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This manuscript reviews historical and recent studies that focus on supplementary
sensory feedback for use in upper limb prostheses. It shows that the inability of many
studies to speak to the issue of meaningful performance improvements in real-life
scenarios is caused by the complexity of the interactions of supplementary sensory
feedback with other types of feedback along with other portions of the motor control
process. To do this, the present manuscript frames the question of supplementary
feedback from the perspective of computational motor control, providing a brief review
of the main advances in that field over the last 20 years. It then separates the studies on
the closed-loop prosthesis control into distinct categories, which are defined by relating
the impact of feedback to the relevant components of the motor control framework, and
reviews the work that has been done over the last 50+ years in each of those categories.
It ends with a discussion of the studies, along with suggestions for experimental
construction and connections with other areas of research, such as machine learning.

Keywords: prostheses, sensory feedback, computational motor control, sensory integration, human–machine
interfaces

INTRODUCTION

Anyone who has tried to light a match with cold, numb fingers can appreciate the role that
somatosensory feedback plays in accomplishing tasks. And yet although sensory feedback is
important, it is only one piece of a complicated story. Cold numb fingers impact both the
sensations and the control of finger movements. Small delicate tasks may be influenced by sensory
deficits in ways that larger, gross motions would not. And it is possible that one would learn to
compensate for numb fingers over time (say after a surgically induced numbing) such that it was
only a minor inconvenience, relying on training, experience, and alternative sensory cues (e.g.,
visual observation). A particularly illustrative example is a well-known deafferented patient Ian
Waterman, who was able, after extensive and tedious training, to grasp and manipulate objects
despite having completely lost the sense of touch and proprioception (BBC, 1998; Hermsdörfer
et al., 2008). Sensory feedback is indeed important, but it is part of a complicated, multifaceted
system that makes it difficult to assess the true value and limitations of individual sensory percepts
when used to supplement systems with sensory deficits such as prostheses.

Sensory feedback in prostheses is presently a hot topic in research, with the number of studies
increasing dramatically over the past few years presenting invasive (Pasluosta et al., 2018) as
well as non-invasive solutions (Svensson et al., 2017) (see Appendix for chronological list).
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In addition, prosthesis companies show an increasing interest in
the topic (e.g., https://vincentsystems.de/en/prosthetics/vincent-
evolution-2/, http://www.psyonic.co/abilityhand). However, this
“boom” is not in any way unique. Something similar happened
decades ago, in the 1970’s and 1980’s. In fact, in 1980 D.
Childress wrote a review on sensory feedback in prosthetics from
a “historical perspective” (Childress, 1980). The literature from
that period is rich, and the manuscripts present methods and
prototypes that are in many cases analogous to those that are
being developed today. For example, an interested reader can find
solutions based on electro (Shannon, 1979; Scott et al., 1980) and
vibrotactile stimulation (Shannon, 1976), force applicators (Meek
et al., 1989) as well as pressure cuffs (Patterson and Katz, 1992).
Yet none of these solutions has been translated into clinical use.

A plausible explanation for this failure to clinically endure
could be that the technology of that time was simply not
mature enough to be suitable for clinical applications. Since the
technology developed immensely in the meantime, one can be
far more optimistic that the recent research efforts will indeed
lead to a solution that will be accepted and used outside of
research labs. However, once the recent literature is carefully
examined, the optimism can be tainted by a doubt; the reports
in the literature on the benefits of feedback are contradictory.
Some studies report that the feedback significantly improves
prosthesis performance (Clemente et al., 2016, 2019), whereas
the others find no difference in prosthesis performance with
and without feedback (Cipriani et al., 2008; Saunders and
Vijayakumar, 2011), or report that the feedback is useful in only
some subjects and conditions (Chatterjee et al., 2008; Markovic
et al., 2018a). And indeed, both authors of the present manuscript
experienced the elusiveness of prosthesis feedback when they
started working on the topic several years ago. At that time, they
designed their first feedback systems (independently from each
other) and enthusiastically tested them in amputees, successfully
demonstrating that the subjects could accomplish delicate tasks
using a sensate prosthesis. However, the excitement was soon
replaced by surprise, when the subjects performed the very same
tasks equally well without the supplementary feedback.

The thesis of this manuscript is accordingly that the lack of
feedback in commercial prostheses is not only due to deficient
technology, but also at least in part due to insufficient knowledge
and understanding about the fundamental role of feedback in
prosthesis control. Our aim here is to shed light on some of these
aspects by placing the feedback within the broader framework of
human motor control.

This paper attempts to tackle the aspect of sensory feedback
in prostheses, which is an integral part of a larger system
of prosthetic control. For a holistic overview of prosthesis
control in the broader domain, see Sensinger et al. (2019). For
an overview focusing explicitly on control and feedback, see
Micera et al. (2010).

Several reviews have been published recently on the topic of
sensory feedback in prosthetics (Antfolk et al., 2013c; Schofield
et al., 2014; Svensson et al., 2017); while they thoroughly
describe the technology and methods to elicit tactile sensations,
the present manuscript has a different focus. The primary
purpose of this paper is to supply a lexicon – and through it

a paradigm shift – in how we view the complex phenomenon
of closed-loop control of myoelectric prostheses. Our lexicon
and paradigm are founded in the language of computational
motor control – a field that has proved influential in the
broader motor control community to make sense of the way
humans move. Therefore, we begin by providing an overview
of the main concepts in computational motor control and
relate those concepts to the realm of closed-loop prosthesis
control. The secondary purpose of this paper is to supply a
roadmap that explains how the various aspects work together,
and how the literature has landed on the map. To this
aim, we provide a comprehensive review of the state-of-the-
art and organize the studies using an original categorization
that reflects the computational motor control perspective. We
then suggest how this roadmap may be used to remember
the factors that are important to consider/control/report when
experimentally assessing the effectiveness of feedback. Finally,
we conclude the paper by discussing psychological factors,
emerging and future work as well as connections with
other research areas.

MOTOR CONTROL

Motivation
Human movement is coordinated and consistent even within
its diversity. These properties have been well known for many
years, and are well posed in the pioneering work of Bernstein
(Bernstein, 1967). Over the last 70 years scientists and engineers
have sought to construct normative laws that describe the “what,”
“how,” and “why” of human movement. These three concepts
are formalized in Marr’s terminology (Marr, 1982), which divides
the three questions into physical, algorithmic, and computational
levels. Table 1 depicts the application of Marr’s terminology to the
field of closed-loop prosthesis control. Physical and algorithmic
levels are dependent on the specific properties of the system –
such as the type of prosthetic control, or the fidelity and type
of feedback available – whereas the computational level seeks
to explain the driving purpose and logic of actions, and thus
transcends specific devices. It is accordingly useful to have a
clear computational framework when discussing recent advances
in specific physical and algorithmic prosthetic solutions, as the
computational language can transcend individual technologies.
It is the aim of the present manuscript to introduce such
a computational framework in the context of closed-loop
prosthesis control.

Overview of Computational Motor
Control
Human movement is regular – particularly when viewed from
an appropriate framework. Through history, paradigm shifts
in how we understand human movement have progressed to
better explain diverse motor control, while favoring simple,
elegant frameworks (Fitts, 1954; Flash and Hogan, 1985; Uno
et al., 1989; Harris and Wolpert, 1998; Guiard and Beaudouin-
Lafon, 2004; Soukoreff and MacKenzie, 2004). Variability is an
inherent aspect of human movement that impacts the types
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TABLE 1 | Levels of modeling classification, using levels of Marr, applied to the context of supplementary feedback in upper-limb prostheses.

CONTROL COMPONENTS CONTROL METHODS CONTROL GOALS

Forward model Sensor fusion Minimum effort

Inverse model Optimal feedback control Minimum jerk

Sensor confidence Prediction of control outcome Maximum performance

Cost function Estimation of current state Risk avoidance

Constraints Intermittent control

C
O

M
P

U
TA

T
IO

N
A

L

Heuristics

ENCODING STIMULATION INTERFACE INTERPRETATION S
Y

S
T

E
M

IN
D

E
P

E
N

D
E

N
T

Frequency modulation Squeezing brace Discrimination

Amplitude modulation Surface electrodes Somatotopy
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Y Spatial modulation Linear pusher Homologous sensation

Linear mapping Vibration motors Natural sensation

Non-linear mapping Headphones Intuitiveness

Discrete bursts AR glassesA
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Activation charge rate Implanted systems

FEEDBACK VARIABLES STIMULATION METHOD USER IMPACT

Force Visual/Sonic Performance

Velocity Force/Torque Embodiment

EMG Squeezing User experience

Contact Stretching User satisfaction

Joint position Electrical pulses Motivation

Temperature Vibrations Acceptance
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Pain Hot and cold
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Note that the computational layer, which is the focus of the present manuscript, is not directly dependent on the specifics of a concrete system (layers 1 and 2).
Visualization adapted from Schrater et al. (2019).

of stereotypical movements humans make. There is substantial
stochastic noise in human movements, as anyone who has tried
to learn to throw a ball accurately at a target can appreciate.
From the control point of view, the human nervous system
is an impressive controller that can cope with the noise and
adapt movements in real-time, as well as across trials to
achieve the desired goal. Although feedback has long been
included as a mechanism within human movement paradigms,
it is only within the last 20 years that it has become an
intrinsic component in the motor control policy (Todorov and
Jordan, 2002), and doing so has yielded substantial insight
and generalizability.

A major breakthrough in the field of computational motor
control came with the work of Todorov (Todorov and
Jordan, 2002; Todorov, 2005) who used the mathematical
language of optimal feedback control. Human motor control
and sensory feedback both have multiplicative noise, meaning
that the variability of the control signal increases relative to
the amplitude of the signal (De Luca, 1979; Clancy et al.,
2001, 2002; Jones et al., 2002). The nature of variability in
control signals affects user behavior (Chhabra and Jacobs,
2006), and is accordingly important to incorporate in any
computational model that seeks to explain human behaviors,
including those that are relevant for prosthesis use (as
explained in later sections). Todorov was able to develop an
efficient approach that captured the implications of these noise
sources on many types of human behavior in an optimal
control context.

Excellent overviews of the approach are provided
by Scott (2004); Todorov (2004), Kording (2007), and
Shadmehr and Krakauer (2008). In summary, the theory of
optimal feedback control states that humans rely on the
following components when controlling movements (Todorov,
2004; Shadmehr and Krakauer, 2008):

(1) Costs and rewards: at any time within a motion, there are
multiple potential actions. To consider which action to
take, we need to know the costs associated with each action,
along with the rewarding nature of the sensory states that
it may achieve. Given the stochastic nature of control, the
costs and rewards are formulated as expectations, rather
than as deterministic facts.

(2) Internal models: to map potential actions to the expected
states they will produce (and thus the expected rewards
they will incur), we need to have learned a mapping
between causes (actions) and effects (anticipated state).
This mapping is termed an internal model (Kawato, 1999;
Cisek, 2009).

(3) Optimal feedback-driven policy: given known costs and
known internal models, we need to find the optimal policy
that will maximize our reward (or minimize our cost,
depending on how the problem is phrased).

(4) State estimation: at every moment in time, we must
estimate our state, since combining the estimate of the
state with our optimal control policy will yield the control
action we should take. Our estimate of state will be
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informed by fusing all sensory information that we have,
but unfortunately, this sensory information itself has
variability, and perhaps more importantly, it also has
substantial delays (limiting the gains we could employ
in a closed-loop framework). To compensate for this,
optimal estimation blends in estimates of our effects, given
knowledge of our actions and our internal model.

It seems likely that the same components govern the motor
control loop of an upper limb amputee using his/her bionic
limb (Johnson et al., 2017a). Therefore, to design and implement
an effective closed-loop interface, it is imperative to understand
how each of these elements work in an amputee equipped with
a prosthesis. However, although these components have been
extensively investigated in able-bodied subjects, the literature on
how they work in an amputee is nascent. The emerging literature
seems to generally confirm what the framework proposes –
namely that the computational methods are similar between
able-bodied subjects and prosthesis users [e.g., both seem to
use Bayesian integration (Risso et al., 2019), internal models
(Lum et al., 2014)], but that the parameters (such as control and
sensory noise) are different, leading to different internal model
uncertainty and ultimately different behaviors and strategies
(Johnson et al., 2017a).

Cost Functions
Cost functions define what we care about; the relationship
between the quantity of that element and how much we care; and
how we prioritize or weight the various things that are important
to us. Humans typically care about things such as being accurate
or minimizing effort (Todorov and Jordan, 2002; O’Sullivan et al.,
2009). Recent work has also suggested that we aim to minimize
variability and/or the amount of time a movement takes (Haith
et al., 2012). Other studies have proposed we may care about
making conservative movements (Nagengast et al., 2010), along
with a variety of other costs, but for many upper-limb motions,
considering a subset of accuracy, variability, effort, and time
describes well human behavior (Shadmehr and Mussa-Ivaldi,
2012). Different relationships (e.g., linear, quadratic, exponential,
and hyperbolic) have been used to model how humans penalize
costs of increasing magnitudes. Mathematically, cost functions
can be formulated as expressions that include these quantities
and associated weights, which define the relative importance of
those quantities to the human subject. The way that cost functions
mathematically describe both the relative importance of small
vs. large magnitudes and the relative importance of competing
costs enables computational motor control models to evaluate
and describe the rationale behind the choices people make when
performing a movement.

These choices likely depend on the type of movement being
made, as well as the unique preferences of the individual
making the movement. Many studies assume quadratic cost
functions because they are mathematically tractable and generally
describe observed behaviors (Todorov and Jordan, 2002). A few
studies have inductively assessed the actual cost functions of
humans, and these studies typically find near-quadratic cost
functions (Körding and Wolpert, 2004b; Sensinger et al., 2015),

with the exception of time, where a hyperbolic cost function
seems more representative (Shadmehr and Mussa-Ivaldi, 2012).
However, these studies have only been done on a limited number
of movements, and none of them have been performed on
amputees (although one performed using myoelectric control
found similar results, Sensinger et al., 2015). Based on the
biological underpinnings of these cost functions (Haith et al.,
2012; Shadmehr and Mussa-Ivaldi, 2012), it seems reasonable
to assume that the cost functions are similar between able-
bodied persons and those using a prosthesis. The weights between
competing cost functions, however, are likely to be different
across tasks, and may be different between able-bodied persons
and those using a prosthesis. No work has yet explored these
potential differences, although recent work has suggested flexible
control solutions that adjust depending on a particular users
preferences (Arunachalam et al., 2019).

Looking specifically at the contribution of supplemental
feedback to improve costs, it is clear that the benefits of
supplemental feedback depend on the nature and complexity of
the task (Markovic et al., 2018a). There are a number of tasks in
daily life, many of them included in clinical tests for prosthesis
control, that can be accomplished without regulating the grip
strength (Schiefer et al., 2016) (e.g., the prosthesis can be closed
maximally to grasp a non-breakable object). Obviously, supplying
feedback on the grasping force in such tasks is not going to
contribute to the performance. Feedback is more likely useful in
challenging tasks that require controlled changes of the prosthesis
state (Tyler, 2016). It is accordingly useful when considering the
role of supplementary feedback to explicitly identify the cost
functions relevant for a given task.

Internal Models
Internal models map the relationship between causes and effects,
and they may work forward (cause to effect) or inverse (effect to
cause) (Kawato, 1999; Cisek, 2009). To determine which action
would produce the desired effect, humans use an inverse model.
Inverse models are therefore an essential part in feedforward
control, which is characteristic of learned (automatic), fast and
ballistic movements. Such movements are executed by “releasing”
predefined sequences of motor commands (motor programs)
that were developed through experience and repeated practice.
In contrast, if the aim is to predict the sensory consequence
of an action before receiving the delayed sensory reading, you
would use a forward internal model – also called an efference
copy (Cisek, 2009). Internal models are learned from acquired
feedback, but in real-time execution, they do not need feedback
and indeed can even be used in place of feedback.

Internal models are important because sensory feedback
is delayed. Most sensory feedback work within the realm of
prostheses has assumed that supplementary feedback is useful
for real-time regulation, but in reality, all sensory feedback –
both intrinsic and supplementary, takes time to reach the central
nervous system and be processed. This delay is on the order
of 50–300 ms, and substantially limits the ability of the central
nervous system to respond strongly without losing stability
(Whitney, 1977). Studies have shown that for a variety of tasks,
humans are able to regulate their motions and forces without any
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delay (Flanagan and Wing, 1997). A strong plausible explanation
for this result is that they use inverse models to generate
motor commands directly from the desired goal (feedforward
control) and/or forward internal models to predict the effects
of their actions, and then act appropriately (Kawato, 1999;
Cisek, 2009). Thus, many attributes that we may assume are
provided by feedback are actually subconsciously provided by our
internal models.

When the predictions of our internal models are inaccurate,
we update them, and there is a vast literature in this area
(Shadmehr and Mussa-Ivaldi, 1994; Osu et al., 2003). It is likely
that we only update them when we become confident their
predictions of our state estimates are wrong (Fishbach et al.,
2007). Humans can more quickly adapt their internal models
when only parameters must be tuned (e.g., having mastered a
badminton racquet, learning to use a tennis racquet) than when
the task has different dynamics (e.g., a racquet without a handle)
(Braun et al., 2009, 2010). Interestingly, human subjects are
capable of updating the internal models of object dynamics after
only a few grasping trials (sometimes even one) (Flanagan et al.,
2001). When asked to grasp an object of unexpected weight, the
subjects produce feedback corrections in load and grasp forces
in the very first trial. However, the corrections fade out in later
trials with the same object, indicating that the subject recalibrated
the anticipatory control. Humans can accordingly update their
internal models to improve future control of their motions.

A variety of studies have demonstrated the usefulness of
internal models in controlling prostheses. It was shown in Lum
et al. (2014) that the subjects properly scaled the grasping
forces depending on the object fragility and that this scaling
was refined over successive trials (inverse model adaptation).
Similarly, as reported in Weeks et al. (2000), the subjects
anticipatory increased the force when the weight of the object
held by the prosthesis was predictably increased. However, in
general, the accuracy of such internal models is poor, and the
performance is variable across subjects. This is at least partially
related to the uncertainty that characterizes the generation of
myoelectric signals, which are imbued with multiplicative signal-
dependent noise. For example, when amputees were asked to
produce repeatedly the same level of grasping force, they could
do that rather consistently if the target level was low but the
performance decreased substantially for the high target (Ninu
et al., 2014). Strengthening internal models is accordingly a clear
way to improve output performance.

The usefulness of internal models vs. feedback depends on
the quality and availability of inverse models. If the task is
simple and control reliable, supplementary feedback might not be
useful since the subjects can control their prosthesis in a purely
feedforward fashion. This is nicely demonstrated in Saunders
and Vijayakumar (2011), where vibrotactile force feedback did
not improve grasping performance with respect to no feedback,
even in a condition of full sensory deprivation. Conversely, recent
research has used feedback that was specifically designed to
exploit and supplement the use of internal models in amputees
[see sections “Biofeedback to facilitate forward models (efference
copy)” and “Delivering feedback to improve feedforward control
(inverse model)”]. There is accordingly a complicated but

tractable relationship between feedback and internal models as
they affect each other and output performance.

The contribution of feedback is also linked to how much
training participants have received. When subjects have not yet
received extensive training, feedback is useful – both to develop
internal models as well as to execute real-time corrections. Over
time, however, as participants develop better internal models,
the usefulness of feedback for real-time corrections may fade
(Strbac et al., 2017; Markovic et al., 2018a). This is likely because
the subjects acquire inverse models and/or learn to perceive
and interpret the incidental sources of information. Feedback is
not necessarily most beneficial before subjects have received any
training, however, as efference copies also enhance the impact of
feedback (Cuberovic et al., 2019). Prior to development of these
decoding internal models, feedback has been found to be less
useful; for example, as demonstrated in Markovic et al. (2018a),
the subjects needed some time to learn to control a prosthesis
in a delicate task before they were able to exploit the feedback
successfully. In summary, the impact of feedback highly depends
on how much training a participant has received to develop their
inverse and forward internal models.

Optimal Feedback Control Policies
For a given set of costs and a given set of properties, including
internal models of system dynamics and estimations of sensory
feedback and control stochastic noise sources, an optimal
feedback control policy decides on the best course of action
for a given state. In contrast to plans that assume a specific
sequence of states (fixed trajectory), the policies are general rules
that define optimal transitions toward the goal from any state.
For example, directions to a destination is an example of a
trajectory, whereas traversing the shortest distance using a map
is an example of a policy.

Humans use optimal or near-optimal policies across a variety
of tasks (Kording, 2007; Liu and Todorov, 2007; Shadmehr
and Mussa-Ivaldi, 2012; Acerbi et al., 2014), although it is
important to note that for some tasks, their decisions do not
seem optimal (Shadmehr and Mussa-Ivaldi, 2012). The challenge
of optimal feedback control theories is to explain human
abilities to generate these optimal policies in the simplest, most
efficient way possible. In a general case, the optimal policies
can be derived by applying the framework of optimal control
(Todorov, 2006) and dynamic programming (Bertsekas, 2014).
For systems with linear dynamics and quadratic costs, this
problem substantially reduces to a linear quadratic regulator,
and near-optimal solutions can be found using iterative linear
quadratic regulators (Li and Todorov, 2007), reinforcement
learning (Kositsky and Barto, 2001; Reinkensmeyer et al., 2012),
or other strategies (Todorov, 2009). Many of these approaches
provide relatively simple explanations, with explanatory value
such as being able to describe human movement behavior,
uncontrolled manifolds and synergies, or the asymmetrical
velocity profiles found in many human movements (Todorov,
2009; Mitrovic et al., 2010; Rigoux and Guigon, 2012; Shadmehr
and Mussa-Ivaldi, 2012). Perhaps most importantly for the
context of this paper, they provide insight into the contribution
of feedback throughout the process. Similar models have only
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recently been applied to explain the behavior of a prosthesis user
(Johnson et al., 2014, 2017a). However, this research is still in
its initial phase and we have yet to develop models that can
comprehensively describe the use of a prosthesis in clinically
relevant situations.

Optimal feedback control policies help to explain the
contribution of supplemental feedback relative to the other
properties of the system. The optimal policy of a human
controller takes into account the uncertainty of feedforward and
feedback pathways. Therefore, the effectiveness of supplementary
feedback is also affected by the quality of control. Control quality
depends on both the command interface, which determines
precision and accuracy in generating command signals, and on
the characteristics of a controlled system, which defines the
consistency of the system response to those commands. These
aspects were investigated in Dosen et al. (2015b) where the
subjects used less and more reliable interface (myoelectric versus
joystick) to control a system with less and more consistent
response (real versus simulated prosthesis), while the grasping
force feedback was provided visually (computer screen). The
results indeed showed that the properties of the system and
control interface affected the quality of developed internal models
and closed-loop control of prosthesis grasping force.

State Estimation
Sensory information comes from various sources (exteroception,
interoception and proprioception) that are characterized by
varying level of stochastic noise along with temporal delays. The
brain must integrate this information into a composite estimate
of our state that also includes knowledge regarding the expected
state (internal model estimate).

Optimal estimation incorporates two sources of information
by using a weighted average, where the weight assigned to
each estimate is a function of its confidence (Ernst and Banks,
2002; Körding and Wolpert, 2004a). For Gaussian distributions,
this process is known as Bayesian inference, and humans have
been shown across a number of studies to use something
similar (see Ernst and Banks, 2002 for seminal work; Kording,
2007 for review). The resulting composite estimate has its own
estimate of confidence and may be used to fuse even more
sources of information. Therefore, a multitude of sensors may be
incorporated into a single estimate of state. A direct consequence
of the sensor fusion is that if one signal has substantially more
noise than another, incorporating it adds relatively little value,
but does not make the net variability worse. This observation is
particularly relevant point for supplementary feedback since it
is integrated with intrinsic sources, some of which can provide
feedback information with high-fidelity (e.g., vision to assess
prosthesis motion).

This same concept of data fusion may be applied to the
states that are estimated based on internal models. In this case,
the final estimate is obtained as a weighted combination of
a state estimated from the measurements (sensor data) and
that determined by the model. The weighting is known as
the Kalman gain, and the process is known as the Kalman
filtering. Humans’ state estimation has been well described by
Kalman filters (Kording, 2007) and its non-linear extensions

(i.e., extended and unscented Kalman filter, particle swarm filter)
(Wan and Van Der Merwe, 2001).

The process of state estimation is key to understanding when
supplementary sensory feedback in prostheses has worked, and
more often, why it has failed. Human subjects can exploit various
sources of information to improve motor performance. When
somatosensory feedback is missing, as in a deafferented person,
the motor control will rely on alternative incidental sensing
modalities, such as vision, audition, and vibration (Hermsdörfer
et al., 2008). It has been reported a long time ago that amputees can
exploit incidental feedback produced by their device (Mann and
Reimers, 1970; Prior et al., 1976). In a recent study (Schweisfurth
et al., 2019b), it has been shown that visual and auditory
cues can be used to estimate prosthesis closing velocity with
good precision. Another recent study (Markovic et al., 2018b)
demonstrated the ability of subjects to scale prosthesis grasping
forces across six different levels from minimum to maximum force
by relying only on incidental sources of information (namely,
muscle proprioception, vision, and audition). Therefore, contrary
to popular thinking, prosthesis control is actually closed-loop
even when no explicit somatosensory feedback is transmitted to
the prosthesis user.

The contribution of supplementary feedback accordingly
depends on its contribution relative to the already-available
incidental feedback and the strength of the internal model.
As shown in Markovic et al. (2018b), when the supplemental
information on the generated force was transmitted through
a visual interface after the subjects trained controlling the
prosthesis using incidental feedback, the force scaling improved
only modestly and mainly at high force levels. It was
demonstrated in a recent study (Risso et al., 2019) that an
amputee subject with an implanted sensory feedback interface
integrated supplementary somatosensory feedback and blurred
visual information in a statistically optimal fashion when
estimating the size of a hand-held object. If the supplementary
feedback is characterized with a higher uncertainty compared
to incidental sources, its impact on the control will likely be
minimal if any. Therefore, it is critically important that the tactile
stimulation profiles used to communicate prosthesis variables
through supplementary feedback are easy to discriminate and
interpret (Cipriani et al., 2014; Dosen et al., 2017).

Summary and Implications for
Supplementary Feedback in Prostheses
In summary, humans make the best use of the actuators and
sensors they have, to achieve the best possible reward they may,
considering the probabilistic uncertainty in their control and
sensory feedback. Given the structure of these noise sources and
the complexity of the tasks humans perform, it as a marvel that
they achieve optimal or near-optimal solutions. And yet, this
observation offers both perspective and hope as it pertains to
prostheses. The best thing going for humans is their brain; not
their motors or their sensory receptors. Humans will make use
of whatever motors or sensory receptors they have available to
achieve the best they can, and in light of the sophisticated control
policies they can develop, it is no wonder that many attempts
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to supplement feedback do not have a significant impact. The
brain had already developed an optimal policy that compensated
in the control policy for a known deficit in real-time sensory
feedback, either through developing internal models, learning to
exploit the information from the incidental feedback sources or
through navigating control decisions in which sensory feedback
was less critical. As we will see below, many studies isolate the
role of feedback, but these studies have little explanatory power
about the impact of feedback on real-life use of prostheses. In
this context, the impact refers not only to the improvement in
prosthesis performance (utility), but equally well to enhancing
the user experience when interacting with his/her bionic limb by,
for example, promoting the feeling of agency and ownership (see
section “Psychological aspects”).

Whereas we have noted above and will detail below that the
majority of supplementary feedback studies in prostheses focus
on real-time feedback, the processes described above require
learning and adaptation. This learning and adaptation can only
happen in the presence of feedback. Thus, it is quite likely
that an equally important role for supplementary feedback is
to enable better learning of the task, such that it may be used
by internal models and motor control policies. Therefore, it is
quite likely that efforts to provide such feedback – particularly
in areas where it is not redundantly provided by vision, will have
substantial impact on the prosthesis performance (e.g., see Dosen
et al., 2015a; Shehata et al., 2018a). The use of feedback in this
context can be quite different from its application during real
time modulation, e.g., the feedback can be an optional feature
that can be activated by the subject when they need to learn
the system dynamics. For example, the subject can use feedback
during initial practice, and then again, when the system changes
the properties due to wear and tear. Nevertheless, this application
still needs to be implemented thoughtfully since, as it has been
already recognized in the field of motor learning, the feedback
can be even detrimental for the learning process if not provided
properly (Sigrist et al., 2013).

Given that amputees have the same amazing brain to tackle
optimal control problems, but also very different sources of
control, mechanism dynamics, and sensory feedback, it will be
useful to highlight similarities and differences before moving on
to focus on the topic of feedback.

Motor control in able-bodied persons typically starts with
the visual observation of the target object. Vision is employed
to perceive its extrinsic (position and orientation) and intrinsic
(size, shape, and material) properties (MacKenzie and Iberall,
2010). These properties are then used to predict the forces that
are needed to grasp and lift the object by employing an inverse
model to map the desired outcome (lifting an estimated weight)
to the motor commands (muscle excitations and forces) required
to achieve that goal (Gordon et al., 1991). After contacting the
object, the hand produces forces that are normal and tangential to
the object surface, known as grasp and load forces, respectively.
The grasp forces establish a firm grip to prevent slippage, while
the load forces are responsible for lifting. Importantly, both
forces increase simultaneously with the rate of change that is
proportional to the estimated object weight, thereby indicating
anticipatory control (Johansson and Westling, 1988). If the

weight is correctly estimated, this leads to a smooth lifting
movement while the object is safely held in the hand. If the
estimate is wrong, the subjects can use feedback from a dense
network of mechanoreceptors as well as other sources (vision,
proprioception) to notice the discrepancy and correct the control
(Flanagan et al., 2006).

After an amputation, the sound hand is lost and it is replaced
by an artificial system such as a myoelectric prosthesis. The
biological connection between the neural controller and its end
effector is severed, and replaced by a myoelectric interface,
with only incidental feedback from the hand to the user.
The prosthesis is controlled by generating myoelectric signals,
which are characterized with variability that increases with the
contraction intensity (Harris and Wolpert, 1998). The signals
are processed and mapped into velocity commands that are
sent to the prosthesis, and the resulting motion depends on
the mechatronic properties of the system (e.g., communication
delays and friction). Current myoelectric prostheses are non-
backdrivable systems that are still substantially below the
dexterity, precision, and accuracy inherent in biological limbs.
A prosthetic device supplies intrinsic feedback to the user. The
user can see the prosthesis motion, and in addition, he/she
receives mechanical (vibration) and/or auditory (motor and
motion sound) cues generated by the moving mechanism. Visual
feedback, in particular, can provide high-fidelity information
regarding a wide range of modalities (e.g., hand position and
grasping force).

The control loop for using a prosthetic hand includes all
the components that are characteristic for the sensory motor
control of a sound hand. Figure 1 shows how the artificial
extremity integrates into the motor control framework of a
prosthesis user. The user relies on internal models to generate
feedforward commands directly from the task goal (inverse
model) as well as to anticipate the system state (forward model)
from the generated control signals (reafference) and interoceptive
signals (sense of effort). He/she fuses the model-based prediction
with the sensory feedback received from the environment to
estimate the state of the prosthesis. This estimate is then used
to detect deviations from the task goal, and correct the control
if required (online controller). However, there are also crucial
differences with respect to the control loop of an able-bodied
subject. For example, prosthetic hands are non-backdrivable
mechanisms with rough modulation of grasping force. Therefore,
a nice and coordinated modulation of the load and grasping
forces, characteristic to normal grasping, is not possible. In
addition, the lack of precise and reliable control and missing
somatosensory feedback affect the ability to acquire as well as
update the internal models. Nevertheless, this can change with
the development of low-impedance end-effectors (Brown et al.,
2015), local feedback loops linearizing the prosthesis behavior
(Bottomley, 1965), and with the integration of supplementary
feedback into prosthetic systems. Figure 2 highlights the main
differences between the components comprising the control
loop of an amputee versus an able-bodied subject. Note that
the “neural controller” is identical in both cases, emphasizing
the assumption that the prosthesis user relies on the same
computational mechanisms as an able-bodied subject, but
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FIGURE 1 | The role of feedback in the larger picture of motor control of a prosthetic arm. The figure illustrates that feedback is only one portion of a broader control
paradigm. This should be taken into account when designing methods to provide supplementary feedback. To be successful, the feedback has to make a positive
impact within the overall control scheme.

that they must deal with radically different system dynamics
and sensory inputs.

THE ROLE OF FEEDBACK FOR
PROSTHESIS USERS

The importance of restoring feedback for prosthesis users is not a
new idea. As early as 1917, Rosset (1917) (Patent No. DE301108)
had patented a mechanism that relayed finger pressure via
pneumatic or mechanical means. Describing his motivation,
he said “An artificial limb, especially a hand substitute, will
always displease the user because of the missing sensation of
touch, when grasping objects. Thus the amputee when using the
prosthesis, depends entirely on the visual sense . . . It is safe to
assume that one of the chief reasons arm amputees prefer to
do without an artificial hand is the absence of the tactile sense
in the substitute.”(Childress, 1980). Work in Italy before 1925
explored similar concepts, mapping finger pressure to thorax
skin via pneumatic means (Martin, 1925). Many others followed,
including the Vaduz prosthetic hand (Lucaccini et al., 1966) in
the 1940’s and patents by Goldman (1951) (Patent No. 2567066)
and Gonzelman et al. (1953) (Patent No. US2656545 A). Norbert
Weiner, a leader in the field of robotics and prostheses in the
mid 20th century said “the present artificial limb removes some
of the paralyzes caused by amputation but leaves the ataxia.
With the use of proper receptors, much of the ataxia should
disappear as well, and the patient should be able to learn reflexes.”
(Childress, 1980). It is clear that engineers have been keen to
implement feedback solutions throughout the realm of modern
prosthesis design.

For classic reviews of feedback, see Childress (1980); Scott
(1990), and Kaczmarek et al. (1991). For recent reviews see Schultz
and Kuiken (2011); Antfolk et al. (2013c), Schofield et al. (2014),

and Svensson et al. (2017). In these manuscripts, the studies
investigating supplementary feedback were organized according
to the methods used (e.g., invasiveness, stimulation modality).
In the present review, on the contrary, we divide the studies
based on how and which components of the motor control
framework (Figure 1) are impacted by the feedback. Conventional
perspectives on feedback in prosthesis control have typically
divided feedback into three categories (Childress, 1980). The
most popular of these categories—and the focus of this review—
is supplementary feedback, i.e., the feedback provided to the
user of a prosthesis. Following an extensive review on this
topic, the other two categories, which include feedback to
change system properties and control-interface feedback, will be
briefly summarized (see section “Other applications of feedback”).

Supplementary Feedback
The majority of studies have focused on the use of supplementary
continuous feedback to improve real-time regulation, as we will
see below, but it is important to note that discrete stimulation
may also be used, and that the feedback may supply information
not only for real-time regulation but also for biofeedback and
learning and adaptation. We illustrate these potential impacts of
feedback in Figure 3, and review the literature within each one in
the following subsections.

Continuous Feedback for Real-Time Control
The vast majority of studies have included feedback with a
goal of improving real-time closed-loop control (see Antfolk
et al., 2013c; Schofield et al., 2014; Svensson et al., 2017
for recent reviews). Childress noted in 1980 that vision was
critical as additional source of information (Childress, 1980).
Vision supplies information about position and velocity. This
information may be used to reliably infer forces – particularly
low forces directly after contacting an object (Ninu et al., 2014).
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FIGURE 2 | A comparative view of the closed-loop control system in an able-bodied subject (light blue track) versus a prosthesis user (dark blue track). The neural
controller (brain) is common to both tracks but the other components (control interface, end effector and sensory feedback) differ fundamentally.

Visual cues from deformable objects and the prosthetic hand
also supply a surprising amount of context about grasp
force. As a result, it is essential when evaluating the clinical
utility of any supplementary feedback source to compare it
to a baseline of vision. Yet surprisingly, most studies only
evaluate supplementary feedback vs. a baseline that occludes
vision. In the absence of vision, somatosensory feedback
delivered through different interfaces (e.g., vibro-, electro-,
and mechanotactile) was shown to be useful in a variety of
tasks, such as, controlling hand aperture (Witteveen et al.,
2012), grasping force (Witteveen et al., 2015), joint position
(Mann and Reimers, 1970; Erwin and Sup, 2015), object size
and stiffness discrimination (D’Anna et al., 2019) etc. Of the

many studies exploring real-time feedback (see Table A1 in
the Appendix), only a few have shown clinical performance
improvements in the presence of vision. Each of these will be
reviewed below.

Several studies have shown improvement in a virtual reality
environment. Although this is a step in the right direction,
virtual environments typically do not have the same richness of
visual information (for example, virtual objects are completely
non-deformable, unlike the real world, where the cosmesis
of the prosthetic hand always deforms). Kim and Colgate
(2012) showed that providing grasp force via a manual plunger
improved performance of a virtual task, using a patient who had
targeted sensory reinnervation – a procedure in which afferent
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FIGURE 3 | Types of feedback. Feedback is useful for more than real-time continuous regulation. It can supply information about important events (e.g., contact),
enhance natural proprioception (sense of effort), and facilitate learning and adaptation through the development of internal models.

fibers that used to go to the hand are rerouted to spare skin
(Kuiken et al., 2007a,b; Marasco et al., 2009). Tejeiro et al. (2012)
compared mechanical and vibratory feedback of grasp force in
a virtual task, and found that both were better than vision
alone. Jorgovanovic et al. (2014) used amplitude-modulated
electrotactile feedback on grasping force in a virtual prosthesis,
and demonstrated that the feedback improved performance
while grasping a set of daily life objects of different weights
and breaking thresholds. Finally, Dosen et al. (2015a) found
that providing visual biofeedback regarding the control signal
(processed myoelectric signal) improved control of a virtual
hand. In this study, the subjects saw a virtual prosthesis on the
computer screen, but they actually controlled a real prosthesis in
the background. These studies are each noteworthy in that vision
was provided, and yet a convincing improvement was found with
supplementary feedback.

There is only one known study in the 20th century that found
a clinical improvement using supplementary feedback, namely
Meek’s 1989 study (Meek et al., 1989), in which grasp force
was conveyed via mechanical means. The subjects were more
successful in using prosthesis to grasp and manipulate brittle
objects without breaking or dropping them when supplementary
feedback was provided in presence of vision compared to
vision alone. It is likely that with more subjects and proper
statistical analysis, Patterson and Katz would have found similar
results in their 1992 study (Patterson and Katz, 1992). Zafar
and Van Doren (2000) demonstrated a clinical improvement
mapping grasping force to surface electrical stimulation in
the presence of vision. Although they used video of a sound
hand rather than the device itself, the video was of an
actual hand deforming an object, and thus supplied realistic
visual cues.

Within the last decade, several groups have made
impressive progress along both non-invasive and invasive

routes. Gonzalez et al. (2012) has shown that providing hand
configuration via audio cues improves performance and reduces
mental loading (González et al., 2010). Shehata et al. (2018a) has
shown that providing pattern recognition error improves the
ability to learn internal models and results in an accompanying
improvement in performance. Schweisfurth et al. (2016)
showed that myoelectric feedback delivered using electrotactile
stimulation with mixed frequency and amplitude coding
outperformed conventional force feedback during control of
grasping with a prosthetic hand. In a recent study, Markovic et al.
(2018a) tested multimodal vibrotactile feedback communicating
prosthesis state, contact and force in several functional tasks and
across multiple sessions, and demonstrated that the benefits of
feedback depended on the task and session (training). Marasco
et al. (2018) showed that inducing the kinesthetic illusion in
TMR amputees improved real-time feedback (as well as other
properties, highlighted below). Cipriani’s group used discrete-
event feedback (expanded below), and found an improvement
in performance (Clemente et al., 2016; Aboseria et al., 2018). All
these studies share a common theme of tapping into a use for
feedback that is not redundant with the role played by vision.
More specifically, the feedback in these cases transmits variables
that are not assessable through vision (e.g., myoelectric signals,
change in active function) and/or variables that are difficult
to see clearly (e.g., moment of contact with an object), which
according to section “State estimation” is likely to improve the
overall quality of state estimation.

Regarding invasive techniques, Tan et al. (2014) produced
natural electrical feedback in long-term implanted electrodes
that conveyed information of finger forces, and demonstrated
improved performance of a cherry-picking task. They used
specific stimulation properties to mimic natural sensation
(Graczyk et al., 2016), and followed up demonstrating
improved performance after at-home use (Graczyk et al., 2018).
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Micera’s group (Valle et al., 2018a) has recently demonstrated
similar success with feedback facilitating a delicate task (e.g.,
virtual egg test).

Discrete Feedback for Event Confirmation
As early as 1992, Johansen had developed a paradigm in which
the primary role of feedback was to confirm the initiation
and termination of discrete events (Johansson and Cole,
1992). Cipriani’s group pursued this idea, developing actuators
embedded in electrodes that were able to supply temporally
discrete feedback indicating moment of object contact and
release. They showed that humans incorporate this feedback,
even in the presence of vision, during a grasp and lift task
(Cipriani et al., 2014). More recently they have shown that
the discrete feedback improves performance (Clemente et al.,
2016) and reduces slips (Aboseria et al., 2018). Discrete feedback
was largely off the map of prosthetic feedback until the work
of Johansen and Cipriani. It is now commercially available
and seems likely to have a positive impact on the field. The
feedback on contact was also combined with other continuous
and discrete modalities, for example, force and velocity (Ninu
et al., 2014) and prosthesis state and force (Markovic et al.,
2018a). However, in these studies, the individual effects of these
modalities on performance were not investigated. A recent study
has explored the interaction between discrete tactile feedback
and continuous audio biofeedback focusing on the impact
that they have on the formation of internal models (Engels
et al., 2019). Contrary to expectations, the results seem to
imply that when the two modalities were combined, discrete
feedback dominated the continuous information. In several
studies, the supplementary feedback was used to communicate
the event of object slippage prompting the subject to increase
the force and prevent losing the object (Aboseria et al., 2018;
Zollo et al., 2019).

Biofeedback to Facilitate Forward Models (Efference
Copy)
Dosen et al. (2015a) study provided feedback regarding the
myoelectric signal (Dosen et al., 2015a; Schweisfurth et al.,
2016). At first glance, this might seem strange, as it is the user
who produced the myoelectric signal in the first place, and
furthermore, it is a noisy signal. Why not wait until the signal has
produced a movement in the prosthesis, and convey seemingly
more useful and less noisy information about prosthesis position,
velocity, or force? Our review of computational motor control
above suggests two key benefits of providing biofeedback, which
has long been used for training and therapeutic motives (Ince
et al., 1984). First, supplying feedback at an intermediate stage
enables the user to develop more precise internal models of the
mechanism – models that are based on the output caused by the
actual signal, rather than the intended signal (see Figure 1). This
is a noteworthy enhancement. Second, the process of using the
myoelectric signal to generate movement takes time, delaying the
feedback. Delayed feedback, as we noted above, reduces stable
feedback gains. Thus, by relaying the information sooner and
allowing the user to predict (using a forward model, or efference
copy), they can compensate initially with higher feedback gains,

and then correct any minor discrepancies once the final-state
feedback arrives using a lower-gain feedback loop (see Figure 1).

Delivering Feedback to Improve Feedforward Control
(Inverse Model)
Several groups have recently looked at the role of feedback in
enabling the development of better internal models. Gillespie
et al. (2010) showed that supplementary feedback improved
adaptation rates, and internal model development. Saunders and
Vijayakumar (2011) demonstrated the importance of inverse
models, particularly when control noise was low. Lum et al.
(2014) looked at the internal models developed by body-powered
prosthesis users, and Johnson et al. (2014, 2017a) looked at the
internal models developed by myoelectric prosthesis users. Ninu
et al. (2014) showed how vision could reliably convey force
information – presumably through an internal model mapping
velocity prior to contact to force after contact. Johnson et al.
(2017b) manipulated sensory feedback to show its impact on
internal model strength. Marasco et al. (2018) demonstrated
improved internal model development when kinesthetic illusion
was added to targeted muscle reinnervation (TMR) amputees.
Shehata et al. (2018a,b,c) demonstrated that improvements in
internal model strength via auditory supplementary feedback
resulted in improved efficiency and performance. The ability of
feedback to improve internal models is a key area to focus in
recent and future work.

To promote the use of feedback for the development of
internal models, Dosen et al. (2015b) have introduced the
paradigm of routine grasping. In this approach to prosthesis
control, the subjects are encouraged to close the prosthesis
fast by generating feedforward commands. The feedback is
therefore not used for online modulation of force as, for example,
during slow and careful closing, but for supplying an end-
point feedback on the generated force to help adaptation across
trials. They have investigated this paradigm and demonstrated
(De Nunzio et al., 2017; Strbac et al., 2017) that feedback is useful
initially but that its benefits decrease with training, as the
subject becomes better in controlling the prosthesis through
developed inverse models.

Psychological Aspects
Several psychological aspects are influenced by feedback. These
aspects are important in their own right, but they also indirectly
affect performance. For example, agency has been linked to
intentional binding – the subjective binding in time of voluntary
actions to their sensory consequences (Haggard et al., 2002;
Legaspi and Toyoizumi, 2019), suggesting that when a person
has agency over their prosthetic limb, movements seems shorter.
It is likely that there is a two-way interaction between the
computational motor control, as it applies to a user of a
prosthetic limb, and the psychological factors, such as agency,
ownership and user experience in general (e.g., improved control
leads to better embodiment which might further facilitate the
control). Because user dissatisfaction with a lack of agency
over their movements has been linked to device abandonment
(Biddiss and Chau, 2007; Biddiss et al., 2007), some have
suggested that improved agency likely leads to better acceptance
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of devices (Marasco et al., 2018). These concepts will be
briefly reviewed below.

Agency
Agency refers to the feeling of controlling actions that
influence events in the outside world (Moore and Fletcher,
2012). Some groups have posited that agency arises from
processes involved in motor control (Blakemore et al., 2002;
Haggard, 2005), and particularly the forward model aspect
of internal models (Blakemore et al., 2000, 2002). Other
groups believe that agency is formed when external senses
are cued (Wegner, 2002, 2003). Recent research has suggested
that both motor control and external cues are integral to
establishing a sense of agency (Wegner and Sparrow, 2004;
Wegner et al., 2004; Synofzik et al., 2008; Moore et al.,
2009). In this context agency fits in well with the concept
of computational motor control discussed above (Moore and
Fletcher, 2012; Legaspi and Toyoizumi, 2019). Within this
framework, sensory feedback is critical to both improving the
forward models of motor control, affirming motor control via
efference copy, and providing relevant contextual feedback that
can help with cueing.

Marasco et al. (2018) recently showed that providing
kinesthetic feedback via eliciting kinesthetic illusion in targeted
muscle reinnervation subjects established a sense of agency over
their prosthetic arms. They hypothesized that kinesthesthetic
feedback – the sensation of the limb moving in space – was
particularly important in creating a sense of agency. It is hopeful
that further research by their group and others will further
explore the concept of agency.

Incorporation
Incorporation is the concept that an object, such as a hand or
even a tool such as a hammer, has become part of your body
schema. It may be assessed using surveys (Marasco et al., 2018),
thermal maps (Marasco et al., 2011), or via temporal judgment
assessment tests such as the cross-modal congruency effect
(Maravita et al., 2003; Holmes et al., 2004; Blustein et al., 2018b).
Providing touch feedback via targeted sensory reinnervation
has been shown to improve incorporation (Marasco et al.,
2011). The other types of supplementary feedback including
vibration, mechanical indentation, and electrical stimulation
have demonstrated varying degrees of improved incorporation of
a prosthetic limb (Blustein et al., 2018b; Graczyk et al., 2018; Valle
et al., 2018a; Cuberovic et al., 2019).

It is noteworthy that whereas recent studies have suggested
that dynamic feedback, in the form of kinesthesia, is required
to obtain agency, event confirmation feedback, in the form
of touch, is required to establish incorporation. Although the
topics of agency and incorporation are evolving along with
their nomenclature, several researchers have suggested that the
combination of incorporation and agency results in embodiment
(Longo et al., 2008; Marasco et al., 2018), which is accordingly
defined as having agency over your body. It therefore appears that
to achieve full embodiment, both kinesthetic and tactile forms
of feedback are needed, although further research is required to
solidify the possibilities.

Phantom Limb Pain
Phantom limb pain is pain perceived as arising from the missing
limb due to sources other than stimulation of nociceptive
neurons that used to innervate the missing limb (Ortiz-Catalan,
2018). Phantom limb pain can be debilitating and is common
after amputation.

It is unclear how phantom limb pain occurs, although there
are a number of competing theories including sensory-motor
incongruence (similar to motion sickness) (Harris, 1999), cortical
reorganization (Flor et al., 1995; Knecht et al., 1998; Lotze
et al., 1999, 2001; Grüsser et al., 2001), reduced functional
connectivity (Makin et al., 2013), and stochastic entanglement
(Ortiz-Catalan, 2018). The latter theory, which is also the most
recent one, postulates that stochastic entanglement can occur
between networks responsible for sensorimotor processing and
paint perception. Many have speculated that phantom limb pain
and embodiment are closely connected (Giummarra et al., 2008;
Murray, 2008).

Sensory feedback plays a role in all these theories, although not
all of them require sensory feedback to alleviate phantom limb
pain if motor control is restored.

A number of studies have shown improvements in phantom
pain, either through purely therapeutic techniques such as mirror
therapy (Chan et al., 2007; Foell et al., 2014) and sensory
stimulation/discrimination (Rossini et al., 2010; Horch et al.,
2011; Tan et al., 2014), or through actively engaging in the use of
the device, as seen through use of myoelectric prostheses (Lotze
et al., 1999), targeted muscle reinnervation surgery (Dumanian
et al., 2019), or phantom motor execution (Ortiz-Catalan, 2018).
Several clinical studies have found that use of devices has reduced
phantom limb pain (Lotze et al., 1999; Dumanian et al., 2019),
and some laboratory studies have shown reductions in phantom
limb pain due to sensory feedback (Rossini et al., 2010; Dietrich
et al., 2012, 2018), but no clinical feedback devices are yet
available. Based on any of the competing theories, however, it
is likely that supplying supplementary sensory feedback would
reduce phantom limb pain, and this is a strong area for
future research.

Other Applications of Feedback
Although most studies focus on the use of feedback to provide
supplemental information to the user, feedback may also be used
to change system properties, and as a type of control interface
(Childress, 1980). We briefly review these uses below.

Feedback to change system properties refers to the use
of feedback as a part of a local loop within the artificial
controller. Many designs within this category use feedback
to enable shared control [e.g., artificial reflexes (Salisbury
and Colman, 1967; Rakic, 1969; Ring and Welbourn, 1969;
Kyberd and Chappell, 1994), computer vision based control
(Markovic et al., 2014; Marković et al., 2015; Ghazaei et al.,
2017)]. Considering the discussion in the section on agency,
when these systems work less than perfectly, relinquishment
of autonomy to an external agent might cause frustration by
users. Other designs modulate system behavior (e.g., decrease
control gain after contact detection; Wettels et al., 2009). These
designs enable competing costs such as speed and accuracy to be
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given prominence during those portions of the task for which
they are more likely to be valued, while keeping autonomy
with the user. Other designs use feedback to linearize control
mechanisms (Bottomley, 1965), which due to static friction,
backlash, and resistance from cosmetic gloves are often highly
non-linear in prostheses. Although some have commented that
this feedback is unnecessary as humans can compensate with
visual feedback, the use of feedback to linearize prostheses enables
better internal model formation [see Acerbi et al. (2014) for
a discussion of difficulties learning more complicated internal
models], as well as more reliable control as the local feedback
loop can run with less visual delay than the human visual system.
Designed properly, these applications of feedback to change
system properties can contribute importantly to the closed-loop
prosthesis control.

In control-interface feedback, the feedback to the user is
inherent in the control process. Driving a powered car is
an example of this concept. The control process has been
designed in such a way that the user must exert force on the
wheel to move it, and if the wheel encounters resistance, this
resistance is inherently passed on to the user. Body-powered
prostheses provide this form of feedback, as the user can feel
the tension in the cable. The Vaduz hand used it as well,
routing the force pneumatically (Lucaccini et al., 1966). Simpson
termed this concept extended physiological proprioception, and
demonstrated its utility across a series of studies in the 1960’s
and 1970’s (Simpson, 1972, 1974; Simpson and Smith, 1977).
Others have formally quantified the performance of such systems,
which combine both control and sensory aspects (Doubler
and Childress, 1984a,b). In non-invasive approaches, the end-
effector is actuated by moving a body part (e.g., contralateral
shoulder) through the cables attached around the body segment,
but there is also an invasive version, where the cable of
the end effector is connected to the muscle through a skin
tunnel created in a surgical operation [i.e., cineplasty (Gale
and Hueston, 1957)]. The last extensive research work in this
area was done by Weir (1995), and in recent decades the
idea has faltered, and is rarely clinically used outside of body-
powered prostheses.

IMPLICATIONS

Guidelines for Experimental
Design/Assessment
A variety of experimental approaches have been used to
assess supplemental feedback. Importantly, the methods differ
substantially with respect to the level of sensory-motor
integration that is embodied by the experimental setup
(Figure 4). This in turn determines which components of the
motor control loop will be operative in the task, and this is critical
in judging the scope of the study outcomes.

The conventional psychometric assessment, which has been
used in a number of studies (Szeto and Saunders, 1982;
Kaczmarek et al., 1991), investigates sensory experience. In a
typical approach, the subject is passive while stimulation is being
delivered and he/she is asked to report on the quality and quantity

of elicited sensations. In a more interactive setup, the subject
can use a joystick to reproduce the intensity and/or frequency of
tactile stimulation (e.g., open-loop electrotactile tracking) (Szeto
and Lyman, 1977; Anani and Körner, 1979). This allows testing
the quality of perception of versatile and dynamic stimulation
profiles, but the sensory-motor loop is essentially open.

In closed-loop tracking, the task for the subject is to control
a simulated dynamic system using a command interface (e.g., a
joystick or myoelectric control) while the feedback on the state
of the system is provided through tactile stimulation (Seeley and
Bliss, 1966; Schori, 1970; Schmid and Bekey, 1978; Dosen et al.,
2014; Paredes et al., 2015). The aim is to generate the control
input so that the system output produces a desired reference
trajectory. Most commonly, the tactile feedback transmits the
momentary tracking error (i.e., so called compensatory tracking;
McRuer and Weir, 1969). Therefore, in this experimental
paradigm, the subject not only perceives the tactile feedback
but also interprets the information and decides on the control
action. Compared to simple psychometric testing, this is closer to
controlling a real prosthesis. However, some of the components
that exist in the realistic control loop (e.g., incidental feedback)
are not available in this paradigm. This method has been used to
determine the frequency characteristics of the human controller
relying on tactile feedback (Schmid and Bekey, 1978), and the
impact of stimulation parameters and precision of feedback
information (Schori, 1970; Paredes et al., 2015) on the quality of
closed-loop control.

Controlling an actual prosthesis while visually and auditory
blinding the subjects is a popular approach that is used in many
studies in the literature (Raspopovic et al., 2014; Valle et al.,
2018b). In reality, this paradigm is not that different from the
aforementioned closed-loop tracking, where an actual prosthesis
is used in place of a simulated system. Not surprisingly, such
experiments consistently demonstrate that the explicit feedback
is beneficial for prosthesis control performance. These studies
can be used to demonstrate that a particular feedback interface
is effective in transmitting desired information, but they do
not tell us much about the expected benefits in the actual
clinical applications.

In some studies, the subjects can freely observe the prosthesis
motion, but the setup is still not fully realistic. For example,
the prosthesis can be placed on the table in front of the subject
instead of attaching it to the forearm or residual limb (Ninu
et al., 2014; Dosen et al., 2015b). The advantage of this approach
is that it is possible to investigate specific aspects of the user-
prosthesis interaction, while blocking cofounding factors (e.g.,
prosthesis weight). Finally, the most realistic setup is when the
prosthesis is mounted on the subjects and used to accomplish
a functional task (Chatterjee et al., 2008; Brown et al., 2015;
Pistohl et al., 2015; Clemente et al., 2016, 2019; Raveh et al., 2017;
Markovic et al., 2018a).

The motor control perspective discussed in the present
manuscript can be used to propose a set of guidelines for
designing and conducting experiments evaluating closed-loop
prosthesis control. The underlying principle is that the feedback
needs to be approached holistically as a component inseparably
connected to the other parts of the motor control loop (Figure 1).
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FIGURE 4 | Closed-loop control with supplementary feedback. The interplay between intrinsic feedback sources such as vision and audition with supplementary
feedback (including the stimulator and coding scheme) depends on the fidelity of the command interface and the controlled system. These factors can be
investigated experimentally by combining virtual and realistic command interfaces and systems, different feedback methods and coding schemes, and allowing or
blocking the sources of incidental feedback (e.g., blinded subjects).

Therefore, when designing experiments, it is useful to consider,
describe and/or address not only the feedback interface but the
other segments of the framework as well. This leads us to the
following set of recommendations:

• The operation of a prosthesis control interface needs to
be clearly explained, so that the level of variability in
the generation of control signals can be estimated (or
even better, explicitly reported). This variability relates to
signal fluctuations around a desired level as well as to
the consistency with which different signal levels can be
produced across trials.
• The stimulation method and information-coding scheme

translating prosthesis variables into stimulation parameters
need to be clearly specified and/or psychometrically tested
in order to be able to estimate the uncertainty with which
the subject can perceive and interpret the feedback. As
discussed in section “State estimation,” humans consider
both control and sensory noise when developing optimal
policies and that is why it is important to describe the
characteristics of both noise sources.
• It is important to know the level of experience of a subject

participating in the experiment. The experience determines
the existence and quality of internal models, and thereby the
weight that the subject would place on the feedback versus
feedforward approach to control.
• It is relevant to test the proposed closed-loop control

interface in subjects with different experience (naïve versus
experienced users of myoelectric prostheses) as well as
across multiple sessions. The latter is important for
assessing the impact of learning and adaptation, and the
effect that feedback might have on the development of
internal models.

• For studies aiming to demonstrate clinical impact, the
performance of developed closed-loop control should be
assessed without blocking incidental sources of feedback
(e.g., vision and audition) to allow for sensory integration,
which will anyway take place during actual clinical use.
• The intended role and application of proposed feedback

needs to be clearly stated. For example, is the intention
to use the feedback for online modulation or to provide
an end-point feedback to facilitate adaptation across trials?
Is the feedback aimed at assisting forward and/or inverse
model development?

The proposed points are “ideal” requirements and we are
fully aware of the challenges that the researchers in this field
are facing (e.g., difficulties in recruiting amputee subjects).
Therefore, it is clear that it would be very difficult (probably
unfeasible) to address all the points within a single study. The
aforementioned guidelines should be understood as a list of
factors that can be considered and/or discussed to make the study
as complete as possible.

Discussion
In this section, we emphasize certain strategic areas that need
to be further investigated in order to design effective interfaces
for supplementary feedback in prosthetics. These areas arise
directly from the framework that is proposed and discussed in
the present manuscript.

Our framework advocates that the challenge of effective
closed-loop prosthesis control should be approached from the
perspective of human motor control. Therefore, we should first
develop a better understanding of how different components
(internal models) and motor control processes (estimation,
optimal policy) operate in an amputee subject. To this
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aim, we need theoretical and experimental tools to model,
predict and assess those components and processes during
myoelectric control and prosthesis operation. We have recently
developed methods along this line to measure the strength
of internal models in this context (Johnson et al., 2017a;
Blustein et al., 2018a; Marasco et al., 2018). In addition,
as indicated in sections “Biofeedback to facilitate forward
models (efference copy)” and “Delivering feedback to improve
feedforward control (inverse model),” some studies have already
explicitly addressed the interaction between supplementary
feedback and internal models. These tests provided important
insights about the interplay between feedforward and feedback
mechanisms during prosthesis control as well as some practical
guidelines for designing more effective feedback interfaces. The
main hypothesis stemming directly from the motor control
framework is that to be effective, the feedback needs to
be designed so that it makes an impact after it has been
integrated with the other components of the motor control
loop. Still, almost nothing is known about the cost functions
that govern prosthesis control or the optimal policies that
amputees use to accomplish different daily life tasks. Shedding
light on these components is an imperative to achieve full
understanding of optimal control as it applies to prosthetics.
This will pave the way for the development of an effective
feedback interface, which can make an impact in a daily
life of an amputee.

The assessment of feedback is another important topic to
be further developed. Presently, it is very difficult to compare
the results across different studies since they use substantially
different experimental tasks and outcome measures. Most of
the clinical tests that are normally used to evaluate prosthesis
operation were not really designed to assess the use of closed-
loop control. For example, box and blocks, SHAP and clothespin
tests can all be accomplished by exerting maximum grasping
force, and the grasp economy (e.g., penalizing excessive forces)
is not included in the assessment. Therefore, researchers are
forced to come up with their own tasks, which leads to
a variety of tests. Even in the context of delicate grasping,
the selected tasks can be very different, from virtual eggs
(Clemente et al., 2016) and sensorized blocks (Meek et al.,
1989; Cipriani et al., 2014), which simulate sensitive and brittle
objects, to cherry picking (Tyler, 2016) and cup stacking
tasks (Markovic et al., 2018a; Clemente et al., 2019) that
employ compliant objects. Nevertheless, some of the tests
already begin to be applied across research groups (e.g., virtual
egg and cup stacking). A promising initiative to develop a
standardized battery of tests has been undertaken by the
group around HAPTIX project. Importantly, the proposed
tests span different scenarios, including an application of
Fitts channel capacity to implicit grasp force (Thumser et al.,
2018; George et al., 2019), performing functional tasks (e.g.,
object foraging; Beckler et al., 2019), assessing prosthesis
incorporation (Blustein et al., 2018b), and fusing together
compensatory motions with eye tracking metrics (Lavoie
et al., 2018). A particularly relevant step is the assessment
of the prosthesis use longitudinally, across multiple sessions
and ideally, in a home environment. And indeed, a recent

study has demonstrated that prosthesis performance as well
as user experience change dynamically with long-term use
(Schofield et al., 2020).

The many methods that are available to provide feedback
differ also in the amount of information that they transmit
to the subject. Most studies deliver feedback in the form of
a continuous tactile signal (e.g., transmitting force through
amplitude or frequency of vibrations). Nevertheless, it has been
recently proposed to use a low-bandwidth discrete feedback
communicating only contact events (Clemente et al., 2016).
On the other side, some researchers tested approaches that
increase the communication bandwidth, e.g., through the use
of visual interfaces [e.g., augmented reality glasses (Clemente
et al., 2017; Markovic et al., 2017)] or acoustic signals (Gonzalez
et al., 2012; Shehata et al., 2018b). This can be also done
through the tactile sense by employing electrodes that integrate
a matrix of stimulating pads (Štrbac et al., 2016). Such
interfaces can deliver dynamic stimulation patterns that are
modulated in location and time and that can communicate
multiple feedback variables simultaneously. In addition, matrix
electrodes can be used to generate spatially distributed tactile
sensations that mimic natural feedback provided by biological
hands (e.g., a pressure distribution when grasping an object)
(Franceschi et al., 2017; Seminara et al., 2019), especially if
coupled with the recent technologies for advanced sensing
(e.g., artificial skins; Kim et al., 2014). This research is still
in an early stage and it is yet to be investigated what impact
such feedback can have on the prosthesis performance and
sense of embodiment.

Although outside the scope of this review, the topic
of supplementary feedback, particularly seen through the
lens of motor control, has important ramifications for our
understanding of co-adaptation (e.g., Hahne et al., 2017) and
abstract decoding (e.g., Dyson et al., 2018) within the realm
of pattern recognition and machine learning. Recent work in
this area has benefited from insight within the realm of motor
control to provide improved performance (e.g., Ison et al.,
2016). As we have argued throughout, the role of feedback
is inherently intertwined with that of control and the user
(see Figure 1). A specific approach to control can directly
affect the intrinsic feedback cues that the user can rely upon
when estimating the state. For example, in a conventional
proportional controller, the user can estimate the prosthesis
grasping force using natural muscle proprioception (sense of
contraction) (Markovic et al., 2018b), which is not possible
when employing a gated-ramp controller (Humbert et al.,
2002; Saunders and Vijayakumar, 2011), where the user can
instead rely on the time elapsed from the moment of contact.
A better appreciation for these interactions will lead to better
feedback, better control, and ultimately, better performance and
user satisfaction.

CONCLUSION

In summary, supplementary feedback has been investigated for
use in prostheses for more than 50 years, but has typically
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failed to make a clinical impact due to the availability of
incidental feedback, the choice of feedback provided, and the
inherent noise in many of the sensory feedback information
sources. Recent studies have finally started to make a surge in
the amount of impactful work in this area. All these works
have been designed so that the supplementary feedback makes
an impact after integration with the other components of
the motor control loop. Many of them have either targeted
lower levels of uncertainty (often through invasive techniques),
transmitted information that is not already available through
the incidental feedback (e.g., myoelectric control signal) or
have looked to the role of feedback in providing information
outside the realm of real-time control, given that feedback
can be an effective instrument for learning and adaptation.
As the field continues to advance it is important that we
communicate clearly on how each of our studies addresses the
various facets of the complicated process (addressed in the
guidelines section), and consider the impact of our focused
work within the broader process of motor control. Furthermore,
this perspective teaches us that feedback and control are
essentially inseparable, and therefore, developing prostheses
that allow more reliable and sensitive force and position
control is an important push towards an effective closed-
loop system.
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APPENDIX – LIST OF SUPPLEMENTARY FEEDBACK STUDIES IN PROSTHESIS
CONTROL

TABLE A1 | Supplementary sensory feedback in prostheses.

Quantitative improvement

in performance (vision and

feedback) compared with

vision alone?

Experimental Stimulation Virtual

Input Output group position environment Real life References

Contact pressure E TR RL Beeker et al., 1967

Grasp force V TR RL Kawamura and Sueda, 1969

Joint position V TH RL Mann and Reimers, 1970

Grasp force N TR and TH Median n. Clippinger et al., 1975

Grasp force E TH RL Prior and Lyman, 1975

Grasp force, position N TR Radial and Ulnar nerve Reswick et al., 1975

Grasp force E TR RL Rohland, 1975

Position, Grasp force V,E N.A. N.A. Shannon, 1976

Grasp force, position E TR RL Schmidl, 1973, 1977

Grasp force E N.A. N.A. Shannon, 1979

Grasp force E TR RL Kato et al., 1979

Grasp force E TR RL Scott et al., 1980

Grasp force D AB Forearm Yes Meek et al., 1989

Position E AB Array of electrodes in belt Tupper, 1989

Grasp force V,D AB Upper arm Yes, but not
significant

Patterson and Katz, 1992

Grasp force E AB Wang et al., 1995

Grasp force E Nerve injury patients
and amputees

Upper arm Lundborg et al., 1998

Grasp force E AB Neck Yes Zafar and Van Doren, 2000

Grasp force, finger
position

EPP Amputees with
cineplasty

RL Weir et al., 2001

Position N TR Median nerve Dhillon and Horch, 2005

Grasp force V TR RL Pylatiuk et al., 2006

Touch D TSR Reinnervated area Kuiken et al., 2007a

Touch D TSR Reinnervated area Kuiken et al., 2007b

Grasp force V AB Upper arm Chatterjee et al., 2008

Grasp force V AB Upper arm Cipriani et al., 2008a

Grasp force D AB Toes Panarese et al., 2009

Grasp force D TSR Reinnervated area Sensinger et al., 2009

Vibration V TSR Reinnervated area Schultz et al., 2009

Orientation,
discrimination

D TSR Reinnervated area Marasco et al., 2009

Position Auditory AB Auditory González et al., 2010

Gripping force Haptic stylus AB Fingers Stepp and Matsuoka, 2010

Position Skin stretch AB Upper arm Wheeler et al., 2010

Position and force N TR Ulnar and median n. Horch et al., 2011

Grasp force V AB Forearm – array Saunders and Vijayakumar, 2011

Touch D TSR RL Marasco et al., 2011

Passive hand touch D TR RL Antfolk et al., 2012

Hand configuration Auditory AB Auditory Yes Gonzalez et al., 2012

Grasp force D TSR Reinnervated area Yes Kim and Colgate, 2012

Grasp force V AB Upper arm Stepp and Matsuoka, 2012

Grasp force V,D AB Index finger Yes Tejeiro et al., 2012

Pressure V,D TR RL Antfolk et al., 2013b

(Continued)
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TABLE A1 | Continued

Quantitative improvement

in performance (vision and

feedback) compared with

vision alone?

Experimental Stimulation Virtual

Input Output group position environment Real life References

Passive hand touch V,D TR RL Antfolk et al., 2013a

Contact V AB Fingers Cipriani et al., 2014

Grasp force, velocity V,D AB Forearm Ninu et al., 2014

Grasp type, aperture
size

Augm. reality AB Visual Markovic et al., 2014

Grasping force E AB Forearm Yes Jorgovanovic et al., 2014

N.A. N TH Ulnar nerve Ortiz-Catalan et al., 2014

Grasping force N TR Median, Radial, Ulnar
nerves

Yes Tan et al., 2014

Grasping force V, joint torque AB, TR Forearm Brown et al., 2015

EMG amplitude Visual AB, TR Visual Yes Dosen et al., 2015a

Grasping force Visual AB Visual Dosen et al., 2015b

Grasp force, position N TR Median, Radial, Ulnar
nerves

Schiefer et al., 2016

Contact V TR RL Yes Clemente et al., 2016

EMG amplitude E AB, TR Forearm Schweisfurth et al., 2016

Finger positions E AB Forearm Patel et al., 2016

Grasp force V TR RL Yes Strbac et al., 2017

Grasp force E AB Forearm Dosen et al., 2017

Grip force, hand
aperture

Augm. reality AB Visual Clemente et al., 2017

EMG amplitude, hand
aperture, force and
contact

Augm. reality, sound AB Visual, Audio Yes Markovic et al., 2017

Grasp force V AB Forearm De Nunzio et al., 2017

Grasp force, position N TR Median, Radial, Ulnar
nerves

Schiefer et al., 2018

Grasp force, position N TR Median, Radial, Ulnar
nerves

Yes Graczyk et al., 2018

Position Kinesthetic illusion TMR RL Yes Marasco et al., 2018

Contact V AB Forearm Raveh et al., 2017

Pattern rec class
velocity

Auditory AB Audio Yes Shehata et al., 2018a

Contact V,D AB Forearm Yes Aboseria et al., 2018

Grasping force Visual AB Visual Markovic et al., 2018b

Grasping force, state
change and contact

V TR RL Yes Markovic et al., 2018a

Touch, pain E TR RL Osborn et al., 2018

Grasp force N TR Median, Ulnar Yes Valle et al., 2018a

Contact, Grasp force,
position

N TR Median, Ulnar George et al., 2019

Grasp force, position N TR Median, Ulnar Zollo et al., 2019

Grasp force V, visual AB Forearm Schweisfurth et al., 2019a

Grasp force E TR Ulnar nerve Yes Clemente et al., 2019

Grasp force, hand
aperture

V AB Forearm Pena et al., 2019

Grasp force, hand
aperture

E TR Ulnar and median nerves D’Anna et al., 2019

Hand aperture Skin stretch AB, TR Upper arm Battaglia et al., 2019

Grasping force D TMR RL Schofield et al., 2020

E, electrical surface stimulation; EPP, extended physiological proprioception (combination of sensory feedback and control); N, nerve stimulation; D, direct pressure;
V, vibration; AB, able-bodied; TR, transradial amputation; TH, transhumeral amputation; TMR, targeted muscle reinnervation; TSR, targeted sensory reinnervation;
RL, residual limb.
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