
ations of the standard CCA algorithm.These proposed varia-
tions might be intended as modular “algorithm bricks” and
might be flexibly translated to the design of CCA-based
algorithm that is even different from ours in order to increase
the overall accuracy.

5. Conclusion

In this work, we evaluated the impact of two simple andmod-
ular variations of the CCA algorithm in a 4-class SSVEP
recognition setup.The two variations involved (i) the number
of considered canonical correlations and (ii) the inclusion of
a narrow-band prefiltering step around the employed stimu-
lation frequencies and related harmonics by means of sinc-
windowing technique. Our results indicate that even simple
consideration ofmore than one canonical correlation can sig-
nificantly improve accuracy, without any increment of com-
putational load. Notably, there were significant increases in
accuracy when switching from one to three canonical cor-
relations, while the increments were not significant from
the fourth canonical correlation on. An additional narrow-
band prefiltering permitted to gain up to 7-8% of accuracy
on average, with peaks of 25–30%, with respect to classical
CCA. A further advantage of sinc-windowing implementa-
tion is that it permits the enhancement of multiple frequency
components in one single step, by simply modulating the
composition of the sinc-function. Given the modular nature
of the proposed variations and the significant increments in
accuracy, regardless of whether the variations were used sep-
arately or, evenmore, in combination, together with the min-
imal computational costs, we believe that they could easily
represent valid integrations to be included in future CCA-
based designs.
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