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Abstract

Human and animal diet reconstruction studies that rely on tissue chemical signatures aim at providing estimates on the
relative intake of potential food groups. However, several sources of uncertainty need to be considered when handling data.
Bayesian mixing models provide a natural platform to handle diverse sources of uncertainty while allowing the user to
contribute with prior expert information. The Bayesian mixing model FRUITS (Food Reconstruction Using Isotopic
Transferred Signals) was developed for use in diet reconstruction studies. FRUITS incorporates the capability to account for
dietary routing, that is, the contribution of different food fractions (e.g. macronutrients) towards a dietary proxy signal
measured in the consumer. FRUITS also provides relatively straightforward means for the introduction of prior information
on the relative dietary contributions of food groups or food fractions. This type of prior may originate, for instance, from
physiological or metabolic studies. FRUITS performance was tested using simulated data and data from a published
controlled animal feeding experiment. The feeding experiment data was selected to exemplify the application of the novel
capabilities incorporated into FRUITS but also to illustrate some of the aspects that need to be considered when handling
data within diet reconstruction studies. FRUITS accurately predicted dietary intakes, and more precise estimates were
obtained for dietary scenarios in which expert prior information was included. FRUITS represents a useful tool to achieve
accurate and precise food intake estimates in diet reconstruction studies within different scientific fields (e.g. ecology,
forensics, archaeology, and dietary physiology).
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Introduction

A research goal common to several different scientific fields

(ecology, forensics, archaeology, and dietary physiology) is the

quantitative reconstruction of an individual consumer’s diet from

the chemical composition of tissues. This is assumed to be possible

under the working principle ‘‘you are what you eat’’, that is, that

the chemical signatures of potential food groups are transferred

through diet and recorded in consumer tissues [1]. Dietary proxies

are here defined as the chemical, isotopic, or elemental, signals

measured in consumer tissues at different compositional levels,

including single components (e.g., amino acids, fatty acids) [1], [2],

[3], [4], [5], [6], [7], [8]. Dietary proxy signals are viewed as

representative of a mixture, whose components are the relative

contributions of different food groups. Thus, the conceptual

framework of a dietary proxy based diet reconstruction is

straightforward in principle. Formally, it is based on a particular

case of a general mixture decomposition problem [9].

Any diet reconstruction method aims at quantifying unknown

mixing contributions relying on chemical signals measured in

certain consumer tissues or components and in potential food

groups. However, the task is complicated by several factors. The

dietary proxy signal will not necessarily reflect the bulk signal of

the food groups, but rather that of specific food group fractions

(e.g., macronutrients, amino acids, fatty acids). This implies that

the concentration of these fractions within a food group needs to

be considered. Furthermore, knowledge of dietary routing may

also need to be incorporated, since different food fractions may

contribute towards a certain dietary proxy signal disproportion-

ately to their occurrence in the diet. Finally, a diet-to-tissue signal

offset is commonly observed. In the case of isotopic dietary proxies

this offset is often due to isotopic fractionation occurring at

different stages of metabolic processes but can also be linked with

other aspects such as growth stage, body size, diet quality,

nutritional stress, etc [10], [11]. Dietary reconstruction is further

complicated by the fact that all quantities involved in the mixture

decomposition calculations have non-negligible uncertainties, and

these need to be accounted for in any realistic model. In order to

be useful, appropriate statistical analysis should produce not only

estimates of the contributions of food groups, but also estimates of

associated uncertainties. Simultaneously, the uncertainty of the

estimates should be reduced as much as possible. Therefore, it is

desirable to utilize not only measurement data, but also other

sources of a priori information in a formalized and unified way.
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Existing methods for diet reconstruction include linear mixing

models [12]. However, these are only applicable in exactly

determined systems (where the number of food groups is the

same as the number of dietary proxies plus one), whereas in

many research contexts this will often not be the case. An

iterative algorithm, such as IsoSource [13] calculates the range

of possible solutions based on signal uncertainties defined by the

user. However, the IsoSource approach does not acknowledge

variability in the isotopic signal of the different food groups nor

the uncertainty associated with a diet-to-consumer offset. Work

by Parnell et al. [14] and Moore & Semmens [15] cast the diet

reconstruction problem in a powerful Bayesian framework. This

allowed handling undetermined systems and provided an

elegant method for coping with different sources of uncertainty.

However, these methods do not account for possible dietary

routing mechanisms. Recent research has demonstrated the

importance of considering macronutrient dietary routing,

expressed through a fraction weight contribution, to provide

more accurate dietary estimates [16]. Existing models also do

not provide a simple method allowing the user to input diverse

sources of prior information. In this respect, the possibility of

introducing prior information establishing relationships on the

intake of food groups or food fractions would be very useful.

Examples of relevant prior information include knowledge of

relative consumption of different food groups, acceptable intake

ranges of certain food fractions, etc.

Here, the novel Bayesian mixing model FRUITS (Food

Reconstruction Using Isotopic Transferred Signals) is introduced.

FRUITS is capable of handling dietary routing and provides a

platform that simplifies the incorporation of a priori information,

including information from ecological, archaeological, biochemi-

cal or physiological sources. A user-friendly application of

FRUITS is available for download (https://sourceforge.net/

projects/fruits/files/) as Open Source software.

Methods

2.1 Main Model: Intake of Food Groups
The formalization of mixture for diet reconstruction is based on

equation (1). The main goal of a diet reconstruction exercise is to

determine the contribution (ai) of each i-th food group towards a

consumer diet. This is achieved by measuring isotopic or

elemental signals (Hk) in consumer tissues (e.g. bone bioapatite,

bone bulk collagen, bone collagen single amino acids, etc.).

Consumer signals result from the mixing of the k-th isotopic or

elemental signal (Iijk) measured in the j-th food fraction (e.g.

protein, carbohydrates, lipids, single amino acids) of each i-th food

group (e.g. plant, animal, fish). The model also accounts for a

possible diet-to-tissue offset (Tk) that may result, for instance, from

isotopic fractionation during tissue building. Dietary signal

contribution is weighed by the concentration (Cij ) of the j-th food

fraction (e.g. macronutrients) in the i-th food group. Finally, in

case of a routed model the weight parameter (Wjk) establishes the

contribution of the j-th food fraction towards the k-th consumer

signal.

The model formulated in equation (1) is similar to already

existing models [14]. However, the expansion introduced by the

inclusion of the weight contribution (Wjk) of different food

fractions towards a consumer signal allows for the use of dietary

proxies in which dietary routing needs to be taken into account.

Hk~

P
j

Wjk

P
i

aiCij IijkzTk

� �� �

P
j

Wjk

P
i

aiCij

� � ð1Þ

where:

Hk k-th dietary proxy signal measured in the consumer,

modelled as a normal distribution, Hk*N mH,k,s
2
H,k

� �
with

mH,k representing the average value and s2H,k the associated

variance.

ai dietary proportion of the i-th food group.ai’s are unknown,

their estimation and estimation of their uncertainties represents the

ultimate analytical goal. Physical restrictions apply: 0ƒaiƒ1 for

i~1,:::,n and
Pn
i~1

ai~1 with n representing the number of food

groups.

Iijk isotopic or elemental signal from the i-th food group, the j-th

food fraction, and associated with the k-th dietary proxy. Due to

the presence of measurement errors (and inter-individual hetero-

geneity), it is assumed to behave as a random variable which is

modelled by a normal distribution, Iijk*N mI ,ijk,s
2
I ,ijk

� �
.

Tk diet-to-tissue offset for the k-th dietary proxy signal.

Modelled as a normal variable, Tk*N mT ,k,s
2
T ,k

� �
.

Wjk weight contribution of the j-th food fraction in forming the

k-th target signal. Modelled as a normal variable,

Wjk*N mW ,jk,s
2
W ,jk

� �
.

Cij concentration of the j-th fraction in i-th food group.

Modelled as a normal variable, Cij*N mC,ij ,s
2
C,ij

� �
.

Equation (1), through the weight parameter Wjk, accounts for

dietary routing of food fractions, a capability absent in previous

approaches, adding an additional layer of decomposition in the

mixture. The general estimation approach for model (1) is based

on the Bayesian paradigm [17]. In a Bayesian analysis prior

distributions, or simply priors, of model parameters are defined by

the user. Parameter posterior distributions are determined

combining user-defined priors and a likelihood function based

on observed data and the probability model (1) [18]. For the

unknown parameters uninformative or mildly informative prior

distributions can be employed. A standard option for ai’s is the use
of a Dirichlet prior, which is a generalization of the Beta

distribution, with unit hyperparameters [19].

FRUITS graphical interface generates a BUGS (Bayesian

inference Using Gibbs Sampling) script code, this script is then

automatically executed using the OpenBUGS software package.

OpenBUGS is a well-established framework for analysing

Bayesian probability models [20]. Model computations are based

on Markov chain Monte Carlo (MCMC) simulations yielding,

upon convergence of the sampler, a posterior distribution [21].

Model output consists of credible intervals and posterior proba-

bility distributions. When necessary, OpenBUGS users can easily

obtain additional summary outputs in addition to those already

provided by FRUITS.

2.2 Additional Model Estimates
In addition to estimates on the intake of food groups (ai)

FRUITS also provides estimates of other quantities, and

associated uncertainties, of potential interest. These estimates

can be of use in different situations, including: providing useful

FRUITS: A Bayesian Model for Diet Reconstruction
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information to address specific research questions, assessing model

performance, and extending possibilities for the inclusion of expert

information.

Two other estimates provided by FRUITS are the relative

contributions of the j-th food fraction towards the entire diet (bj ),

and the relative contribution of the i-th food group towards the k-

th dietary proxy signal (hik).
Expression (2) represents a simple weighed average, through

fraction concentration (Cij ), of food group intake (ai). This

provides an estimate on the relative contribution of each j-th food

fraction towards the total dietary intake.

bj~

P
i

aiCijP
j

P
i

aiCij

ð2Þ

Prior constraints on bj can also be applied, for instance, when

restrictions on the relative intake of macronutrients apply. This

type of prior information will typically originate from metabolic

and physiological studies. The incorporation of these types of

priors should improve the overall precision of model estimates.

Estimates on the relative contribution of the i-th food group

towards a k-th dietary proxy signal are determined using

expression (3).

hik~

P
i

aiCijWjkP
i

P
j

aiCijWjk

ð3Þ

Estimates of hik can be of use, for instance, in providing

radiocarbon dating corrections for cases in which human dietary

radiocarbon reservoir effects are observed. Given that aquatic food

groups are often depleted in 14C, older than expected human bone

collagen radiocarbon ages are observed when an individual had a

diet that includes aquatic food groups. Human dietary reservoir

effects are exemplified in Fernandes et al. [22] which also includes

a first application of FRUITS in an archaeological context.

Estimates of hik associated with the dietary proxy d13Ccoll (d
13C

measured in human bone collagen) can be used to quantify the

amount of carbon originating from aquatic food groups.

2.3 Adding Prior Information
Since diet decomposition from isotopic or elemental data

involves several sources of uncertainty translating into uncertainty

of the resulting food group proportions (uncertainties of the

posterior ai estimates), all available sources of prior information

should be explored efficiently. This is not entirely straightforward

and might include heterogeneous data and information sources

other than signal measurements. For example, it is imperative to

build into the model natural constraints on proportional intakes of

food groups. These constraints are not always as simple as the

sum-to-one restrictions on ai’s or interval (feasibility) restrictions

on concentrations and offset factors.

Previous models have included the possibility of providing

informative Dirichlet priors on ai. A simple way to do this is for the

user to specify a beta distribution for each proportion. The shape

parameters a and b of a beta distribution can be determined from

mean (M ) and standard deviation values (V ) using Equations (4)

and (5) [19].

a~
M2 1{Mð Þ

V
{M ð4Þ

b~
M(1{M)2

V
zM{1 ð5Þ

However, the specification of the parameters presents difficulties

not present, for instance, in the specification of parameters of a

normal distribution. In a normal distribution, M and V specify

completely different aspects of the distribution (location and

variability around the location) with the distribution shape

remaining the same, irrespective of parameter combination. In

the case of a beta distribution M and V (or, a and b) are tied not

only to location and variability but, in a complex manner, to

higher order moments and indeed, the whole shape of the

distribution. Thus, beta distributions having different M and V

combinations will present considerably different shapes, some of

which will not correspond to realistic situations.

In FRUITS a simple approach has been developed for

incorporating a priori constraints of non-standard types into the

expanded version of model (1). The alternative offered by

FRUITS is to incorporate prior expert information through the

building of algebraic expressions y ai,bj
� �

that express relationships

of equality or inequality between different ai’s and bj ’s (e.g. when

prior knowledge allows to impose that certain food groups or food

fractions contribute more than others). Such an expression is

constructed so that if it represents a required equality it evaluates

to zero when that equality occurs, and if it represents a required

inequality it evaluates to a positive number when the inequality

holds.

To link a relationship of equality into the BUGS model a

parameter p (6) is assigned a likelihood which is normally

distributed with the mean given by y ai,bj
� �

and a fixed

uncertainty r. The actual value of r depends on user input and

is chosen such that is much smaller than reported uncertainties in

the ai’s and bj ’s.

p*N y ai,bj
� �

,r2
� �

ð6Þ

The equality constraint is imposed by having an ‘observed’

value of zero for p.

To link an inequality relationship into the BUGS model we

assign parameter l (7) a Bernoulli distributed likelihood

Bernoulli(k) where k is a Heaviside function H y ai,bj
� �� �

which

provides a value of one or zero depending on whether y ai,bj
� �

is

positive or negative. The inequality constraint is then imposed by

having the ‘observed’ value of one for l.

l*Bernoulli H y ai,bj
� �� �� �

ð7Þ

Depending on the choice of y ai,bj
� �

, this could provide strong

priors and the user should take some caution in verifying that the

proposed model corresponds to a realistic situation.

FRUITS: A Bayesian Model for Diet Reconstruction
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Assessing FRUITS Performance

3.1 Testing FRUITS using Simulated Data
Although FRUITS is capable of handling dietary routing it can

also be used to provide dietary estimates in non-routed models.

This is here illustrated using simulated data. Table 1 shows protein

d15N isotopic values for three different food groups and the dietary

intake percentage of a hypothetical consumer. A value of 3% was

taken for the diet-to-consumer tissue isotopic offset. For the

isotopic values and intake amounts reported in Table 1 this implies

a consumer tissue d15N value of 6.6%.

A FRUITS model (see also FRUITS file S1) to estimate protein

contributions was defined with three food groups (plant, animal,

and fish), one food fraction (protein), and one dietary proxy (d15N).

In this model corresponding to a simulated scenario the

‘measured’ consumer d15N value was set at 6.660.2%. A non-

routed dietary proxy can easily be defined in FRUITS by assigning

a zero contribution to non-relevant food fractions. In the example

presented here only one dietary proxy and one food fraction are

considered and as such FRUITS assigns by convention the value

100 to the weight contribution of protein towards the d15N signal.

For the model parameter diet-to-consumer tissue offset the value

of 3% was taken as mentioned previously. Model food values were

as listed in Table 1. Given that the goal of the exercise is to

estimate the protein contribution of the different food groups the

model parameter protein concentration was set at 100 for all food

groups.

Model estimates are represented in Figure 1 as probability

distributions and box and whisker plots. Table 1 lists the average

estimates generated by FRUITS of protein contributions towards

consumer diet. Comparison of intake values used to simulate

consumer isotopic value and FRUITS average estimates shows an

almost perfect agreement (Table 1).

3.2 Testing FRUITS on a Real Case Study (Hare et al. 1991)
Data from the published study by Hare et al. [6], a controlled

animal feeding experiment, was chosen to test FRUITS. This case

study serves to illustrate how the novel capabilities provided by

FRUITS can be employed and also exemplifies some of the issues

that need to be considered when handling data within a diet

reconstruction study. Hare et al. investigated diet-to-tissue isotopic

offsets in groups of pigs raised on well-defined diets. Although

FRUITS is oriented towards individual consumer diet reconstruc-

tion, group estimates can also be made by using average group

values and associated uncertainties. The data listed here refers to a

dietary group consisting of 10 pigs raised predominately on C4-

based food groups. Different dietary proxies (Hk) were employed

in the study, including measurements on several collagen amino

acids. Here, only three dietary proxies are considered, d13C
(13Ccoll) and d15N (15Ncoll) measured in pig bone bulk collagen,

and d13C measured in the amino acid glutamate isolated from

bone collagen (13Cglu). Table 2 lists the isotopic values associated

with each dietary proxy. The experimental uncertainty of isotopic

measurements was 0.5%, since group average uncertainty was not

reported the experimental uncertainty was used as model input.

Five main food groups were listed in the experiment (Table 3).

Macronutrient (protein, carbohydrates, and lipids) composition

was not reported and reference values were obtained from the

databases of the National Nutrient Database for Standard

Reference of the United States Department of Agriculture and

available data on feed composition according to the specifications

of the National Grain and Feed Association [23], [24]. The

concentration of the different nutrients (Cij ) is expressed as

normalized dry weight (wt %), the carbohydrate weight contribu-

tion (Carbs) includes only digestible carbohydrates (fibre contri-

bution was subtracted), and energy represents the added weight

contribution of lipids and carbohydrates.

When defining the composition of food groups, the relevant

quantity is the elemental concentration within each food group

fraction. Thus, the carbon weight composition (wtC %) for each

food fraction was determined using reference macronutrient

carbon contents (protein 52.4%, carbohydrates 44.4% and lipids

76.8%) [25]. A conservative absolute uncertainty was associated

with the carbon content of each food fraction (2.5%). FRUITS

estimates are based on the relative fraction composition of each

food group relative to a common base reference (in this example

food dry weight). Given that carbon and nitrogen contents of the

protein fraction are proportional, it is not necessary to estimate the

nitrogen composition of each food group and the value reported

for carbon can be employed instead.

Table 4 lists the diet-to-tissue isotopic offset values (Tk) and the

weight contributions (Wjk) of different food fractions towards a

dietary proxy signal defined relying on data from controlled

animal feeding experiments on omnivorous mammals [8], [26],

[27], [28], [29]. In omnivorous mammals, the 13Ccoll signal is

determined from relatively fixed contributions of dietary protein

and energy. These contributions were established in the study by

Fernandes et al. [16] that analysed data collected from several

feeding experiments on omnivorous mammals. Statistical analysis

indicated a diet-to-collagen d13C offset of 4.860.2 %. However, a

more conservative uncertainty (0.5%) was used here to account for

possible body size effects as reported in previous experiments

which analysed not bone but teeth [10]. Statistical analysis also

provided a weight signal contribution from dietary protein of

7464% and the remainder 26% from dietary energy (carbohy-

drates and lipids) [16]. For the 15Ncoll dietary proxy, analysis of

data collected from feeding experiments on omnivorous mammals,

which includes experiments on the effects of dietary stress, gives a

d15N diet to bulk collagen offset of 3.661.2% [2], [6], [8], [11],

[30]. For the 13Cglu proxy, the study by Howland et al. [8]

demonstrated an excellent correlation (R2= 0.96) between the

bone collagen glutamate d13C signal and the d13C signal of the

scrambled dietary mix. Estimated d13C bulk diet to bone collagen

glutamate offset was 9.261.8%.

The study by Hare et al. reported only bulk isotopic values of

the different food groups. These values are relevant for the dietary

proxy 13Cglu which provides a signal for the scrambled dietary

mix and for the dietary proxy 15Ncoll since the only source of

dietary nitrogen is protein. However, for the 13Ccoll proxy,

dietary routing needs to be taken into account and the isotopic

values of the food group fractions protein and energy are

necessary. These can be estimated by considering reported

isotopic offset values in cereal grains between the bulk d13C value

and protein (ca. 22%) and carbohydrate (ca. +0.5%) d13C values

Table 1. Protein isotopic values of food groups and relative
dietary intakes for a simulated consumer.

Food group d15N (%) Intake (%)
Estimated intake
(%)

Plant 2 70 6967

Animal 6 20 21612

Fish 10 10 1066

Estimates of protein intakes provided by FRUITS are listed together with
associated standard deviation.
doi:10.1371/journal.pone.0087436.t001

FRUITS: A Bayesian Model for Diet Reconstruction
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[31]. Lipids were not taken into account since these represent a

minor contribution to the listed food groups. Table 5 lists the

isotopic values (Iijk ) of the different food groups’ fractions for the

proposed dietary scenario.

3.3 FRUITS Results for Hare et al. (1991) Data
A particular dietary scenario is defined by the combination of

selected food groups, concentrations of food groups’ fractions and

associated isotopic values, diet-to-tissue isotopic offsets, fraction

weight contributions, and prior information. Interpretation of

generated model results has to be framed within the selected

dietary scenario. Three main scenarios (a, b, and c) were here

considered and model estimates of food groups intake, expressed

as credible intervals and probability distributions, associated with

each scenario are represented in Figure 2.

3.3.1 Dietary scenario (a). In scenario (a) no additional

prior information was included and data input was as listed in

Tables 2, 3, 4, and 5 (see also FRUITS file S2). The results are

expressed as credible intervals in Figure 2 (a1), and as probability

distributions in Figure 2 (a2). Boxes represent a 68% credible

interval (corresponding to the 16th and 84th percentiles) while the

whiskers represent a 95% credible interval (corresponding to the

2.5th and 97.5th percentiles). The results show that the proposed

scenario correctly predicts that C4-type food groups (Corn and

Gluten) were being consumed. However, although the results show

that Corn has higher mean and median estimated intake versus

Gluten, the 95% credible interval range is very wide and the

estimates on the intake of Corn versus Gluten are statistically

indistinguishable. In part this is due to the conservative

assumptions adopted for scenario (a), however, the principal cause

is that Gluten and Corn have similar isotopic values (Table 5) and

the dietary proxies chosen cannot separate the contributions of the

two food groups.

3.3.2. Dietary scenario (b). In scenario (b) data input was

the same as in scenario (a), except that a prior was added imposing

that the intake of Corn is larger than the intake of Gluten (see also

FRUITS file S3). This is represented in FRUITS notation as:

Corn½ �w Gluten½ � ð8Þ

FRUITS output is represented in Figure 2 (b1) and Figure 2

(b2). The model still accurately predicts that the major food group

contributions are from Corn and Gluten, however, in comparison

with scenario (a) the credible intervals and probability distributions

are now significantly narrower.

3.3.3 Dietary scenario (c). In scenario (c) data input was the

same as in scenario (a). Here, a different prior from scenario (b) is

included establishing the acceptable intake of dietary protein (see

also FRUITS file S4). A minimum intake of protein is required to

perform different body functions like tissue building [32], [33],

[34], while excessive protein intake may result in adverse health

conditions such as ‘‘rabbit starvation syndrome’’ [35], [36], [37],

[38]. Given the similarities between human and pig metabolism,

the reference protein intake value for humans was here

considered. The acceptable reference range for protein intake as

established by the Institute of Medicine of the U.S. National

Academy of Sciences is between 10 and 35% of total calorie intake

[39]. To express calorie intake as carbon intake the energetic and

Figure 1. Model output for simulated data (credible intervals on the left and probability distributions on the right). Boxes represent a
68% credible interval (corresponding to the 16th and 84th percentiles) while the whiskers represent a 95% credible interval (corresponding to the
2.5th and 97.5th percentiles). The horizontal continuous line represents the estimated mean while the horizontal dashed line represents the
estimated median (50th percentile). Star symbols represent the dietary intake amounts used to simulate data.
doi:10.1371/journal.pone.0087436.g001

Table 2. Average (10 pigs) isotopic values and associated
uncertainties of dietary proxies.

Dietary proxy 13Ccoll 15Ncoll 13Cglu

Signal value (%) 29.2(0.5) 5.5(0.5) 25.5(0.5)

Dietary proxies: bone bulk collagen d13C (13Ccoll), bone bulk collagen d15N
(15Ncoll), and collagen-extracted glutamate d13C (13Cglu).
doi:10.1371/journal.pone.0087436.t002

FRUITS: A Bayesian Model for Diet Reconstruction
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carbon content of the different macronutrients needs to be

considered: carbohydrates (4 kcal/g; 44.4 C %), protein (4 kcal/g;

52.4 C %), and lipids (9 kcal/g; 76.9 C %) [25], [39]. Using these

values the energy to carbon content ratios can easily be

determined and are approximately: carbohydrates 9.0 kcal/g C,

protein 7.6 kcal/g C, and lipids 11.7 kcal/g C where g C

represents grams of carbon. Thus, the energy to carbon content

ratio is broadly similar for the different macronutrients and here

considered effectively the same. However, to account for the ratio

variations, a conservative range of protein intake between 5 and

40% of total macronutrients was taken. This is expressed in

FRUITS notation as:

Protein½ �= Protein½ �z Energy½ �ð Þð Þw0:05

Protein½ �= Protein½ �z Energy½ �ð Þð Þv0:4
ð9Þ

The output provided by FRUITS is represented in Figure 2 (c1)

and Figure 2 (c2). Again the model accurately predicts the

contributions of Corn and Gluten, although, the intake of Gluten

is not now within the 68% credible interval but is within the 95%

credible interval. Compared with scenario (b) the credible intervals

are now even more precise.

Discussion

The application of FRUITS has been illustrated through

simulated data and a real case study relying on published data

from a controlled animal feeding experiment. The selected case

study demonstrates the use of the novel model capabilities

introduced by FRUITS and also some of the aspects that need

to be considered when handling data in diet reconstruction studies.

These include the need to provide estimates on concentration and

isotopic values of the relevant fractions in potential food groups.

Ideally, such quantities should be measured directly on available

food groups. However, in certain research contexts this data might

not be directly available. Relevant examples are frequent in

archaeological studies for which individual diet reconstruction is of

particular interest. In archaeological studies, the establishment of

Table 3. Main food groups with total and carbon-only normalized dry weight composition of macronutrients.

Food group Soybean meal Barley grain Alfalfa Ground corn Corn gluten meal

Code Soybean Barley Alfalfa Corn Gluten

Intake (wt %) 0 0 0 69 31

Protein (wt %) 62 15 30 12 72

Lipids (wt %) 1 3 5 6 3

Carbs (wt %) 37 82 64 83 25

Energy (wt %) 38 85 70 88 28

Protein (wtC %) 32(2.5) 8(2.5) 16(2.5) 6(2.5) 38(2.5)

Lipids (wtC %) 1(2.5) 2(2.5) 4(2.5) 4(2.5) 2(2.5)

Carbs (wtC %) 17(2.5) 36(2.5) 29(2.5) 37(2.5) 11(2.5)

Energy (wtC %) 18(2.5) 38(2.5) 33(2.5) 41(2.5) 13(2.5)

Energy refers to the added contribution of carbohydrates and lipids. Values in parentheses represent the uncertainty assigned to carbon composition. Reported intake
values are expressed as normalized dry weight contributions.
doi:10.1371/journal.pone.0087436.t003

Table 4. Diet-to-tissue offset and weight contribution of the
different food fractions towards a dietary proxy signal.

Dietary proxy Offset Weight contribution

Bulk Protein Energy

13Ccoll 4.8(0.5) 0(2) 74(4) 26(2)

15Ncoll 3.6(1.2) 0(2) 100(2) 0(2)

13Cglu 9.2(1.8) 100(2) 0(2) 0(2)

Values in parentheses represent uncertainty. When a dash sign is used this
indicates that the uncertainty was considered negligible.
doi:10.1371/journal.pone.0087436.t004

Table 5. Fraction isotopic values for the different food
groups.

Code Fraction 13Ccoll 15Ncoll 13Cglu

Soybean Bulk – – 224.0(0.5)

Soybean Protein 226.0(0.9) 20.1(0.5) –

Soybean Energy 223.5(0.9) – –

Barley Bulk – – 225.3(0.5)

Barley Protein 227.3(0.9) 2.6(0.5) –

Barley Energy 224.8(0.9) – –

Alfalfa Bulk – – 226.0(0.5)

Alfalfa Protein 228.0(0.9) 0.7(0.5) –

Alfalfa Energy 225.5(0.9) – –

Corn Bulk – – 211.3(0.5)

Corn Protein 213.3(0.9) 6.3(0.5) –

Corn Energy 210.8(0.9) – –

Gluten Bulk – – 213.2(0.5)

Gluten Protein 215.2(0.9) 3.0(0.5) –

Gluten Energy 212.7(0.9) – –

Values in parentheses represent associated uncertainty. When a dash sign is
used this indicates no contribution.
doi:10.1371/journal.pone.0087436.t005
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Figure 2. Model output using data from Hare et al. [6] (credible intervals on the left and probability distributions on the right) for
proposed dietary scenarios (a), (b), and (c). Boxes represent a 68% credible interval (corresponding to the 16th and 84th percentiles) while the
whiskers represent a 95% credible interval (corresponding to the 2.5th and 97.5th percentiles). The horizontal dashed line represents the estimated
mean while the horizontal discontinuous line represents the estimated median (50th percentile). Star symbols represent the actual dietary intake
amounts of Corn and Gluten.
doi:10.1371/journal.pone.0087436.g002
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an isotopic baseline often relies on data from food remains (e.g.,

animal bone collagen, charred grains) that do not necessarily

match the isotopic values of edible food fractions (e.g., meat

protein, plant carbohydrates). Using knowledge of typical isotopic

offsets between edible and recovered food remains, it is possible to

provide conservative estimates of food fractions isotopic values,

which can easily be handled within FRUITS. For the presented

real case study, the use of conservative uncertainties for the

different model parameters defined a simple dietary scenario (a)

that accurately identified the two main food groups that were

consumed. The case study also illustrates the significant improve-

ment brought by the introduction of additional prior information

establishing quantitative relationships on the relative intake of food

groups, scenario (b), and of food fractions, scenario (c). Scenario (c)

is of particular interest, as it demonstrates how information

obtained from metabolic studies can be incorporated into a diet

reconstruction model. The use of this type of priors can greatly

increase the precision of generated intake estimates.

FRUITS is capable of providing accurate and precise estimates

on food intake. Nevertheless, this requires that several conditions

are met, namely, the proposed dietary scenarios approximate the

real scenario, the identified food groups should have significantly

different chemical signatures, and the selected dietary proxies are

in sufficient number to offer the possibility of separating the

contributions of the different food groups. This implies that there

is a good knowledge of the accessible individual foods and of their

corresponding fraction composition and chemical signatures. In

some instances, individual food types having similar fraction

characteristics can be aggregated into food groups and associated

uncertainties should reflect this aggregation process. The number

of dietary proxies, preferentially associated with distinct dietary

routing mechanisms, should increase as the number of potential

food groups also becomes larger. As shown in the selected real case

study, model estimates benefit greatly from the use of prior

information on expected ranges or relative intakes of food groups

or fractions. However, the user should be certain that the priors

chosen are based on well-founded knowledge. This can include

research results from metabolic or physiological studies. Finally, to

test the reliability of generated results it is important that model

outputs corresponding to different dietary scenarios are compared

to assess the degree of model sensitivity and robustness.

The model used by FRUITS could be further elaborated to

allow diet-to-tissue offsets which vary by food group or food

fraction (Tik or Tjk). There is some evidence that diet-to-tissue

offsets can vary with the composition of food items [40], [41], and

this would therefore be the next logical step in development of

statistical models for dietary reconstruction. As the output given by

FRUITS includes the full BUGS model code used to generate

model estimates, users familiar with BUGS can easily modify the

model and include additional parameters not available through

the graphical interface. Other developments, might include,

among others, the addition of a general error term, additional

priors, etc. Through user feedback it will be possible to develop an

ever more user friendly and sophisticated application.

Conclusions

FRUITS is a novel Bayesian mixing model that efficiently

handles knowledge on dietary routing mechanisms and provides a

platform for the simple introduction of expert prior information to

arrive at an accurate diet reconstruction, complete with uncer-

tainty estimates, based on chemical and isotopic dietary proxies.

Tested on a real case study, a published controlled animal

feeding experiment, FRUITS was capable of accurately predicting

consumed food groups. Different dietary scenarios were tested,

and in scenarios where expert prior knowledge was introduced a

significant improvement in estimate precision was observed.

It is hoped that FRUITS will become a useful tool in diet

reconstruction studies associated with different scientific fields (e.g.

ecology, forensics, archaeology, and dietary physiology).
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