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DEET is the most effective insect repellent available and
has been widely used for more than half a century. Here, I
review what is known about the olfactory and contact
mechanisms of DEET repellency. For mosquitoes, DEET has
at least two molecular targets: Odorant Receptors (ORs)
mediate the effect of DEET at a distance, while unknown
chemoreceptors mediate repellency upon contact.
Additionally, the ionotropic receptor Ir40a has recently been
identified as a putative DEET chemosensor in Drosophila. The
mechanism of how DEET manipulates these molecular
targets to induce insect avoidance in the vapor phase is also
contested. Two hypotheses are the most likely: DEET
activates an innate olfactory neural circuit leading to
avoidance of hosts (smell and avoid hypothesis) or DEET has
no behavioral effect on its own, but instead acts
cooperatively with host odors to drive repellency (confusant
hypothesis). Resolving this mystery will inform the search for
a new generation of insect repellents.

DEET is the most effective invertebrate repellent to prevent
mosquitoes, flies, ticks, and even parasitic worms from feeding
on humans.1-4 How a single chemical can change the normal
behavioral response to otherwise attractive stimuli is of consider-
able interest to neuroscientist, or anyone who seeks to prevent
the transmission of vector-borne disease. DEET is not without
its drawbacks, and understanding the molecular mechanism of
DEET’s action has great potential for the development of more
effective repellents. Recent studies have suggested multiple modes
of action for DEET repellency. Given the controversy in the
field, I seek to provide a context to published results and suggest
directions for future research.

The Discovery of DEET

In 1942, the United States Department of Agriculture
(USDA), in collaboration with the US military, screened more
than 7,000 compounds over a 5-year period to develop

insecticides, miticides, and repellents.5,6 Potential repellents
against Aedes aegypti were identified by testing a diverse set of
6,241 compounds. Aedes aegypti, the vector for yellow and den-
gue fever as well as chikungunya, was selected because its behav-
ior is easier to assay in the laboratory than that of other disease
transmitting mosquitoes. During screening, 1 ml of each test
compound was distributed on the forearms, and the hands were
placed in cages containing 2,000–4,000 mosquitoes. Based on
the protection time, 56% of 4,137 tested compounds were effec-
tive for less than 1 h, 28% for 1–2 h, 7% for 2–3 h, and 9% for
more than 3 h. In separate experiments, cloths were impregnated
with 3.6 mg / cm2 of one of 3,239 compounds, and then placed
on the forearms. 51% of the compounds were effective for less
than 1 d, 16% for 1–5 d, 8% for 5–10 d, and 25% for more
than 10 d. N,N-diethylbenzamide was among the most effective
compounds found, repelling for more than 3 h when applied to
skin and 10 d when applied on cloth. However, it also caused
skin irritation.7

Determined to find a repellent that was not an irritant,
33 derivatives from N,N-diethylbenzamide were created.7 All
toluic acid derivatives, including N,N- diethyl-3-methylbenza-
mide (i.e., N,N-diethyl-m-toluamide) repelled mosquitoes when
applied on skin or cloths.7,8 LD 50 of N,N-diethyl-m-toluamide
in rats was very low (2 g/kg), with no evidence of systemic toxic-
ity upon frequent dermal application or inhalation.9 Subsequent
studies showed that N,N-diethyl-m-toluamide is safe for human
use, but it was recommended that ingestion be avoided.10 N,N-
diethyl-m-toluamide was renamed DEET by the Committee on
Insecticide Terminology of the Entomological Society of Amer-
ica, because of “numerous complaints that diethyltoluamide was
too long for a common name.”11 DEET was registered in the
United States for use by the general public in 1957, and reregis-
tered in 1998 (US EPA document EPA 738-R-98–010). There
are approximately 120 products currently on the market that
contain DEET at concentrations from 4% to 100%.

Theories of Repellency

Early studies suggested that repellents target the central ner-
vous system (CNS), the peripheral nervous system (PNS), or
both. Five theoretical modes of action for insect repellents were
proposed: 1) inhibiting the response of sensory neurons of host
attractants, 2) activating a receptor system that mediates a com-
peting or inappropriate behavior, 3) acting as attractant at low
concentration, but as a repellant at high concentration 4) activat-
ing receptors linked to several behavioral programs to increase
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the noise/signal ratio in order to “jam” the relevant sensory cir-
cuit, and 5) activating unique avoidance/aversive receptor(s).12

These hypotheses informed later studies but were conceived
before olfactory receptors were identified. They provided a con-
ceptual framework for the current proposed molecular mecha-
nisms of DEET repellency.

An additional model for DEET repellency was based purely
on its molecular structure. It suggested that DEET, which is non-
polar, interacts with lipids of the cell membrane of chemosensory
neurons.13 Here, DEET is proposed to have an indirect effect on
olfactory receptor activation by altering membrane excitability or
function. If the cell membrane is altered by DEET, the change
must be extremely transient, as electrophysiological studies of
insect sensilla have shown rapid recovery of olfactory receptor
neurons to baseline spike activity after the application of
DEET.14-16 Studies uncovering DEET-insensitive mutants fur-
ther challenged this model by showing that DEET had particular
molecular targets and did not have a promiscuous effect on cell
membrane function.15,17,18 However, this lipid interaction
model was prescient in suggesting that DEET could modulate
the activity of multiple olfactory receptors and thereby disrupt
the odor coding necessary for host detection.

Olfactory Mechanism of Action

Although the volatility of DEET is not particularly high
(0.00167 mmHg at 25�C) compared to many host odors such as
lactic acid (0.0813 mmHg at 25�C) or 1-octen-3-ol (0.53
mmHg at 25�C), it is effective in the vapor phase. Laboratory
studies have focused on identifying the molecular target(s) of
DEET using a combination of behavioral genetics and electro-
physiological approaches. These studies have led to 3 main
hypotheses to explain the mode of action of DEET: the inhibi-
tion of host odor detection hypothesis, the confusant hypothesis,
and the smell and avoid hypothesis (Fig. 1).

Inhibition of lactic acid sensation
It is possible that a repellent like DEET could work by mask-

ing a host odor, thereby decreasing the ability of the insect to
detect its feeding target. Lactic acid is a human odor that can
attract mosquitoes particularly when co-presented with other
kairomones, such as carbon dioxide.19,20 Electrophysiological
studies showed that DEET reduces the sensitivity of olfactory
receptor neurons to odors by decreasing the responses of lactic
acid-excited neurons and increasing the inhibition of lactic acid-
inhibited neurons.21 Behavioral assays in a repellometer con-
firmed that DEET inhibited the attraction of Aedes aegypti to lac-
tic acid, but both compounds were also attractive to the
mosquito.22 Thus, the authors of these studies classified DEET
as a behavioral inhibitor that reduced attraction, rather than acti-
vating avoidance behavior itself.14,22 Additional electrophysiolog-
ical and behavioral studies supported the inhibitory effect of
DEET.23,24 Whether DEET can directly inhibit the as yet
unidentified lactic acid receptor has not been shown.

DEET requires insect ORs to repel in the vapor phase
From the 1970s onward, it was clear that DEET changed the

olfactory responses of insects, but the molecular mechanism was
unknown. Beginning in 1999, insect olfactory receptors were
identified and the search for the molecular target(s) of DEET
began.25-30 Insect olfactory sensilla usually contain 2 or more
olfactory receptor neurons that respond to distinct odors due to
the different olfactory receptors they express. We now know that
insects use at least 3 families of olfactory receptors to smell: odor-
ant receptors (ORs), ionotropic receptors (IRs), and gustatory
receptors (GRs).31,32 A small number of GRs have been identi-
fied that respond to carbon dioxide,20,28,33 but surprisingly, a
few GRs known to detect sweet compounds in taste neurons
were also found to be expressed in select olfactory receptor neu-
rons.34 IRs and ORs25,26,29 respond to a broad spectrum of odor-
ants. For example, in Aedes aegypti there are 131 odor-selective
ORs.30 In Drosophila melanogaster and Aedes aegypti, DEET
repellency has been clearly shown to require Orco,15,35 the obli-
gate co-receptor for the OR family of odor-gated ion channels.36-
39 In addition, natural variation in Drosophila Or59B was shown
to change the receptor’s electrophysiological response to 1-octen-
3-ol when co-presented with DEET. Loss of receptor sensitivity
to DEET was mapped to a change in just one amino acid (valine
91 to alanine).18 These genetic studies present strong evidence
that both ORs and Orco are required for insects to sense DEET,
but they do not reveal which of the OR(s) are the behaviorally
relevant molecular DEET targets.

ORs and behavioral inhibition
ORs are molecular targets of DEET, but how DEET interacts

with ORs to change insect behavior is an area of active investiga-
tion. The initial genetic analysis of Drosophila behavior suggested
that DEET inhibited odor detection via the OR pathway.15 Loss
of Orco allowed flies to enter food-baited traps that are perfumed
with 10% DEET that wild-type flies avoid. If food was absent
from the traps, wild-type flies entered DEET perfumed traps.
This result suggests that the presence of food odors is required
for DEET’s ability to repel flies. However, DEET could repel
without food odors at high concentrations, particularly when flies
were able to contact DEET. Electrophysiological studies in mos-
quito and fly sensilla and experiments with heterologously
expressed receptors showed that DEET can inhibit the responses
of a subset of ORs to their odor-ligands.15 This inhibitory effect
extended to non-selective cation channels, such as Drosophila
Ether-a-go-go and mouse TRPM8. However, not all ORs or ion
channels tested were inhibited by DEET, suggesting that DEET
possesses some selectivity. Combining their electrophysiological
and behavioral data, Ditzen et al.15 concluded that DEET acts in
the vapor phase to inhibit the detection of attractive odors. How-
ever, the observations made in these studies have since been
reinterpreted.18,35

The recent development of genome editing techniques in
Aedes aegypti allowed for the genetic analysis of the OR pathway
in a mosquito.35 Aedes orco mutants did not respond to host odor
alone, but were still able to host-seek in the presence of carbon
dioxide, demonstrating that redundant mechanisms exist for
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mosquitoes to sense hosts.35 Redundant
mechanisms for mosquito host-seeking
were also revealed by genetically ablat-
ing carbon dioxide detection and test-
ing responses of the mutants to diverse
attractive stimuli.20 As in Drosophila,
orco mutants were unaffected by the
presence of DEET in the vapor phase,
responding both to human odor and
human skin treated with 10% DEET.35

Given that orco mutants can host-seek,
if DEET simply masks host odors by
blocking OR activation, it would not
be an effective repellent. Therefore, cur-
rent evidence argues that repellency by
DEET does not involve the global inhi-
bition of olfactory receptors.

The confusant hypothesis
If DEET does not mask host odor

detection by ORs, then another expla-
nation is required. In early electrophysi-
ological studies of Aedes aegypti
mosquitoes, DEET increased the firing
rate of olfactory receptor neurons in tri-
choid short and long A2 sensilla, but
inhibited the spontaneous activity of
medium-length sensilla.40 Neurons in
basiconic A3 sensilla either did not
show any response,14 or DEET inhib-
ited neural spontaneous activity at low
concentration, followed by excitation at
a higher concentration.40 In coeloconic
A4 sensilla, DEET inhibited neural
spontaneous activity.40 These studies
were based on the morphological and
not the molecular identification of sen-
silla, (i.e., olfactory receptor neurons).41

Later, molecular studies revealed that
with some exceptions, neurons in tri-
choid and basiconic sensilla express
ORs, whereas neurons in coeloconic
sensilla express IRs.42 Thus, DEET
likely activated, inhibited or had no
effect on OR-expressing neurons and
inhibited IR-expressing neurons,
underscoring the complex role of
DEET in olfactory modulation. Yet
again, the molecular players involved in
these processes could only be inferred,
but not specifically identified.

The promiscuous effects of DEET
on olfaction have been supported by molecularly defined electro-
physiological surveys of OR-expressing neurons15,18 and heterolo-
gously expressed ORs.16,43-45 In these studies, DEET
administered with odors could activate, inhibit, or have no effect,

depending on the olfactory receptor tested. Application of DEET
itself had little to no effect on OR-expressing neurons
in some studies,15,18 but others have shown responses of ORs
to DEET without odors.16,40,46,47 As insects are unlikely to

Figure 1. Proposed hypotheses for how insect behavior is modulated by DEET in the vapor phase.
(A) Human odor (yellow) binds to specific olfactory receptors (blue and light blue, but not red), activat-
ing olfactory receptor neurons (ORNs) colored in green, which in turn activates glomeruli in the anten-
nal lobe (bright yellow) leading to host attraction. (B) DEET inhibits the sensation of host odor by
binding to olfactory receptors and blocking the activation of ORNs (gray). (C) DEET modulates olfactory
receptor activation by human odor (blue and light blue, but not red), leading to changes in olfactory
receptor neuron activation (gray and purple) that scramble odor coding by changing the normal acti-
vation pattern of glomeruli, and host attraction is blocked. (D) DEET binds to a specific olfactory recep-
tor (red) that is expressed in an ORN that activates a neural circuit that causes aversion. The aversive
signal overrides the neural activation pattern elicited by attractive cues sensed by other ORNs. Acti-
vated olfactory receptor neurons are green, inactivated are gray, and modulated are purple. Odor
plumes from the human host are indicated in shades of yellow. The molecule depicted is DEET.
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experience DEET in the absence of host odors, the variation in its
effect across different ORs suggested that DEET disrupts olfactory
coding by confusing the normal activation pattern elicited by host
odor, and hence the confusant hypothesis was born18; It posited
that the sensitivity of multiple ORs to attractive odors was altered
by DEET, but DEET had little to no behaviorally relevant effect
on its own. In this model, if any inherent repellent activity of
DEET exists, that activity needs to be enhanced by host odor. The
confusant hypothesis recognizes that DEET can inhibit the activa-
tion of some neurons, but suggests that the overall effect is not
masking the host. Rather, host kairomones are still sensed but their
interpretation by the insect is dramatically altered.

The smell and avoid hypothesis
Contradicting the findings showing that DEET had no effect

on its own or was attractive in several studies,15,22,48-50 a compet-
ing mechanism for DEET action has been suggested. The smell
and avoid hypothesis proposes that DEET is perceived as a nox-
ious odor by the insect.51 Labeled-line repellency of this kind has
been clearly demonstrated for the microbial odorant geosmin in
Drosophila.52 Similar to geosmin, DEET may be sensed by an
olfactory receptor that activates a neural circuit that elicits avoid-
ance behavior. Two studies in Culex quinquefasciatus mosquitoes
support this view.51,53 In the absence of odor cues, mosquitoes
avoid a sugar solution they would normally feed on when it was
surrounded by a paper cylinder containing 1mg/cm2 of DEET. In
a similar assay mosquitoes also avoided an attractive heat source
surrounded by a 10% DEET-treated paper ring.51 Both of these
behavioral assays did not prevent mosquitoes from contacting
DEET; thus, it is difficult to discern whether the repellency
observed was mediated by olfactory or gustatory cues. Recent elec-
trophysiology studies with a Culex OR, CquiOR136, showed that
it could be activated by DEET, as well as other insect repellents,
such as PMD, Picaridin, and IR3535.53 CquiOR136 was also
responsive to methyl jasmonate, a naturally produced insect repel-
lent. This opens the possibility that the CquiOR136 pathway
evolved to respond to repellents. Reducing the function of
CquiOR136 via RNAi injection allowed Culex mosquitoes to be
attracted to a heated blood-feeder surrounded by a paper soaked
with 0.1% DEET that mock injected mosquitoes avoided.53 This
intriguing result suggests that only a single OR is the behaviorally
relevant DEET sensor in the vapor phase and that host odor may
not be required for DEET to activate this receptor. However, this
assay does not exclude the possibility of contact chemorepellency.

How volatile DEET interacts with ORs to alter olfactory sensi-
tivity is not yet clear. What is clear, however, is that DEET does
not simply inhibit the detection of host odors by ORs. Instead,
DEET may be a confusant that alters OR sensitivity to host odors
or a labeled-line repellent that activates an OR specific for noxious
odors. Discriminating between these 2 competing hypotheses will
be useful for designing the next generation of repellents and for
expanding our understanding of how repulsive behavior is gener-
ated in insects. To do this, the role that host odors play in DEET
repellency must be clearly shown. Previous studies have failed to
adequately address this question for a number of reasons, includ-
ing (i) the difficulty of quantifying behavior in the absence of an

attractive stimulus, (ii) the inability of published behavioral assays
to control for physical contact with DEET and (iii) the possibility
of insect specific differences, and hence the intrinsic difficulty for
direct comparison between studies using different insect species.
In addition, these hypotheses posit very different numbers of ORs
necessary for DEET repellency. The confusant hypothesis suggests
that many ORs are modulated by DEET. The smell and avoid
hypothesis suggests that only one OR may be activated by DEET.
This controversy is not easy to resolve. The genetic basis of DEET
detection was discovered using orco mutants, which ablate the
function of all ORs at once. Conclusively determining the number
of ORs required for DEET repellency would involve generating
many new OR mutants. If multiple ORs are involved, insects that
contain several OR mutations at once must be tested. Such hercu-
lean efforts may be worthwhile, as identifying the odor-selective
ORs required for DEET repellency would provide new molecular
targets for repellent design.

A role for IRs in DEET-driven repellency?
A recent study suggests that IRs may also be necessary for

DEET repellency.54 Kain et al.54 showed that DEET activates
Ir40a-expressing neurons in the Drosophila sacculus, a
3-chambered pit beneath the antenna’s surface. In addition,
RNAi knockdown of Ir40a allowed flies to enter a 50% DEET-
perfumed trap that mock-treated flies avoid. Kain et al. also used
chemical informatics to identify compounds that flies and mos-
quitoes avoided. These compounds activated Ir40a neurons.
Tetanus toxin silencing of Ir40a neurons allowed flies to enter a
trap perfumed by these compounds that control flies avoid.
Taken together, these findings suggest that Ir40a can activate an
aversive neural circuit in insects. The higher concentration of
DEET used in these behavioral assays makes it difficult to com-
pare them to behavioral studies examining the role of ORs in
DEET repellency.15,35 It would be interesting to test if Orco is
still necessary for repellency when concentrations of DEET are
increased from 10% to 50%. Furthermore, studies in Culex mos-
quitoes showed that knocking down Ir40a function using RNAi
did not reduce DEET repellency.53 If Ir40a is required for the
behavioral response to DEET, one must contemplate that both
Ir40a and Orco are necessary for DEET sensation, but that nei-
ther pathway is sufficient for repellency on its own. This opens
the possibility that Ir40a is a lower affinity DEET receptor that
responds to high concentrations of DEET at close range. Addi-
tional loss-of-function studies in mosquitoes and other insects
will be necessary to determine the role of IRs in repellency.

Gustatory and contact modes of action

Most studies of DEET have focused on vapor repellency
against flying insects. Tactile repellency has been studied mostly
in crawling arthropods such as ticks.55 DEET has been shown to
be both an anti-feedant and a repellant on contact in insects.
Whether the same molecular targets mediate these behaviors
remains unclear. What is clear is that DEET can alter behavior
by multiple chemosensory modalities.
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DEET is an anti-feedant
Humans perceive DEET as bitter.9 In Drosophila, GRs that

sense bitter chemicals are necessary to avoid ingestion of DEET
containing food.56 This avoidance occurs even with 0.1% DEET,
a significantly lower concentration than the chemical has been
used for olfactory-based laboratory studies or in commercial prod-
ucts. Similarly, other studies have shown that the mosquitoes do
not feed on blood that contains a very small amount of DEET
(0.065%), even though some of them penetrated their proboscis
into a membrane feeder.57,58 As mosquitoes are unlikely to smell
DEET in these assays, these results suggest that repellency occurs
through labellar taste receptors, and not through an olfactory
mechanism. Repellency was also observed when DEET was
applied to the feeding membrane, suggesting a role for taste neu-
rons located on both the legs and the proboscis.58

Evidence for gustatory receptors specifically detecting DEET
was obtained from studies in Drosophila.56 It was found that aver-
sive taste neurons tuned to numerous bitter compounds also
respond to DEET and that DEET-mediated activation of these
neurons required 3 bitter taste receptors, including Gr66a. More-
over, behavioral experiments showed that the proboscis extension
reflex response induced by sugar solutions applied to tarsi of flies
is severely reduced when DEET was added to the sugar solution.
These observations indicate that DEET has an inhibitory effect
on a feeding response by activating bitter taste neurons that coun-
teract the activity of sweet sensing neurons. Electrophysiology
recordings in Aedes aegypti have also shown that DEET activates
bitter taste neurons in the labellum that respond to many other
bitter compounds.59 Interestingly, many labellar gustatory recep-
tor neurons also express AaegGR14, the putative ortholog of the
Drosophila bitter receptor GR66a.60 Whether the tarsi of Aedes
respond to DEET remains to be seen, as AaegGR14, is not
expressed in neurons of sensilla located in tarsi. However, they
do express many GRs related to Drosophila bitter taste receptors
and hence are likely to respond to bitter compounds.60 Regard-
less, the current evidence strongly suggests that insects taste
DEET and avoid ingesting it like other bitter compounds.

Human skin treated with DEET repels mosquitoes
The mechanism of DEET repulsion of mosquitoes when they

land on skin differs from DEET repellency in the vapor phase.
Aedes orco mutants are attracted to DEET-treated skin, but do
not blood feed.35 This result could be explained by 2 mecha-
nisms: 1) that orco mutant mosquitoes need physical contact with
DEET-treated skin in order to be repulsed or 2) that there are
low-affinity olfactory receptors that sense DEET when the mos-
quito is in close proximity to skin. To test this, video recordings
of orco mutant mosquitoes and wild-type controls documented
host-seeking behavior at close-range. When DEET was applied
to skin, orco mutants landed on the skin and then left without
biting. This result demonstrates that contact mediates the repul-
sion in the absence of an intact olfactory system. Thus the orco
mutant allows the separation of the contact and olfactory mecha-
nisms of DEET in the mosquito, with the potential caveat that
other olfactory receptors, including IRs, are intact in this
mutant.35 It remains to be determined whether landing on

DEET-treated skin triggers a bitter taste response through GRs
or contact disengagement involving a distinct molecular pathway.
Identification of the contact receptor(s) would provide additional
molecular target(s) for chemical screens to identify new topical
repellents that could block mosquito blood-feeding.

Implications for the Next Generation
of Insect Repellents

DEET is safe and effective, but has several drawbacks.4 It has
to be applied at relatively high concentrations (10% or more) to
be effective. DEET needs to be reapplied to skin every few hours
to ensure repellency. Pure DEET melts plastic and vinyl. It is
also not very volatile. Because of the short-range spatial protec-
tion of DEET,50 it needs to be applied either on skin or cloths to
effectively repel arthropods, whereas other application methods,
such as wearing a DEET-impregnated wristband, do not work.4

There is also evidence that mosquitoes can become resistant to
DEET.62 The limitations of DEET have fueled a search for
alternatives.

The next generation of insect repellents are likely to be ratio-
nally discovered using molecular targets that enable insect host
attraction such as olfactory receptors. This approach allows for
high throughput screening of hundreds of thousands of com-
pounds, many more than were screened to identify DEET.5,6

ORs can be functionally expressed in cultured cells and their ion
channel activity can be visualized.63,64 This allows for screening
of compounds that can directly activate ORs or change their sen-
sitivity to odor-ligands. Recent screens have already identified an
agonist of insect ORs, VUAA1.63,65 This chemical activates all
OR-Orco complexes tested and likely works by directly interact-
ing with Orco. VUAA1’s main drawback is that it is not very vol-
atile. Continued effort will likely yield other compounds that can
manipulate insect olfactory receptors and are volatile enough to
become candidate insect repellents. Identified compounds should
posses a number of qualities to overtake the current gold stan-
dard, DEET.3 These include: efficacy in the vapor phase at low
concentrations, specificity for the receptor it was designed to tar-
get, low cost, easy to impregnate into wearable items, such as
wristbands, be long lasting, have a pleasant odor, and of course
be non-toxic to humans and the environment.

Although the mechanism is not yet clear, DEET likely alters
the activity of olfactory receptors either in the context of odors or
on its own. This has several implications for any screening proto-
col. Chemical screens designed to isolate candidate repellents will
need to seek chemicals that broadly inhibit multiple classes of
insect odorant receptors due to the redundancy that exists in
insect olfaction.20,35 As an alternative, screens can seek to modu-
late specific classes of olfactory receptors such as ORs that have
been associated with repellency. Understanding which ORs are
modulated by DEET, and whether the changes are behaviorally
relevant would do much to narrow the field of molecular targets
to be screened. In other words, to find volatile chemicals that
trigger repellency, it is necessary to connect insect olfactory
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receptors with the behaviors they enable. Understanding how
DEET works may lead us to these important molecular targets.
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