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C-C bond cleavage in biosynthesis of 4-alkyl-L-
proline precursors of lincomycin and anthramycin
cannot precede C-methylation
Zdenek Kamenik 1, Radek Gazak1, Stanislav Kadlcik1, Lucie Steiningerova1, Vit Rynd1 & Jiri Janata1

Zhong et al.1 confirmed that γ-glutamyltranspeptidase (γ-GTs)
homologs are capable of cleaving a C–C bond, which was pre-
viously inferred by Jiraskova et al.2 in 2016 in a study based on
gene inactivation experiments. The intriguing C–C bond cleavage
catalyzed by LmbA and Ant6 γ-GT homologs from the bio-
synthesis of lincomycin A and anthramycin, respectively, was
conclusively documented by Zhong et al.1. However, assignment
of 2/3 as the LmbA and Ant6 substrate and 4/5 as the reaction
product is questionable for several reasons; most importantly, it
contradicts the current state of knowledge of the biosynthesis of
4-alkyl-L-proline derivatives (ALDP or APD used in previous
literature; Fig. 1a)2. Here, we argue that LmbA/Ant6 γ-GT
homologs do not utilize 2/3, but intermediate 9/10, which was
previously proposed to be the main native substrate of LmbA2

and which is biosynthesized from 2/3 by a C-methylation reac-
tion. Consequently, the main LmbA/Ant6 product is not 4/5 but
compound 12, which is a subject of isomerization in order to
proceed towards the final ALDP of lincomycin A and
anthramycin.

Here, we bring evidence that 2/3 is not the main native sub-
strate of LmbA/Ant6 γ-GT homologs, but of LmbW/Ant5 C-
methyltransferases. Indeed, we observed in vitro C-methylation
of 2/3 by LmbW affording 9/10 and we also detected inter-
mediate 9/10 in the cultivation broth of the ΔlmbA mutant of
lincomycin producing strain Streptomyces lincolnensis (Fig. 1b).
Even though the conversion of 2/3 into 9/10 by LmbW was only
partial, it clearly showed that 2/3 serves as an LmbW/
Ant5 substrate. To support that conversion of 2/3 by LmbW is
not a side reaction resulting from broader substrate specificity of
LmbW and that its main native substrate is indeed 2/3 and not 4/
5 as the work by Zhong et al.1 suggests, we carried out a
bioinformatic analysis of LmbW/Ant5. We found out that
LmbW/Ant5 and their homologs (SibZ3, HrmC4, and Por105)
from the biosyntheses of other ALDPs are similar to ALDP-
unrelated C-methyltransferases MppJ with known structure6 and
MrsA7 (26% identity to LmbW according to BLAST for both
MppJ and MrsA along the whole sequence; sequence alignment
of LmbW and MppJ is available in Supplementary Fig. 1). MppJ

and MrsA methylate phenylpyruvic and 5-guanidino-2-
oxopentanoic acids, respectively, i.e., substrates structurally
analogous to 2/3 and not 4/5.

Furthermore, methylation of phenylpyruvic acid catalyzed by
MppJ is part of the biosynthesis of β-methyl-L-phenylalanine
from L-phenylalanine8. Instead of direct methylation of L-phe-
nylalanine, the machinery requires to proceed via phenylpyruvic
acid, indicating the importance of the α-keto(enol)-carboxylic
moiety of phenylpyruvic acid for the MppJ-catalyzed methyla-
tion. We propose that the same applies also to LmbW/Ant5
because their substrate 2/3 also contains the α-keto(enol)-car-
boxylic moiety. Importantly, conversion of the analogous sub-
strates of MppJ and LmbW/Ant5 through a common reaction
mechanism is supported by comparison of the active sites of
MppJ (based on the protein crystal structure)6 vs. LmbW (based
on a homology model) depicted in Fig. 2. The α-keto(enol)-car-
boxylic moiety appears to play an important role in fixation of the
substrate within the active site not only in the case of MppJ, but
also LmbW/Ant5. All these enzymes share the residues important
for α-keto(enol)-carboxylic moiety fixation as well as the
methylation (four residues depicted in blue in Fig. 2c, d). In
contrast to 9/10, intermediate 4/5 (proposed as the LmbA/Ant6
reaction product and thus the LmbW/Ant5 substrate by Zhong
et al.1) does not possess the α-keto(enol)-carboxylic moiety for
the substrate fixation in the active site.

Moreover, the methylation of 4/5 would have to proceed
through a different mechanism than reactions catalyzed by MppJ
and MrsA, which would be inconsistent with the high con-
servation of the key catalytic residues within the active sites of
MppJ and LmbW/Ant5. Based on the above-mentioned argu-
ments, we claim that 2/3 is first C-methylated by LmbW/Ant5
and the reaction product 9/10 is utilized as a substrate of LmbA/
Ant6 γ-GT homologs. However, 2/3 can serve as a minor sub-
strate of LmbA if the C-methylation step is omitted and linco-
mycin B9, a side product of lincomycin A biosynthesis, is formed.
Similarly, 2/3 undergoes C–C bond cleavage if the C-methyl-
transferase is not encoded within the biosynthetic gene cluster,
which applies to the biosynthesis of e.g., tomaymycin10,11 and
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Fig. 1 Biosynthetic steps catalyzed by LmbA/Ant6 and LmbW/Ant5 in the context of ALDP pathway. a Scheme of ALDP biosynthetic pathway (adopted
from Jiraskova et al.2 and modified according to Kamenik et al.10); Dotted arrows indicate steps proposed by Zhong et al.1, brackets indicate a side-
pathway, final ALDP precursors highlighted in blue are incorporated into the secondary metabolites. b In vitro (experiments from Jiraskova et al.2 re-
examined using a more suitable chromatographic method) and in vivo (new experiments) C-methylation of 2/3 by LmbW; Chromatographic conditions:
UPLC BEH Amide 1.7 µm, 2.1 × 50mm column (Waters, USA), mobile phase: A-acetonitrile and B-50mM ammonium acetate pH8:acetonitrile 1:1 (v/v),
elution: 99% A for 2.5 min followed by a linear decrease from 99 to 1% A in 10min, UV/VIS chromatograms extracted at 405 nm, MS spectra were
recorded using an electrospray ionization technique in a negative mode
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limazepine E12 with a two-carbon side-chain ALDP (Fig. 1a).
Therefore, Zhong et al.1 elucidated the unusual C–C bond clea-
vage function of LmbA/Ant6, but using other than the main
native substrate.

Furthermore, Zhong et al.1 claim that 4, which they propose to
be the product of 2/3 cleavage by LmbA/Ant6, is prone to
spontaneous isomerization into 5 (Fig. 1a). They observed this
isomerization during their unsuccessful attempt to synthesize 4.
However, 4 was previously synthesized by Saha et al.13, it was
structurally characterized by nuclear magnetic resonance (NMR)
and used for enzymatic assays, but its spontaneous isomerization
into 5 was not reported. Specifically, Saha et al.13 conducted a
two-step deprotection of an analogous compound (methyl ester
was used instead of tert-butyl ester) using LiOH for methyl ester
hydrolysis and trifluoroacetic acid for Boc deprotection, affording
4, not 5. Therefore, we consider the formation of 5 during

deprotection of 4’ observed by Zhong et al.1 to be caused by the
used deprotecting method. Importantly, spontaneous isomeriza-
tion of 4 into 5 would be also inconsistent with the function of
putative isomerases LmbX/Ant15. They were assigned for enzy-
matic isomerization of 4 into 5 based on (1) the comparison of
the hormaomycin structure and its biosynthetic gene cluster,
which does not encode a homolog of LmbX4, and (2) the pro-
duction profile of the ΔlmbX and ΔlmbXΔlmbW mutants of
lincomycin producing strain S. lincolnensis2. These data show that
if the enzymatic isomerization step of 4 into 5 is not involved in
the ALDP biosynthesis, 4 or its analog 12 with a three-carbon
side-chain is after reduction of its endocyclic double bond
incorporated into the final secondary metabolite.

In addition, analytical chemistry data for 5 obtained by Zhong
et al.1 from enzymatic reaction of 2/3 with LmbA/Ant6 are
not sufficient for unambiguous structural elucidation of this
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Fig. 2 Comparison of the active sites and proposed reaction mechanism of MppJ and LmbW. a Comparison of active sites of MppJ (in yellow, crystal
structure PDB ID: 4KIC [https://www.rcsb.org/structure/4KIC] with the substrates phenylenolpyruvate (Ppy) and S-adenosyl methionine (SAM)—
adopted6) and LmbW (a homology model built using the MppJ structure and the SWISS-MODEL server15); LmbW is in pink; substrate 2 is in white. The
positions of compound 2, Fe3+, and SAM in the model were determined by superimposing the model on the 4KIC template in PyMOL16 and adjusting the
position of 2 based on the position of the α-keto(enol)-carboxylic moiety of Ppy bound to MppJ. b Arrangement of the putative substrate binding pocket
with 2 in the homology model of LmbW. c Schematic active site and a proposed mechanism of action of MppJ6, modified according to panel a. d Schematic
active site and proposed mechanism of action of LmbW. Panels c and d: abbreviations of residues reflecting the common α-keto(enol)-carboxylic moiety of
Ppy and 2 and the common proposed mechanism are in blue; abbreviations of residues differing in MppJ vs. LmbW, reflecting the uncommon moieties of
Ppy vs. 2 (aromatic ring of Ppy vs. heterocyclic carboxylic moiety of 2), are in green. Residue numbering corresponds to MppJ
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compound. Comparison of 1H NMR spectra of 5 obtained
enzymatically and by chemical synthesis is complicated by partial
overlap of the terminal methyl group signal by the signal of
NH4OAc, which together with a relatively low quality of the
spectrum complicates easy identification in the case of the
enzymatic product. Without analogous comparison of at least 13C
NMR spectra of 5 obtained from both sources, it is difficult to see
their virtual identity. The expansion present in the spectrum of 5
from enzymatic reaction looks like an expansion from a different
spectrum. Moreover, the signal at 2.00 ppm (expansion in spec-
trum a) should be a doublet, similarly as in the spectrum b.
Another misleading point is also the chemical name of 5 in page
39 of Supplementary Information, in which its name corresponds
to the structure of 4.

In summary, considering also our arguments, work of Zhong
et al.1 represents a crucial missing proof of the ALDP biosynthetic
pathway puzzle, i.e., the role of γ-GT homologs in the cleavage of
oxalate from 2/3 (for compounds with a two-carbon side-chain
ALDP) or its methylated derivative 9/10 (for compounds with a
three-carbon side-chain ALDP including lincomycin A and
anthramycin). The subsequent step in anthramycin and linco-
mycin A biosynthesis presumably involves isomerization cata-
lyzed by LmbX/Ant15 so that the pathway proceeds towards the
final ALDP intermediate.14

Data availability
Data supporting the findings of this work are available within the
paper and its Supplementary Information file and from the cor-
responding author on request.
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