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Abstract

Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the

genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome.

Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving

frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711

genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism,

extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered

regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements

like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins

matched with the clade distribution obtained from the presence–absence of variable genes. The phylogenetic and variome tree

overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this

species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to

this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene

functions required to adapt to a large range of environments.A remarkable congruencyof the evolutionary relatedness of the strains’

core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss

within the L. rhamnosus strain diversification.
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Background

The genus Lactobacillus encompasses a phylogenetically di-

verse group of bacteria and currently amounts to more than

200 recognized species. Genomic approaches have provided

insight in the evolutionary relationships among the

Lactobacillus species, and have also revealed some genes

and functions that explain their presence in particular ecolog-

ical niches like the gastrointestinal tract (Lukjancenko et al.

2012), fermented dairy products (Broadbent et al. 2012),

and plant-associated environments (Mahony et al. 2012). A

combination of gene gain and loss plays a prominent role

during niche adaptation, where particularly gene loss appears

to be associated with the adaptation to the nutrient-rich dairy

environment (Lukjancenko et al. 2012).

Together with Lactobacillus plantarum, Lactobacillus

reuteri, and Lactobacillus casei, Lactobacillus rhamnosus has

the largest genome among the species of the Lactobacillus

genus or the lactic acid bacteria (LAB) in general.

Lactobacillus rhamnosus is an anaerobic, facultative heterofer-

mentative rod-shaped microorganism that is encountered in

the fermentation of food and feed-raw materials (Bergey

2009), but also frequently found in the human and animal

intestinal (Heilig et al. 2002), oral and uro-genital system

(Hummelen and Fernandes 2010).

Among its most studied strains, L. rhamnosus GG (ATCC

53103) stands apart as the most documented probiotic strain

(887 scientific articles and 58 patents by 2015—according to

the Scopus Database). Different health and industrial benefits

were associated with different strains of L. rhamnosus, but

due to the lack of controlled comparative studies, it remains

to be established if and to what extent all these effects are

strain-specific (Douillard, Ribbera, Järvinen, et al. 2013).

While for some of the health benefits and niche adaptation

factors, the mechanism of action of L. rhamnosus strains re-

mains unclear, some of the molecular mechanisms that may

underlay or contribute to these effects have been studied (van

Bergenhenegouwen et al. 2014). For example, expression of

mucus-binding pili in the intestine (Kankainen et al. 2009) and

mucus-binding factor (MBF), an active mucus-specific surface

adhesin (von Ossowski et al. 2011), play a role in the adherent

mechanisms that contribute to intestinal colonization by L.

rhamnosus GG. In addition, muramidases p40 and p75 were

shown to inhibit apoptosis in mouse colon epithelial cells and

cultured mouse colon explants treated with TNF-a, thereby

positively influencing epithelial layer integrity and repair

(Bäuerl et al. 2010), which could contribute to reinforcement

of the epithelial barrier (Nermes et al. 2011). Moreover, the

large surface protein MabA was shown to play a role in epithe-

lial adhesion of L. rhamnosus cells, and its expression correlated

with increased levels of bacterial adhesion to intestinal epithelial

cells and tissues of the murine GIT (Vélez et al. 2010).

The present mechanistic insights do not fully explain the

complex interaction that L. rhamnosus strains develop with

their host. In this context, a detailed pan-genomic analysis

of a substantial number of L. rhamnosus strains might poten-

tially provide molecular discriminators that can be associated

with functional variations within the species, including their

differential capacity to affect the host’s (mucosal) physiology.

The previously reported sequence scanning of 100 strains of

L. rhamnosus allowed the determination of the core genome

of the L. rhamnosus species at high resolution (Douillard,

Ribbera, Kant, et al. 2013). However, the exclusive mapping

of the sequence information onto the L. rhamnosus GG tem-

plate genome restricted the full species diversity analysis to

functions that are present in L. rhamnosus GG.

Since the variable traits of the species, which are absent

from L. rhamnosus GG can provide novel insights into the

species’ diversity, this study presents the in silico genomic

and metabolic analysis of the diversity of the L. rhamnosus

species using the genomic sequences of 40 strains of the spe-

cies, that were isolated from various environmental niches.

The main focus of the comparative genome analysis was tar-

geted to the analysis of the distribution and function of the

“variome” of the L. rhamnosus species, that is, the genes that

do not belong to the previously reported core genome.

Materials and Methods

Functional Annotation

Strain Selection, Genome Sequencing, and Annotation

Thirty-six different L. rhamnosus strains from the Helsinki

University and the Danone Nutricia Research Collection were

selected based on origin information or AFLP classification.

The strain selection aimed to cover as much as possible the

diversity inherent to the species. The type strain ATCC7649 is

part of the group of newly sequenced strains. A complete list

of the selected L. rhamnosus strains and their origin can be

found in supplementary table S1, Supplementary Material

online. In addition, four public strains genomes (strains GG,

HN001, Lc705, ATCC 21052) were downloaded and pro-

cessed with the same bioinformatics pipeline as the newly

sequenced genomes.

For DNA preparation, 2 ml of overnight culture was pel-

leted, washed and resuspended in 20 mM Tris-HCl, pH 8.0,

1 mM ethylenediaminetetraacetic acid, pH 8.0, 8% sucrose,

50 mM sodium chloride (TES) buffer. Cell lysis was performed

with lysozyme (360 mg/ml) and mutanolysin (140 U/ml) during

2 h at 37 �C, then 300 ml water was added and 80 ml of 20%

sodium dodecyl sulfate solution. DNA was extracted using

phenol/chloroform (1:1) (3�). The DNA was precipitated

with isopropanol and washed with 70% ethanol. RNAse treat-

ment was performed using 100 ug/ml RNAse (Sigma) during

1 h at 37 �C.

Draft genome sequences of 36 L. rhamnosus strains were

obtained (GATC Biotech, Germany) using 454 GS FLX se-

quencing at a sequence coverage ranging from 9 to 22�
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(see complete sequencing statistics in supplementary table S1,

Supplementary Material online). Genomes assembly was per-

formed using Newbler 2.6 and 2.8 with standard settings.

Contig sequences of all strains were annotated using the

RAST pipeline (Overbeek et al. 2014). Genome sequences of

L. rhamnosus strains taken from public databases were rean-

alyzed (gene assignments and annotation) using the same

procedures to ensure consistency of the gene-function predic-

tions for each genome used.

Metabolic Mapping—KEGG

The draft metabolic network and associated gene–reaction

relationships of the pan, core and clades’ genomes was con-

structed using a KEGG automatic annotation server (KAAS)

(Moriya 2007), according to the KEGG database (Kanehisa

et al. 2009) using the standard settings and mapping against

40 typical prokaryotes genomes. Then, manual checking of

the metabolic maps obtained from the KAAS annotation iden-

tified the relevant metabolic diversity and gaps.

Substrate specificity of PEP group translocation (PTS) trans-

porters was predicted based on homology to annotated PTS

genes (the best hit in the NCBI nr database) and based on their

genomic context, focusing on genetically linked genes with

predicted functions related to enzyme and regulatory func-

tions in carbohydrate metabolism.

Domain Annotation

Identification of proteins containing LPXTG signals (for

sortase-dependent genes), mucus-, fibrinogen- or fibrin-bind-

ing, collagen- and Ig-like domains was performed using

Interproscan (Zdobnov and Apweiler 2001) analysis.

Bacteriocin Detection

BAGEL3 was employed as an automated pipeline for identify-

ing genes encoding class I and II bacteriocins using an identi-

fication approach that combines direct mining for the

encoding gene and indirect mining of genetic context for ac-

cessory functions related to the production of these bacterio-

cins and related peptides (van Heel et al. 2013).

CRISPR Identification and Characterization

CRISPR (clustered regularly interspaced short palindromic

repeat) loci and associated cas genes were identified using a

combination of homology to previously identified cas genes

and their corresponding CRISPR repeats (Brouns et al. 2008)

and by de novo identification using the CRISPR Recognition

Tool (CRT) (Bland et al. 2007). Spacer homologies to foreign

genetic elements were assessed using BLASTN (Altschul et al.

1997) on two databases: one created with all L. rhamnosus

genomes presented in this study and the NCBI complete nu-

cleotide collection nr (Pruitt et al. 2007). Nucleotide conserva-

tion between CRISPR spacers and corresponding protospacers

in phages, plasmids, and chromosomal sequences were visu-

alized using Ugene (Okonechnikov et al. 2012).

Genome Comparisons

Orthology Estimation

The orthology prediction was performed for all genomes (5

public and 35 sequenced by 454 GS FLX in this study) using

sequence clustering and search program Usearch v. 6.0.307

(Edgar 2010). To define orthologous groups (OGs), all the

predicted open reading frame (ORF) amino acid sequences

of all the strains were first ordered by length using the

“sortbylength” command, and then clustered with the “clus-

ter_smallmem” command using identity threshold of 0.5 and

E-value cut-off of 1e� 30. Thus, the members of each result-

ing ORF sequence cluster shared at least 50% amino acid

identity over their entire sequence lengths based on the lon-

gest sequence. The longest sequence in each cluster was

chosen as the representative of the OG. The pan-genome

was thus defined as the set of representative sequences of

the OGs. The ortholog data were managed using R v. 2.15.3

with Biostrings package and in-house scripts.

Since most of the genomes are in a draft state, ORF pre-

diction might have missed protein-coding sequences (CDSs).

To detect the eventually missing genes, CDSs were aligned

against each of the genomes using tBLASTn. CDSs that had a

hit with 95% identity and query length or had the best align-

ment on the edge of a contig were classified as being present

in the corresponding genome.

Search for L. rhamnosus-Specific Genes (Orphan OGs)

To identify L. rhamnosus-specific genes, we created a data-

base of the protein sequences of all completely sequenced

bacterial genomes present in the NCBI nr database. All

known L. rhamnosus genomes were excluded from this set.

The final database composed of 3,505,217 proteins from

1,047 genomes. We compared all the genes belonging to L.

rhamnosus strains to this database using BLASTP with an initial

identity threshold of 0.5 and E-value cut-off of 1e� 30, the

same value used to create the OG matrix. Genes that had no

blast hit against any of the proteins in the database were

considered to be L. rhamnosus specific. The genes specific

for the species’ core and pan gene sets were analyzed using

the same approach.

Variome Classification Based on Presence–Absence of
Genes

Genomes and OGs were clustered in R (R Development Core

Team 2008) using the complete method based on the

Manhattan distance of presence–absence matrix. A subset

of 10% of core genes was added to the variable genome in

order to identify the least variable OG clusters. The output was
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visualized with heatmap.2 from the gplots package (Warnes

2012).

BRIGS Mapping on Reference Public Genomes

To identify the variable regions, all genomes were aligned

against the public reference strain GG and LC705 genomes

and visualized using BRIG (Alikhan et al. 2011). Rings were

color coded according to the variome classification of the

strains (supplementary fig. S4, Supplementary Material

online). ABC and PTS transporters were visualized by aligning

the genes against the genome and taking the best hit. Contigs

mapping to multiple regions were all shown in the ring.

Repetitive regions in the ring overlap on the reference and

therefore do not display the repeat.

Phylogenetic Analysis

We define the phylogenetic relationship of the various strains

from the patterns of single-amino acid substitutions of the

proteins that belong to the core genome of the species and

were present in a single copy in all strains (supplementary

table S2, Supplementary Material online). The protein se-

quences of 1,008 OGs with a single member in each L. rham-

nosus genome were aligned using MUSCLE (Edgar 2004),

which delivered 5127 positions in the core protein sequences

with altered amino acid content. These alignments were con-

catenated after which a maximum-likelihood tree was con-

structed using PHYML (Guindon et al. 2010).

Results and Discussion

General Features of L. rhamnosus Genomes

Strains of the species L. rhamnosus originate from a variety

of ecological niches. In this study, we describe the se-

quencing and comparative genomics of 40 L. rhamnosus

strains isolated from different sources like dairy fermented

products, plants, human and animal intestine and human

clinical samples (supplementary table S1, Supplementary

Material online). A high number of isolates were obtained

from the mammalian intestinal tract environment, that is,

there are eight isolated from human feces, three from the

intestine of healthy individuals and one from goat feces. In

addition, L. rhamnosus strains of other human origins

were also included, that is, 17 strains from hospitalized

patients, including blood (infection) isolates and a vaginal

isolate. The group is completed by seven dairy isolates and

one beer isolate.

Genome size, G + C content and protein CDS counts vary

among strains, independent of the strain’s niche of isolation.

The average genome size is 3 ±0.2 Mb, thereby placing the L.

rhamnosus genomes among the largest within the

Lactobacillus group (Canchaya et al. 2006). The molecular

percentage G + C content varied among sequenced ge-

nomes from 46.5% to 46.8% (supplementary table S1,

Supplementary Material online). The mean percentage G + C

content of 40 strains was comparable to the closely related L.

casei species (46.6% compared with 46.3%) (Toh et al. 2013)

but slightly higher than that of L. plantarum (44.5%)

(Kleerebezem et al. 2003; Siezen et al. 2012) or the average

for the lactobacilli that is estimated at 42.4% (Kant et al.

2011).

The newly sequenced genomes had average sequence

coverage of approximately 14-fold (ranging from 9- to 22-

fold) and could be assembled into 61–535 contigs (with an

average number of contigs of 178). Due to the large

number of strains analyzed, the number of gaps of each

genome will have a lower influence on the overall OGs

estimation (Li et al. 2011). This level of coverage is suffi-

cient for comprehensive and comparative characterization

of the pan-genome and variome diversity among these

strains, as indicated by the asymptote of the new gene

discovery (supplementary fig. S1, Supplementary

Material online). A curve reaching saturation indicates

there is no need for additional sequencing (Sims et al.

2014), and thus the data set that was generated provides

an adequate reflection of the diversity of the species.

Previous work has established the L. rhamnosus core

genome (Douillard, Ribbera, Kant et al. 2013) by SOLID se-

quencing 100 L. rhamnosus clinical and dairy strains and map-

ping all reads to the L. rhamnosus GG (LGG) reference

genome. Only sequences mapping to the LGG genome

were analyzed further and the core genome consisted of all

genes shared between all 100 strains (~80% of LGG

genome). Due to the short read length and the methodology

used, the genome collection produced by Douillard, Ribbera,

Kant et al. is not suitable for analysis of the variable genome

regions. The current work explores the species’ variome to

identify the basis of strain (and clade) variability, as well as

potential evolutionary pathways for the species L. rhamnosus,

while using the characteristics of the core genome only to

highlight the relevance of certain predicted functional

variations.

The total predicted genetic content encompassed 4,711

OGs (forming the pan-genome) with an average of 2,707

(±74) OGs per genome, out of which 2,164 are present in

all genomes (Douillard, Ribbera, Kant, et al. 2013) (supple-

mentary table S2, Supplementary Material online). The size

of the pan-genome is therefore higher than the one reported

for other related LAB species: around 2,800 OGs for

Oenococcus oeni (Borneman et al. 2012), 4,200 OGs for L.

casei (Broadbent et al. 2012) and L. paracasei (Smokvina et al.

2013). In our assessment, the core- and pan-genome esti-

mates almost reach saturation (supplementary fig. S1,

Supplementary Material online), implying that the total diver-

sity inherent to the species is well represented within this data

set. Putative biological functions were assigned to 2,761

(58%) of the predicted OGs and another 1,272 (27%) OGs

share sequence conservation with conserved proteins of
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unknown function in other organisms (supplementary table

S2, Supplementary Material online). Among the conserved

core genome OGs, 67% have their closest relative sequence

in L. casei and L. paracasei, followed by Lactobacillus zeae

(30%), Lactobacillus plantarum (1%), Lactobacillus pentosus,

O. oeni, and Streptococcus species’ (supplementary table S2,

Supplementary Material online), which is in good agreement

with previous taxonomic classification of L. rhamnosus (Toh

et al. 2013).

In brief, the core genome contains genes needed for rep-

lication, transcription, translation, central, and cell wall metab-

olism, biosynthesis of most amino acids and metabolism of

nucleotides, fatty acids, and phospholipids. Hypothetical pro-

teins having a yet unknown function amount to more than

682 OGs of the core genome (32% of the core genome). The

core genome also contains more than 18 complete sugar uti-

lization gene clusters, and a variety of cell-surface compo-

nents, discussed in more detail below.

The variable gene content of the analyzed genomes was

investigated using the gene presence/absence matrix and vi-

sualized by creating a heatmap using R (fig. 1) and used to

construct a genome-relatedness or “pan-genome” tree based

on variable genome content (variome tree; fig. 1).

The eight clade-classification identifies L. rhamnosus

unique and clade-specific OGs (supplementary table S3,

Supplementary Material online). Species-specific orphans

OGs (OOGs) that are uniquely present in L. rhamnosus and

missing in all other bacteria (based on the entries in the NCBI

nr database), amounted to 49% of the L. rhamnosus pan-

genome. The present study identified 232 OOGs in the L.

rhamnosus group, among which a substantial amount are

small-sized ORFs (more than 10% have less than 75 amino

acids), suggesting that the number of OOGs may be some-

what overestimated due to sequencing gaps and/or overpre-

diction of ORFs, also supported by an observed larger size of

the pan-genome compared to other LAB species (see above).

FIG. 1.—Hierarchical map and clustering of the 40 L. rhamnosus genomes based on presence–absence of genes (green, presence and red, absence of

genes). OGs of genes could be classified in four groups noted cluster A–D. Cluster D includes 10% of core genes to allow a shared OGs skewed classification

of the clusters. At strain level there are eight recognizable clades of strains (1–8). The niche from which the strains were isolated is indicated by the color-

coding of the strain’s ID-code: yellow: dairy; black: human feces; red: clinical (blood); light green: healthy intestine; blue: vagina; purple: goat feces; dark

green: beer; gray: type strain (unknown).
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Notably, L. rhamnosus strains share 37 core OOGs, which

consistently lack a functional prediction.

Clade-specific OGs are present in all members of a specific

variome-based genetic clade and absent in all other genomes.

As can be expected from the variome-based clade prediction

(fig. 1), there were large differences between the numbers of

clade-specific OGs (in order: clade 1: 18.2%; clade 2:13.0%;

clade 3: 4.8%; clade 4:10.0%; clade 5: 4.4%; clade 6:

21.3%; clade 7: 0.8%; and clade 8:27.5%). Clades with a

lower number of strains did not necessarily contain fewer

specific genes: clades 1 and 4 with 2 and, respectively, 4

strains retained almost the highest number of specific genes

among all clades. Clade 7 has the lowest number of clade-

specific OGs (7) followed by clade 3 (41), whereas clade 8

has the highest, 235 OGs (supplementary table S4,

Supplementary Material online). Global function scanning

among the clade-specific gene sets, indicated some clade-

specific functional (supplementary table S4, Supplementary

Material online) as well as metabolic (supplementary table

S8, Supplementary Material online) enrichments: clades 1, 2,

5, and 7, energy metabolism functions (1.34% of total clade

genes); clade 1, metabolism of cofactors and vitamins

(1.01%) as well as signal transduction (0.56%); clades 3, 6,

and 8, carbohydrate metabolism (5.07%), transport (2.34%),

and glycan degradation (0.34%); clades 3, 6, and 8, amino

acid metabolism (2.88%) and restriction-modification; and

clades 2, 3, 5, 7, and 8, membrane transport (2.34%).

Mobile elements are abundant in clades 1 (especially phage-

associated genes), 6 and 8 but missing from clades 3 and 7,

whereas strains of clades 4 and 7 appear to lack plasmids

(fig. 4). Notably, the CRISPR-Cas system appeared to be en-

tirely missing from strains in clades 2 and 8 (supplementary fig.

S2, Supplementary Material online), whereas this system is

consistently present in all other strains of the other clades.

Below, we will describe in detail a selection of functional char-

acteristics that appear to be distributed in a clade-specific

manner.

The number of strain-specific OGs fluctuates from 0 to

100 per strain and amounted to 706 OGs (15%) in total

(supplementary table S6, Supplementary Material online),

which is most probably a somewhat overestimated

number, due to the inclusion of small ORFs (see also

above), and the potential over assignment of ORFs in gen-

eral. Nevertheless, some of the strain-specific genes are

predicted to encode functions that may be acquired re-

cently and/or confer advantages in certain environments

or represent specific genetic entities. The strains Lrh22,

Lrh33, and Lrh24 appear to encode more than 50

unique genes each, and thereby standout from all other

strains analyzed in this study. Notably, in strain Lrh22

among those unique genes is a plasmid replication asso-

ciated gene, which may imply that some of the other

strain-specific genes may also be located on a plasmid.

Analogously, other strains (Lrh3, Lrh23, and Lrh32) also

appear to contain plasmid replication genes, but no fur-

ther evidence for presence of plasmids was found.

Notably, the only beer isolate, ATCC8530, contains only

two strain-specific functions (pediocin pepB, and thiore-

doxin) that display very high level homology with L. pen-

tosus and could play a role in the elevated resistance to

hops in the presence of ethanol [79] reported for this

strain. Strain-specific genes appear to reflect gene ex-

changes with other species, like the presence of an appar-

ently complete prophage and an arsenic resistance operon

in strain Lrh33, which appear to be almost identical to

genetic entities in L. casei. Analogously, strain Lrh24 en-

codes five prophage pi1 genes and a complete polysac-

charide cluster (ten genes) with very high identity with

genes found in L. paracasei.

Genomic Prediction of L. rhamnosus Metabolic Diversity

Efficient use of environmental resources, especially carbohy-

drates, is relevant for the survival of bacteria in different hab-

itats, including in the intestine, which is characterized by

dynamic diet and host-dependent nutrient availability.

Metabolism genes assigned within the variome are dominated

by carbohydrate transport and associated metabolic path-

ways, supporting the idea that sugar utilization is important

for the evolution and adaptation of L. rhamnosus as a species

(Douillard, Ribbera, Järvinen, et al. 2013), which is in agree-

ment with observations made in other Lactobacillus species

such as L. reuteri (Hüfner et al. 2008) and L. casei (Douillard,

Ribbera, Järvinen, et al. 2013) (supplementary table S8,

Supplementary Material online).

Carbohydrate Import and Utilization

One of the largest functional classes encoded by L. rhamnosus

genomes—transport proteins (in total 418 OGs)—is domi-

nated by proteins predicted to be involved in carbohydrate

import (44% of transporters with a predicted substrate)

(fig. 2, supplementary table S8, Supplementary Material

online). Notably, for 68 transport-associated OGs (62 ABC

and 6 PTS OGs) no substrate specificity could be predicted,

and these functions could further expand the substrate utili-

zation capacities of L. rhamnosus strains.

The average number of transport-associated genes per

genome is 315 ± 12, a number comparable to the number

of transport functions encountered in the genome of the ver-

satile L. plantarum WCFS1 (Kleerebezem et al. 2003). A large

fraction of these transporters (~40%) have a clear distribution

pattern among the different strains and clades, enabling the

discrimination of clades on basis of these functions (supple-

mentary table S7, Supplementary Material online). This obser-

vation is congruent with other studies that already identified

strain-specific carbohydrate utilization capacities as a means of

functional classification of L. rhamnosus strains (Ceapa et al.

2015). In the genome of strain GG (Morita et al. 2009), the

Ceapa et al. GBE
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genes encoding ATP-binding cassette (ABC) transporters

appear to be evenly distributed across the bacterial chromo-

some, whereas a regional enrichment is observed for phos-

photransferase systems (PTSs), encoding carbohydrate

transport functions, in the region at the 50-side of the origin

of replication (supplementary fig. S3, Supplementary Material

online). This functional enrichment in a particular region of the

chromosome is analogous to the positioning of the so-called

“sugar-island” of L. plantarum WCFS1 (Kleerebezem et al.

2003). These regions also display a high degree of variability

among strains of the species (Molenaar et al 2005), indicating

local genome plasticity and implying that PTSs transporters

might be more frequently acquired and/or lost by horizontal

gene transfer (HGT) as compared with ABC transporters in

both these Lactobacillus species. The main driver is probably

that PTS systems which are always carbohydrate transport

systems, while ABC transporters are also known to transport

other compounds (AA, metals, small molecules). This may

imply also that ABC transport functions have less redundancy

and may play more essential roles in a variety of environments

as compared to the PTSs that could serve to some extent ex-

pendable or redundant functions depending on the environ-

mental availability of specific carbohydrates. Nevertheless, 20

of the 134 PTS associated OGs (20 PTSs), appear to be con-

served among all strains and are predicted to transport the

monosaccharides glucose, galactose, mannose, fructose, the

polyols sorbitol, and mannitol, and the disaccharides cellobi-

ose, trehalose, sucrose, or oligosaccharides (glucosides). The

import and utilization of this panel of carbohydrate sources for

growth is consistent with the phenotypic analyses of strains of

the L. rhamnosus species (Douillard, Ribbera, Kant, et al. 2013;

Ceapa et al. 2015). The remaining PTS encode transporters

predicted to import the additional carbohydrates maltose,

arbutin, sorbose, N-acetylgalactosamine, galactosamine, and

lactose, but include also systems that have a predicted sub-

strate redundancy relative to the core-genome associated PTS

functions (supplementary table S7, Supplementary Material

online). Of the overall 163 ATP-binding cassette (ABC) trans-

porters (the gene number varying between 133 and 148

genes per genome; supplementary table S7, Supplementary

Material online), 72% belong to the core genome functions

(118 OGs forming between 99 and 108 units). These core

genome ABC transport systems are predicted to encode

both importers and exporters, with substrate assignments

that include carbohydrates, amino acids, lipids, and metals

(supplementary table S7, Supplementary Material online).

The carbohydrate ABC transporters encoded within the var-

iome are predicted to mediate maltose/maltodextrin transport

in strains of clade 1 and ribose/D-xylose importers in all clades

except clade 4.

Variation in the transporters encoded by any strains can be

explained by strain-specific gene loss in comparison to a

common ancestor (Toh et al. 2013) or HGT acquisition from

bacteria that coinhabit the same niche (Levin and Cornejo

2009; Richards et al. 2011; Barraclough et al. 2012). In

some cases the latter evolutionary process can be recognized

in the clade distribution of these functions. For example, the

sorbose PTS transport function that encompasses eight genes,

FIG. 2.—Number of clade-specific genes and their functionality. Annotated genes are displayed; the number of clade-specific genes with unknown

functionality is added on top of each bar.
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is only present in strains belonging to clades 5–8, and shares

very high sequence identity (>80%) with the sorbose trans-

porter PTSs identified in L. casei and L. paracasei species,

which could imply that L. rhamnosus strains acquired these

genes from these close relative species. The selective loss of

these OGs in several strains of all three species, is likely to

illustrate that this event occurs relatively frequently in repre-

sentatives of the L. casei taxonomic group (Toh et al. 2013).

Analogously, an operon encoding five OGs annotated as a

ribose ABC transporter is absent in all strains of clade 4

(except strain Lrh2), whereas a taurine ABC transporter is

absent in several strains of clades 6 and 8. The OGs belonging

to these functions have close homologues in the genomes of

L. casei and L. zeae, and may, therefore, also represent genetic

traits that are exchanged among these species.

Several of the transporters do not appear to follow a clade-

specific distribution and appear to be present in various strains

of different clades. An N-acetyl galactosamine PTS (GalNAc)

transporter is present in all strains, but a functionally redun-

dant and genetically distinct PTSs appears to be acquired by

various strains of clades 2, 3, 6, 7, and 8. Gene acquisition by

HGT of the arbutin PTS, which is only found in the two strains

of clade 1 is most likely explained by HGT, since the best ho-

mologues of these genes are found in Lactobacillus farciminis

but not the taxonomically related species L. casei or L. para-

casei. Another example of HGT is the operon responsible for

taurine transport (LGG_00171 to LGG_00177) that is lacking

from strains of clades 6 and 8. A cladogram obtained from the

multiple alignment of all similar sequences from NCBI’s nr

database (supplementary fig. S4, Supplementary Material

online) for the ABC transporter showed that it is shared by

some strains of the L. casei group, with the closest homologue

in L. farciminis, suggesting that this species could be the

source of multiple HGT events in L. rhamnosus.

A recent comparative genomics study reported that L.

rhamnosus GG (clade 4) has the highest number of predicted

transport proteins among the L. casei group representatives

(Toh et al. 2013). However, the current analysis revealed that

strains of clades 3 and 4 encode even a larger number of

transport genes, making these strains of L. rhamnosus the

richest transport encoding strains of this taxonomic group

(supplementary table S7, Supplementary Material online).

The large variety of carbohydrates L. rhamnosus strains are

adapted to grow on is apparent in the percentage of genes

of the pan-genome (23%) and especially the variome (34%)

assigned to functions related to carbohydrate digestion,

transport, and metabolism (supplementary table S8,

Supplementary Material online). A more detailed view at the

carbohydrate utilization patterns of L. rhamnosus strains in

vitro has been published (Ceapa et al. 2015). In the context

of glycan degradation, all strains were predicted to be able to

release glucosyl, galactosyl, and mannosyl reducing-end resi-

dues of saccharide polymers, as well as cleave 1–6 linked

fucose and 1–3 and 2–6 linked N-acetyl-glucosamine

(GlucNAc) residues from (host associated cell-surface) glyco-

sides. Strains of clades 2 and 6 have a reduced ability to de-

grade glycans compared with the other strains and, for

example, are predicted to be unable to release protein O-

linked glycans.

The differential presence of extracellular glycosidases,

transport systems, and metabolic pathways for the release

and utilization of L-fucose, galactose, GalNAc, which are par-

ticularly present in clades 4, 5, and 6, supports the idea that

some L. rhamnosus strains could be adapted to grow on either

human milk oligosaccharides or mucus (Reunanen et al.

2012). Notably, L. rhamnosus GG (clade 4), was shown to

adhere to mucus in vitro (Kankainen et al. 2009) and appears

to encode the capacity to use mucus-associated saccharides as

carbon and energy source for growth (Sánchez et al. 2010).

Strains of clade 8, which is also dominated by human-derived

isolates, lack these extracellular glycosidases, but share the

capacity to produce other galactosidases and phospho-gluco-

sidases, which may also reflect their intestinal adaptation.

Fermentative Capacity, Pyruvate Dissipation

Lactobacillus rhamnosus is a facultative heterofermentative

organism whose main carbohydrate fermentation pathway

is glycolysis through the Embden–Meyerhof–Parnas (EMP)

pathway [52]. A partial pentose phosphate pathway also ap-

pears to be present (missing enzymes: gluconolactonase, 2-

keto-3-deoxygluconate aldolase, 3-hexulose-6-phosphate

synthase) and is likely to support biosynthetic routes as well

as pentose utilization.

Lactobacillus rhamnosus grows preferentially on glucose

that is degraded via the EMP pathway leading to pyruvate,

which is then transformed into D- and L-lactate by the corre-

sponding lactate dehydrogenases, encoded by ldhL and ldhD

genes that are part of the core genome. These functions

appear redundant in the L. rhamnosus core genome, with

three copies of ldhD and seven copies of ldhL, supporting

the critical role of this function in the overall metabolism of

this bacterium. Nevertheless, L. rhamnosus strains cultivated in

cheese-like environments displayed relatively low lactic acid

production and produced significant amounts of acetic acid,

illustrative of the heterofermentative character of the species

[64]. Besides D- and L-lactic acid and acetic acid pathways,

additional pyruvate-dissipation pathways are encoded by the

genome leading to formic acid, acetaldehyde, ethanol, oxalo-

acetate, and acetoin (supplementary table S8, Supplementary

Material online). Production of all these compounds is indus-

trially relevant in the preservation of food raw-materials (Bove

et al. 2012), and cheese ripening (Bove et al. 2011), but also

for substrate production in bio-plastic manufacturing (Flieger

et al. 2003).

All L. rhamnosus strains contain only a partial tricarboxylic

acid cycle (TCA cycle) (Golbach et al. 2007) and harbor genes

predicted to encode the pathway required for succinate to

Ceapa et al. GBE
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citrate conversion. Nevertheless, the utilization of molecular

oxygen as a terminal electron acceptor appears possible via

the production of menaquinones, or vitamin K, which is a

capacity that appears unique for L. rhamnosus among the

Lactobacillus genus (Hess et al. 1979).

Nitrogen Metabolism

The niches from which the L. rhamnosus strains used in this

study were isolated encompass both protein-rich (e.g., dairy)

and protein-poor environments (e.g., soil and plants)

(Douillard, Ribbera, Kant, et al. 2013) (supplementary table

S1, Supplementary Material online). The L. rhamnosus core

genome encodes import functions (dominated by the ABC-

family transporters) for several amino acids, for which the bio-

synthesis pathway is not encoded by the genome, including

alanine, isoleucine, leucine, valine, phenylalanine, threonine,

and tyrosine. Notably, within the variome an ABC transporter

is predicted to import taurine.

The main source of amino acids and peptides produced by

LAB that live in milk, are derived from caseins, the most abun-

dant protein in milk. Hydrolysis of caseins by LAB is initiated by

cell-envelope proteinases (CEP) that degrade the protein into

oligopeptides. The L. rhamnosus core genome encodes

two CEP, PrtP, and PrtR, that are responsible for hydrolysis

of caseins. Other core protein degradation enzymes include

protease PepS16, aminopeptidases PepA, and MAP, endo-

peptidases PepS, PepS24, and PepM16 and proline-specific

peptidases PIP and PepQ.

While the genomic content of amino acid and peptide

transport differs considerably between strains, all strains

seem to be equipped with a similar cytoplasmic peptidase

repertoires, of which only four out of the 36 predicted pepti-

dases vary among strains (supplementary table S5,

Supplementary Material online). These encompass three

metallopeptidases and a serine peptidase. The intracellular

metallopeptidase encoded by the abgB gene is present in all

strains of clusters 2 and 4 (enriched for human isolates) and

might provide an advantage to these strains in the intestinal

niche since this function is predicted to support aminobenzoyl-

glutamate utilization for folic acid recycling (de Crécy-Lagard

et al. 2007). For the additional metallopeptidases (DppA

and ZmpB) no information is available about their specific

function, although the observation that ZmpB is secreted

may imply that it exerts its function in the bacterial cell

envelope.

Complementary to this extensive protein degradation ma-

chinery, all L. rhamnosus genomes encode complete path-

ways for the biosynthesis of 12 amino acids: arginine,

asparagine, aspartic acid, cysteine, glutamine, glutamic acid,

glycine, histidine, lysine, methionine, proline, serine, and

tryptophan. However, the operon encoding serine acetyltrans-

ferase, cystathionine gamma-lyase, and cystathionine beta-

synthase that is involved in the transformation of serine to

cysteine, appears to be absent from strains in clades 4

and 7. Intriguingly, the sequence of this operon in the other

strains displays high-level identity with similar operons en-

countered in Lactobacillus brevis/L. buchneri, suggesting it

has been acquired by HGT.

Regulation and Environmental Interaction

Regulatory Functions. Bacteria have developed sophisti-

cated mechanisms for the regulation of both catabolic and

anabolic pathways. Generally, bacteria do not synthesize deg-

radative (catabolic) enzymes unless the substrates for these

enzymes are present in their environment (Deutscher 2008).

Proteins controlling cellular transcription (regulatory proteins)

constitute 6% of L. rhamnosus pan-genome proteins. Among

them, 123 OGs are annotated as core regulator genes and 84

OGs display variation among the strains. Two sigma factor

encoding genes are core functions in L. rhamnosus, including

the housekeeping sigma factor 70 encoded by rpoD, and a

sigma 24-like factor for which the target genes remain to be

determined, but could include stress response as has been

observed in Escherichia coli (Haldenwang 1995). Strains be-

longing to the same clade share a variable number of regula-

tor OGs with different predicted functions. For example, 28

regulator OGs of clade 1 include the predicted regulators of

arabinose, rhamnose, fucose, fructose, and tagatose transport

as well as the LexA protease, and the MazF and YafQ toxin–

antitoxin systems. Clade 2 regulator genes are predicted to

control transport of ribose, galactitol, glycerol, and oligopep-

tides, as well as a Zn-dependent protease. OGs representing

regulator proteins for clade 5 control the transport of man-

nose, tagatose, galactitol, cellobiose, mannitol, sorbitol, sor-

bose, pentitol, xylulose, and arabinose, and illustrate the

regulatory variability among the different clades. Notably, al-

though clades 7 and 8 encode 32 and 28 variome-associated

regulator OGs, none of these appears to be specific for either

of these clades (fig. 2, supplementary table S4, Supplementary

Material online summarizing clade specific predicted protein

functions). A few regulators that could impact bacterial adap-

tation to the environment are shared among several strains.

Notably, among these is a Prck including quorum-sensing

system that was shown to respond to environmental homo-

serine lactones in Salmonella enterica (Michael et al. 2001) and

is also found in L. casei (Zhang et al. 2010), is present in most

members of clades 1, 5, 6, 7, and 8 and is genetically linked to

an extracellular polysaccharides (EPS) biosynthesis operon. In

addition, in strains of clades 2, 3, and 4 a LysR family regulator

is predicted to control the synthesis of rhamnose-containing

polysaccharides (Péant et al. 2005), suggesting that environ-

mental adaptation could include the adjustment of extracel-

lular exposed glycan-polymers.

Transcription regulation in response to environmental stim-

uli frequently involves two-component regulatory systems

(TCSs) in many bacteria. In L. rhamnosus all seven TCSs
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belong to the core genome and are predicted to control en-

velope stress signal transduction (BaeS-BaeR and LiaS-LiaR),

cell-wall metabolism and corresponding antibiotic resistance

(VicK-VicR, CiaH-CiaR, and VraR-VraS), membrane lipid fluid-

ity in response to low-temperature growth (DesK-DesR), se-

creted protein production (AgrC-AgrA), and citrate/malate

metabolism (DcuR-DcuS) (supplementary table S11,

Supplementary Material online).

Antimicrobial Production and Immunity

Bacteriocins and Bacterial Immunity Proteins. Many LAB

produce small antimicrobial peptides or bacteriocins that can

provide a competitive advantage by inhibiting or killing com-

peting (close relative) bacterial species. Bacteriocins can display

both narrow and broad spectrum inhibitory activities (Riley

and Wertz 2002). The L. rhamnosus genomes include one

to three operons predicted to encode bacteriocin production

(supplementary table S9, Supplementary Material online),

which is in agreement with the notion that various L. rham-

nosus strains were shown produce varying antimicrobial activ-

ities (De Keersmaecker et al. 2006; Douillard, Ribbera, Kant,

et al. 2013; Pithva et al. 2014; Vong et al. 2014).

The L. rhamnosus bacteriocin encoding genes in the var-

iome do not have a clear clade distribution. A set of four

antimicrobial peptide-encoding genes are distributed among

the strains in an apparent random manner with at least one

member of each clade containing one up to all four peptides.

Another antimicrobial peptide resembles a Class II pediocin-

like bacteriocin (Motlagh et al. 1992), which is only present in

the beer isolate ATCC8530 and is closely related to the ped-

iocin-like bacteriocin PA-1 identified in L. pentosus (Henderson

et al. 1992).

Surface Proteins. The capacity to interact with environmen-

tal surfaces, including host cells, is an important factor in niche

colonization, and persistence. Several molecules that play a

role in L. rhamnosus cross-talk with host cells have been iden-

tified and are among the core capacities of the species, in-

cluding the p40/p75 muramidases (Bäuerl et al. 2010), and

lipoteichoic acid modification D-alanylation genes (dlt operon)

(Abi Khattar et al. 2009) (supplementary table S10,

Supplementary Material online), which have been proposed

to interaction with the host mucosa by binding to mucus,

influencing epithelial and immune functions, respectively

(Lee et al. 2013). In the core genome of L. rhamnosus, we

identified 37 genes that encode sortase-dependent surface

proteins (characterized by the conserved LPxTG motif)

(Supplementary table S10, Supplementary Material online),

including 17 proteins with a domain composition that may

be predictive for a role in host interaction, including the rec-

ognition of fibronectin- and collagen-binding domains as well

as a bacterial Ig-like domain (fig. 3). For instance, the third-

largest protein—LGG_02923 (OG1951) contains a signal

peptide, an LPxTG anchor, and a domain with four leucine

rich repeats that is not frequently found in bacteria, but was

proven to play a role in infection by some pathogens

(Courtemanche and Barrick 2008). In 21 genomes, the copy

number per genome is 1, and it varies from 2 to 5 in the

others.

Proteins predicted to be exported or surface exposed within

the L. rhamnosus variome do not appear to follow a clade-

specific distribution (supplementary table S10, Supplementary

Material online), which may illustrate recent and variable gene

acquisition or loss of these functions among the L. rhamnosus

strains. Some of these proteins have been investigated in vitro

for their possible role in the interaction with human epithelial

or immune cells, including the adhesion and biofilm stimulat-

ing factor encoded by mabA (Vélez et al. 2010), the secreted-

docking protein pair encoded by the spcABCD (Gagic et al.

2013), and the main surface protease and anti-inflammatory

molecule PrtP (Habimana et al. 2007) and the pilin encoding

spaCBA–srtC1 operon (Reunanen et al. 2012). These proteins

are all large, multidomain proteins that contain the sortase-

dependent LPxTG anchoring motif, as well as several potential

adhesion domains. This observation prompted us to investi-

gate other large multidomain proteins that are predicted to be

secreted or surface exposed. The largest among these genes is

encoded by OG1717 (> 3,500 amino acid residues), and is

shared among 21 of the strains analyzed here, and entirely

missing from clades 2 to 5. Notably, the strains that encode

this gene appear to have a duplicated copy of this gene that

encodes a protein with a signal sequence, one or more adhe-

sion domains and 16 collagen binding domains (fig. 3).

The capacity to adhere to mucus, the extracellular matrix,

and/or intestinal epithelial cells is interesting properties with

regard to probiotic features such as colonization of the gas-

trointestinal tract and interaction with the host. Among the

variome surface exposed proteins, there is only one predicted

mucus-binding protein: OG2369 (605 aa). The protein con-

tains a cell wall anchor repeat and two MucBP mucus-binding

domains and has a close resemblance to L. paracasei surface

proteins. It is only present in two strains: Lrh33 originating

from a fermented dairy product and Lrh24, isolated from

animal (goat) feces.

Extracellular Polysaccharides. Bacterial EPS can play various

roles in environmental interactions, including mammalian host

interactions, for example by preventing recognition of the

bacteria by the host immune system (Fanning et al. 2012).

Six EPS biosynthesis gene clusters were identified in the L.

rhamnosus pan-genome (supplementary table S9,

Supplementary Material online), and each strain contains

two to four of these without an obvious clade-specific pattern

being apparent. Only EPS cluster “5” appears to belong to the

core genome (Péant et al. 2005; Lebeer et al. 2009), and its

inactivation was shown to reduce the production of rham-

nose-rich EPS (Lebeer et al. 2009). The EPS cluster “6,”
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containing several predicted mannosyl-glycosyltransferases

may be responsible for mannosyl-EPS production in L. rham-

nosus which was previously proposed on basis of ConA sur-

face-probing of L. rhamnosus GG using atomic force

microscopy (Francius et al. 2008). The remaining EPS do not

have clearly predicted specificities for the glycosyltransferases

they encompass and clusters “1” and “2” were present in

only a single strain Lrh24, and HN001, respectively.

Mobile Genetic Elements, and Defense against Foreign
DNA.

Mobile genetic elements in bacteria like conjugative plasmids,

insertion sequences (IS) elements, transposons and (pro-)

phages (Frost et al. 2005) play a prominent role in genetic

mobility within a strain’s genome (intracellular mobility), but

also between bacterial genomes of different strains (intercel-

lular mobility) and form one of the driving forces in the evo-

lution of organisms (Liu et al. 2009).

Plasmids. Three plasmids of L. rhamnosus have previously

been described, pLC001 (strain LC705), pLR001 and pLR002

(strain HN001) (Morita et al. 2009). Next to the search for

these known plasmids, novel plasmid identification relied on

the detection of contigs that contain plasmid-associated

genes, particularly focusing on replication functions. The

latter approach failed to identify novel plasmid entities in the

genome database created in this study. Notably, strains be-

longing to clades 4 and 7 did consistently appear to lack plas-

mids, which was also the case for individual strains in the other

clades (Lrh5 from clade 1, Lrh11 from clade 6, and

ATCC7469, ATCC8530, Lrh23, Lrh12, and Lrh15 from clade

8; fig. 4). The distribution of the previously identified plasmids

among the current strain collection appeared not to follow a

clade-specific distribution.

Bacteriophages. Fourteen regions were identified that

encode a total of 328 phage-related OGs. Seven phage-re-

lated regions that encompass more than 20 genes each,

appear to be part of the core genome, and appear to be

consistently inserted in the same chromosomal locus.

Additional phage-related loci were variably present in the L.

rhamnosus clades and strains (fig. 4) and resembled previously

recognized phages of Lactobacillus origin (e.g., Lc-Nu

[Tuohimaa et al. 2006], Lrm1 [Durmaz et al. 2008], A2

[Alvarez et al. 1999], Lb338-1 [Alemayehu et al. 2009], phi

adh [Altermann et al. 1999], phi AT3 [Lo et al. 2005]). The

gene composition of these phage-associated loci is congruent

with the canonical mosaic-like composition of (pro)phage ge-

nomes, which exemplifies the high evolutionary rate of phage

diversification (Abedon 2009).

Restriction Modification. Restriction modification systems

(RMS) are known to be variable among strains of a species

FIG. 3.—LPxTG proteins with host interaction potential. LPxTG proteins not included in this figure: sortases, hydrolases, lyases, proteases.
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(Xu et al. 2000) and play an important role in protection

against foreign DNA, including phage attack. Therefore,

RMS system presence and diversity were evaluated in the L.

rhamnosus genomes (supplementary table S2, Supplementary

Material online), revealing that there are no core-genome as-

sociated RMS, and the RMS within the variome display a large

interstrain variation. Among the most common systems are

the Mrr system (Waite-Rees et al. 1991) in strains of clades 1

and 8 (except Lrh31), the Type 1 RMS (Loenen, Dryden,

Raleigh Wilson, et al. 2014) shared between the majority of

clades 2, 3, 7, and 8, and the Type II and Type III RMS (Loenen,

Dryden, Raleigh, Wilson, Murray, et al. 2014) characteristic for

clade 4 and shared by some strains of clade 5. In addition,

some RMS are present in certain strains of which the closest

FIG. 4.—Summary of mobile elements present in L. rhamnosus strains. Panel 1: Number of genes annotated as mobile elements in the pan-genome,

including plasmids, phages, integrases, transposases (lighter colors), and number of genomic islands (dark colors). Panel 2: Type and distribution of mobile

elements in each genome: plasmids, phages, cas genes and CRISPR spacers. Gray represents gene presence and white gene absence. For the spacers’

analysis, only spacers that present a hit in any of the databases are represented. In the columns Hits in rhamnosus and Hits in nt, the colors represent the type

of hit: yellow: unknown; pink: plasmid; green: phage genes; white: not found. Strains are organized by genetic clades separated by vertical lines.
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relative lacks them. Notably, all strain-specific RMS appeared

to be intact, which was also seen in other organisms like

Helicobacter pylori (Lin et al. 2001), whereas the majority of

the shared RMS (>7 RMS) are predicted to be incomplete or

inactivated by mutation(s). This could relate to positive selec-

tion for recently acquired strain-specific RMS, a process similar

to H. pylori (Lin et al. 2001), where through constant acquisi-

tion of new RMS and the selective inactivation or removal of

the older ones, the defense against foreign DNA, including

phages, is constantly updated.

CRISPR-Cas. HGT can be beneficial for bacteria by bringing

in new functionalities as long as it does not disrupt fitness in

the ecosystem. This balance is partly maintained by the

CRISPR-Cas adaptive immunity system, which uses CRISPR

and cas (CRISPR-associated) genes. The CRISPR loci are par-

tially palindromic repeats separated by short stretches of

spacer DNA that are acquired from invasive bacteriophage

or plasmid DNA. These spacer sequences allow cells to recog-

nize and cleave invasive DNA identical to the included se-

quence (Brouns et al. 2008).

The CRISPR locus in the L. rhamnosus genomes is of Type II-

A (Lsal1 family) with a CRISPR repeat sequence of 50- GTCTCA

GGTAGATGTCAGATCAATCAGTTCAAGAGC-30. Lsal1-type

CRISPR loci were identified in 25 out of the 40 strains

(fig. 4), and could play a prominent role in L. rhamnosus

evolution by preventing intraspecies HGT. Notably, the

presence of the CRISPR-Cas system follows the clade distri-

bution in several ways, which is clearly illustrated by the

observation that all clade 2 and 8 strains lack a CRISPR-

Cas system. Both the sequence of the cas genes of in L.

rhamnosus and their genetic organization resembles that of

L. casei (Smokvina et al. 2013), suggesting its inheritance

from a common ancestor. Notably, the presence of the

CRISPR-Cas system does not seem to correlate with the

number of genomic islands recognized in these different

strains.

Noteworthy, groups of spacer sequences within the repeat

locus are specific for each of the clades 3, 4, 5, and 6 (fig. 4,

supplementary fig. S2, Supplementary Material online) and

their predicted targets (on basis of 100% sequence identity

to genes in the NCBI nr database) belong to Lactobacillus

phages (Lc-Nu, A2, P2, and Lrm1) and plasmids (L. casei str.

Zhang plasmid plca36, Lactobacillus rennini plasmid pREN,

Lactobacillus plantarum 16 plasmid Lp16C, plasmid pC30il,

cryptic plasmid pLJ42, Lactobacillus helveticus H10 plasmid

pH10, and Lactobacillus salivarius UCC118 plasmid

pSF118-20) (supplementary table S2, Supplementary

Material online, fig. 4). Remarkably, numerous spacers show

sequence identity to L. rhamnosus phages (Lc-Nu, Pi2, A2) and

plasmids (pLR002) present in their own as well as other clades.

Overall, only 23 out of 112 of the spacer sequences targeted

genetic entities from other species (the NCBI nr database) and

were not found in the L. rhamnosus pan-genome, suggesting

that the CRISPR system in L. rhamnosus could play a role in

protection against the entry of mobile genetic elements from

the same species and thereby restrict the intra strain and intra

clade genetic exchange events, which could influence clade

evolution by favoring the acquisition of genetic material from

more distant species rather than promote the genomic con-

vergence of the L. rhamnosus clades. This concept is also sup-

ported by the close homology of many transporter encoding

genes to more distant species, such as Lactobacillus farciminis,

Enterococcus faecalis, and Leuconostoc kimchii (supplemen-

tary table S2, Supplementary Material online).

Core Genome Evolutionary Drift and Variome Distribution

The core proteome phylogenetic tree of a species relies on

single amino acid polymorphisms (SAPs) of the conserved

proteins, which are accumulated over time due to sponta-

neous mutations. Recent whole-genome sequencing has re-

vealed that single nucleotide polymorphisms (SNPs) are the

most prevalent form of genetic diversity among different

strains of the same bacterial species (Harris et al. 2010).

The randomness of their occurrence implies that the

number of sequence variations between strains of a species

(SNPs and/or SAPs) can be interpreted as a measure of evo-

lutionary time relative to a common ancestor. However,

some sequence variations (e.g., SNPs and SAPs) can be se-

lected due to a role in niche adaptation and fitness. For ex-

ample, the presence of certain SAPs in bacteria has been

associated with changes in virulence (Carroll et al. 2011),

antibiotic resistance (Chewapreecha et al. 2014), metabo-

lism (Tolentino et al. 2013), and persistence in the host in-

testine (van Bokhorst-van de Veen et al. 2013). Patterns of

SAPs within core proteome functions were used to deter-

mine the phylogenetic relationship of the L. rhamnosus

strains (fig. 5A), by alignment of 1,008 orthologous proteins

that are encoded in a single copy in the core genome of the

L. rhamnosus strains. This analysis identified a total of 5.127

SAPs within the (single copy) core proteome of at least one

of the L. rhamnosus strains and allowed the phylogenetic

clustering of the strains on basis of evolutionary drift of the

core proteome. This analysis revealed a substantial evolution-

ary distance between the strains in clade 7 (Lrh10 and

ATCC21052; fig. 5A) and the other 38 strains of L. rhamno-

sus, whereas strains of clades 4 and 8 that are all human

isolates are quite closely related. This phylogenetic grouping

is in agreement with genomic BLAST analysis of public L.

rhamnosus genomes performed by NCBI, which assigned

strain ATCC21052 to a subgroup of the species with a 6%

variation compared to the other genomes available. In con-

trast, this analysis appears to contradict a recent phyloge-

netic analysis of the L. casei group that included several L.

rhamnosus strains (Toh et al. 2013), and concluded that

strain ATCC21052 clustered closely together with strain

ATCC 53103 (GG). However, this latter study employed
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the sequences of “only” 34 ribosomal proteins for the phy-

logenetic analysis and thus provides substantially lower res-

olution as the current analysis that includes 1,008 core

proteome sequences. Notably, the Human Microbiome

Project has taken the ATCC21052 strain as a reference for

the L. rhamnosus species, but our findings imply that this

strain is not the best representative of this species. Based

on the current analysis it would be recommendable to

choose representative strains of the different clades as a ref-

erence gene-set for the L. rhamnosus species, to ensure the

appropriate representation of its genetic diversity.

Remarkably, despite the different evolutionary processes

that drive the phylogenetic discrimination of L. rhamnosus

strains on basis of either the core proteome SAPs (random

mutations without selective advantage) and the variome dis-

tribution (gene acquisition and loss) (fig. 1), the two phyloge-

netic trees present a highly congruent strain distribution. The

variome-based tree allowed the recognition of eight clades

among the 40 sequenced strains, and exactly the same group-

ing into the same eight clades can also be recognized from the

core-proteome-based tree (fig. 5). The congruent evolution of

core and variome relationships between strains has implica-

tions for the evolution of the L. rhamnosus species. This ob-

servation implies that clade determining gene acquisition and

loss events have the same evolutionary age as the core-

genome discriminating SAPs. This is in apparent contradiction

with the concept that gene acquisition and loss are strong

drivers of niche adaptation and commonly represent more

recent genome diversification events. The CRISPR-cas system

may have played a prominent role in this restricted variome

diversification (see above), especially within the most congru-

ent clades. Notably, this remarkable evolutionary path is dis-

tinct from the recognizable niche-associated evolution of the

taxonomically related species L. casei. Similar analyses in this

species allowed the recognition of dairy environment associ-

ated gene loss events that is typical for genome decay in the

rich environment of milk (Broadbent et al. 2012), and which

appeared to have occurred independent of the evolutionary

drift of the core proteome.

Conclusions

The availability of 40 genome sequences of L. rhamnosus has

enabled us to obtain a better understanding of the functional

diversity and evolutionary relatedness of this species, which

encompasses many industrially relevant strains. The current

analysis that focused on the variome-associated genes and

their distribution among clades of strains within the

L. rhamnosus species, complements the previously presented

core genome analysis (Douillard, Ribbera, Kant, et al. 2013).

The species L. rhamnosus is closely related to L. casei and L.

zeae, and encompasses a genetically diverse group of strains,

with a high frequency of discriminative polymorphisms in its

core genome (SNPs and SAPs) and an impressive accessory

FIG. 5.—Lactobacillus rhamnosus genome-based phylogenetic relatedness, (Panel A) based on core proteome SAP distribution and (panel B) based on

hierarchical clustering of variome gene distribution. The scale for the presence–absence tree represents the number of variable OGs the clustering is based on.

Arrows connecting the same strains of both trees aims at highlighting the common groups of strains, which are also marked by the variome-based clade

numbering (panel B).
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genome or variome distribution. The comprehensive in silico

examination of the variome associated functions and their

distribution in terms of metabolic and regulatory diversity fur-

ther illustrates the evolutionary diversity of this versatile

Lactobacillus species that has evolved to grow and persist in

a variety of ecological niches, including the intestinal tract of

humans and animals. Notably, most of the strains appear to

encode an extensive protein and sugar transport and catabo-

lism capacity, which is congruent with their environmental

versatility. Nevertheless, several genes and operons seem to

have been acquired by HGT in some strains or clades that

encode carbohydrate transport and catabolism functions,

but also several other (industrially) important phenotypic

traits, like polysaccharide biosynthesis (EPS), bacteriocin pro-

duction, RMS, and/or bacterial defense systems (CRISP-Cas). In

addition, other aspects of genomic diversity that may reflect

niche adaptations can also be recognized, including the diver-

sity of extracellular functions putatively involved in host inter-

actions by cell adhesion or modulation of the host immune

system.

The application of comparative genome sequencing to de-

termine core genome and variome functions provided us with

an unprecedented view of genome dynamics and adaptive

evolution of the L. rhamnosus species. The recognition of

the highly congruent phylogenetic relatedness of the core

proteome and variome distribution patterns among the differ-

ent strains included in this study indicates that HGT events

may have played an important role in the species’ evolution.

The CRISPR-Cas system spacer recognition patterns indicate a

putative role for this machinery in L. rhamnosus’s evolutionary

path, by its ability to limit intraspecies mobility of genetic ele-

ments and prevent the evolutionary convergence of the eight

clades recognized by the variome distribution patterns. Finally,

complementing these in silico analyses with phenotypic pro-

filing of the strains of this species can expand our understand-

ing of gene-function relationships and targeted genetic

engineering strategies can subsequently establish the role of

specific genes and functions in the adaptation to particular

niches, where the molecular mechanisms underlying the

cross-talk of this bacterium with the host intestine mucosa is

of particular interest in the context of its use as health-pro-

moting diet ingredient, that is, a probiotic.
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