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Around 30% of endometrial cancers (EC) are mismatch repair (MMR) deficient, mostly as

a consequence of mutations acquired during tumorigenesis, but a significant minority is

caused by Lynch syndrome (LS). This inherited cancer predisposition syndrome primes

an anti-cancer immune response, even in healthy carriers. We sought to explore the

intra-tumoral immunological differences between genetically confirmed LS-associated

MMR-deficient (MMRd), sporadic MMR-deficient, and MMR-proficient (MMRp) EC.

Endometrial tumors from women with known LS were identified (n = 25). Comparator

tumors were recruited prospectively and underwent microsatellite instability (MSI) testing,

immunohistochemistry (IHC) for MMR expression and MLH1 methylation testing. Those

found to have MLH1 hypermethylation formed the sporadic MMR-deficient group (n =

33). Those found to be mismatch repair proficient and microsatellite stable formed the

MMR-proficient group (n = 35). A fully automated monoplex IHC panel was performed

on sequential formalin-fixed paraffin-embedded tumor sections to identify CD3+, CD8+,

CD45RO+, FoxP3+, and PD-1+ immune cells, and PD-L1 expression by tumor/immune

cells. Two independent observers quantified immune marker expression at the tumor

center and invasive margin. Mean and overall compartmental T-cell counts generated

standard (binary: Low/High) and higher resolution (quaternary: 0–25, 25–50, 50–75,

75–100%) immune scores, which were used as explanatory features in neural network,

support vector machine, and discriminant predictive modeling. Overall T-cell counts were

significantly different between the three cohorts: CD3+ (p = <0.0001), CD8+ (p =

<0.0001), CD45RO+ (<0.0001), FoxP3+ (p=<0.0001), and PD1+ (p=<0.0001), with

LS-associated MMR-deficient tumors having highest infiltrations. There were significant

differences in CD8+ (p = 0.02), CD45RO+ (p = 0.007), and PD-1+ (p = 0.005)

T-cell counts at the invasive margin between LS-associated and sporadic MMR-deficient
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tumors, but not between sporadic MMR-deficient andMMR-proficient tumors. Predictive

modeling could accurately determine MMR status based on CD8+ T-cell counts

within the tumor center alone. This study shows that LS-associated and sporadic

MMR-deficient EC are distinct immunological entities, which has important implications

for treatment and prognosis.

Keywords: Lynch Syndrome, endometrial cancer, mismatch repair, microsatellite instability, immune

microenvironment, PD-1, immune checkpoint, predictive modeling

INTRODUCTION

In the UK, endometrial cancer (EC) is the fourth most common
malignancy in women, and its incidence is rising (1). Most EC
is sporadic but a significant minority is caused by inherited
pathogenic variants in one of the mismatch repair (MMR) genes,
MLH1,MSH2,MSH6, or PMS2, known as Lynch syndrome (LS)
(2). A dysfunctional MMR system fails to identify and correct
DNA replication errors, potentiating malignant transformation
(3–5). The acquisition of point mutations within microsatellite
regions is known as microsatellite instability (MSI), and is a
hallmark of MMR deficient tumors (6, 7).

MMR deficiency is a feature of LS (LS-associated MMRd),
but also arises sporadically (sporadic MMRd) as a consequence
of hypermethylation of the MLH1 promoter region (8).
Microsatellite instable EC tumors are characterized by dense
immune infiltrates (9, 10) due to the translation of neoantigens,
called frameshift peptides (FSP), derived from non-synonymous
point and frameshift mutations in protein-coding DNA (11, 12).
Some of these FSPs are processed into major histocompatibility
complex (MHC) compatible FSP-epitopes that are recognized
by T-cells. In colorectal cancer (CRC), MSI is associated with
upregulation of genes relating to anti-tumor cytotoxicity, heavy
cytotoxic T-cell infiltration, and a favorable prognosis (13).
Galon and colleagues have shown that the “Immunoscore,” which
quantifies the T-cell density at the invasive margin (IM) and
tumor center (CT), is strongly prognostic (13–22); in fact, in
CRC the Immunoscore is of superior prognostic value to MSI
status (13). This may indicate that the survival benefit of the
MSI phenotype is derived from the immunological response to
these tumors. The tumor immunemicroenvironment is dynamic;
iterative selection pressures favor the survival of cancer cell
clones that have evolved immune evasion mechanisms (23, 24).
These include upregulation of the PD-1/PD-L1 axis leading to
receptor-mediated inhibition of PD-1 expressing cytotoxic T-
cells (25). In addition, the upregulation of FoxP3+ regulatory
T-Cells (Tregs) has been described in MSI tumors (26); together,
these mechanisms prevent the priming of activated, cytotoxic T
cells (27).

The mechanisms of immune evasion are potential therapeutic
targets. Monoclonal antibodies against the PD-1 receptor
reverse immune quiescence by overcoming tumor-based PD-L1
inactivation of anti-tumor cytotoxic T-cells (27). The success of
PD-1 immune checkpoint inhibitors in MMR-deficient tumors
is well-established in CRC (28, 29), and expected in EC (30).
However, the impact of such therapies in LS is yet to be
described. Recent data suggest that the immunological signatures

of sporadic and LS-associated MMR-deficient EC are different;
in a study where germline confirmation of LS status was
not possible, “likely”–LS-associated EC were characterized by
a higher cytotoxic T-cell density than sporadic MMR-deficient
EC (9).

The aim of this study was to confirm and build on
previous work by directly comparing the immunological
landscape of proven LS-associated MMR-deficient, sporadic
MMR-deficient and MMR-proficient EC. We hypothesized
that distinctive immunological profiles characterizing each
tumor subgroup would enable their discrimination by machine
learning algorithms. Thus, we employed conventional automated
immunohistochemistry (IHC) with subsequent manual counts of
immune cells. These data then informed probabilistic modeling
to identify immunological differences between the cohorts.

METHODS

Ethics and Regulatory Approvals
The study was approved by the North Lancaster Research Ethics
Committee (ref: 15/NW/0733 and 16/NW/0164) and sponsored
by the University of Manchester, UK. All participants gave
written, informed consent for their data and tumor tissue to be
used for research.

Participants and Tumor Collection
LS-associated tumors were collected from women with germline
proven LS, identified through Lynch Syndrome UK, a patient
support group, and the LS clinical database held at the
Manchester Centre for Genomic Medicine at St. Mary’s Hospital
(31). Formalin fixed paraffin embedded (FFPE) tumor blocks
were obtained from the treating institution and a representative
haematoxylin and eosin (H&E) stained slide underwent
contemporaneous review by two consultant gynecological
pathologists to confirm endometrial site, histological subtype,
grade, extent of myometrial invasion, lymphovascular space
invasion (LVSI), and to confirm loss of expression of the
corresponding MMR protein by IHC.

The sporadic MMR-deficient and MMR-proficient tumors
were collected prospectively from women undergoing primary
treatment for EC at St. Mary’s Hospital, a large Gynecological
Cancer Centre in the North West of England, between 2015
and 2017 (Figure 1). Consecutive tumors were tested for MSI
and MMR protein expression (using IHC). Those MSI EC
tumors found to have MLH1 or PMS2 loss on IHC were
further tested for MLH1 promoter methylation; tumors with
MLH1 hypermethylation comprised the sporadic MMR-deficient
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FIGURE 1 | Study flow schema. EEC, Endometrioid Endometrial Cancer; CC, Clear Cell Endometrial Cancer; CCS, Carcinosarcoma of the uterus; G, Grade; NK, Not

known; MMRd, mismatch repair deficient; MMRp, mismatch repair proficient.

cohort. Tumors that expressed all MMR proteins and showed
microsatellite stability (MSS) comprised the MMR-proficient
cohort. Sporadic MMR-deficient (n = 35) and MMR-proficient
(n = 35) ECs were selected for inclusion by matching them to
the LS-associated (n = 35) ECs according to their pathological

parameters, principally, tumor histology, stage and grade. Those
with poor tissue fixation or insufficient EC content were excluded
from the study. Representative tumor blocks were either from
the hysterectomy specimen (n = 66) or diagnostic biopsy
specimen (n= 27).

Frontiers in Immunology | www.frontiersin.org 3 January 2020 | Volume 10 | Article 3023

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ramchander et al. Immune Landscape of Endometrial Tumors

FIGURE 2 | The components of immune scores I1:I10 and Q1:Q10. Each immune score is defined by the density of a set panel of immune markers (CD3, CD8,

CD45RO, FoxP3, PD-1) at the tumor center (CT) +/– invasive margin (IM) relative to the corresponding densities across all tumors. The I-scores define each

lymphocyte population using the median threshold methodology (0:Low, 1:High), while the Q-scores are defined using quartile ranges (0: 0–25%, 1: 25–50%, 2:

50–75%, 3: 75–100%). Therefore, for any given I-score, the corresponding Q-score presents a higher resolution scoring system. Highlighted boxes indicate inclusion

of that particular lymphocyte population within an immune score. I-score, binary immune score; Q-score, quaternary immune score; CT, Tumor Center; IM,

Invasive margin.

Immunohistochemistry
All IHC analysis was performed using the fully automated
Bond Max or Bond Rx (Leica Biosystems, Wetzlar, Germany)
platforms. Automated IHC to detect MMR protein expression
was performed according to standardized clinical protocols
(Supplementary Appendix 1). Automated IHC protocols to
detect CD3, CD8, CD45RO, FoxP3, PD-1, and PD-L1 expression
were optimized using the Ventana BenchMark ULTRA IHC/ISH
Staining Module (Ventana Co., Tucson, AZ, United States) and
the OptiView, 3,3’ diaminobenzidine version 5 detection system
(Ventana Co.) (Supplementary Appendixes 2, 3). Following
protocol optimization, six sequential tissue sections per tumor
were cut and stained. The order in which each of the six
tissue sections were stained with the six primary antibodies
was standardized across tumors. All tissue sections were stained
within a week of sectioning.

Microsatellite Instability Analysis
Microsatellite instability was analyzed according to standardized
clinical protocols using the MSI analysis system v1.2 (Promega,
Wisconsin, United states) (32). Briefly, fluorescent-labeled
primers were used to co-amplify seven markers, including five

mononucleotide-repeat markers (BAT-25, BAT-26, NR-21, NR-
24, and MONO-27), and two control pentanucleotide-repeat
markers (Penta C and Penta D). Matching sequence sizes
between EC and lymphocytic tissue from the same patient in
at least four mononucleotide microsatellite loci was considered
microsatellite stable (MSS). A discrepancy in more than two
mononucleotidemicrosatellite loci was consideredMSI (depicted
in Supplementary Appendix 1).

Methylation Analysis
Reflex MLH1 methylation testing was performed on MLH1
and/or PMS2 deficient tumors (33). Briefly, DNA extracted from
10µm tumor scrapings underwent sodium bisulfite conversion
using the Epitect Plus FFPE kit (Qiagen, UK), according to
manufacturer’s instructions. The purified and eluted product
underwent amplification. The sequence of the MLH1 region
of interest is shown in Supplementary Appendix 1. Amplicons
were sequenced using the Pyrosequencer (PSQ 96MA). Two
independent blinded scientists interpreted the Pyrograms. A
significant result was recorded if >10% methylation was recoded
at each cytosine in >66% of the triplicates.
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TABLE 1 | Patient demographics and tumor characteristics.

LS-associated

MMRd

(n = 25)

Sporadic

MMRd

(n = 33)

Sporadic

MMRp

(n = 35)

n (%) n (%) n (%) p-value

SPECIMEN TYPE

Biopsy 5 (20) 12 (36) 10 (29) (p = 0.4)

Hysterectomy 20 (80) 21 (64) 25 (71)

Mean age at

diagnosis

52 67 62 (p =

<0.0001)

STAGE

I–II 19 (76) 29 (88) 28 (80) (p = 0.5)

III–IV 6 (24) 4 (12) 7 (20)

GRADE

G1–2 20 (80) 21 (64) 23 (66) (p = 0.4)

G3 5 (20) 12 (36) 12 (34)

HISTOLOGY

Endometrioid 24 (96) 29 (88) 25 (71) (p = 0.1)

Non-endometrioid 1 (4) 4 (12) 10 (29)

High grade serous 0 0 4

Clear cell 1 4 2

Carcinosarcoma 0 0 4#

LS-associated MMRd, Lynch Syndrome-associated mismatch repair deficient; Sporadic

MMRd, Sporadic mismatch repair deficient; MMRp, mismatch repair proficient. #Epithelial

component is endometrioid.

Immune Scoring
MMR IHC slides were light microscope-scored as per standard
clinical care (34). An MMR proficient result was recorded
if all four MMR proteins were seen in >80% of the
tumor. Staining intensity observed in the internal controls
(immunopositive lymphocytes, non-malignant stroma, or benign
endometrium) was used to inform the interpretation of MMR
protein expression.

Slides stained for CD3, CD8, CD45RO, PD-1, and FoxP3
were digitalized using a Pannoramic Scan II (3D Histech,
Budapest, Hungary) and interpreted using CaseViewer v2.1
(3D Histech). Investigators were blinded to MMR status and
clinicopathological characteristics at the time of scoring. Immune
cells with positive membranous staining (CD3, CD8, CD45RO,
PD-1) or nuclear staining (FoxP3) were counted within 200
µm2 regions of interest (ROI) at the tumor center (CT) and
invasive margin (IM; where the tumor abuts normal stromal
tissue) using the cell counter feature on CaseViewer. The
ROI were initially selected using CD3 immunostained slides
(Supplementary Appendix 4). Eight 200 µm2 ROI with the
highest density of CD3+ T-cells were selected at the CT (x4) and
the IM (x4). At the IM, ROI were selected to include 50% healthy
tissue abutting the tumor, and 50% tumor tissue. At the CT, ROI
were selected to include representative portions of stroma and
malignant epithelial glands relative to the tumor grade; higher
grade tumors by definition have higher gland:stroma ratios.
Intra-stromal and intra-epithelial immune cells were counted.
For diagnostic biopsy specimens, only CT (x4) ROI were defined,
as the IM could not be discerned. A second observer validated

TABLE 2 | Immune cell counts by molecular group and location within the tumor.

Molecular subgroup Marker Mean (SE)

Overall Tumor center Invasive margin

LS-associated MMRd CD3 1,088 (98) 590 (53) 386 (52)

Sporadic MMRd CD3 918 (83) 617 (59) 241 (39)

MMRp CD3 581 (63) 380 (40) 157 (32)

LS-associated MMRd CD8 583 (72) 291 (33) 287 (45)

Sporadic MMRd CD8 357 (30) 233 (22) 116 (20)

MMRp CD8 222 (31) 140 (18) 80 (17)

LS-associated MMRd CD45RO 1,165 (133) 597 (82) 548 (81)

Sporadic MMRd CD45RO 968 (113) 653 (83) 296 (52)

MMRp CD45RO 693 (75) 450 (41) 236 (47)

LS-associated MMRd FoxP3 133 (17) 72 (8) 61 (12)

Sporadic MMRd FoxP3 86 (8) 58 (7) 28 (4)

MMRp FoxP3 69 (12) 46 (9) 23 (6)

LS-associated MMRd PD-1 275 (29) 156 (18) 118 (20)

Sporadic MMRd PD-1 157 (19) 108 (13) 49 (10)

MMRp PD-1 125 (19) 83 (13) 42 (10)

LS-associated MMRd, Lynch Syndrome-associated mismatch repair deficient; Sporadic

MMRd, Sporadic mismatch repair deficient; MMRp, mismatch repair proficient.

that the selected ROI were (1) the densest CD3+ T-cell areas
on the slide and (2) the IM ROI included equal proportions of
healthy/tumor tissue. In a handful of cases, ROI were re-selected
after discussion. Next, ROI were selected for scoring CD8+ T-
cells, CD45RO+ T-cells, FoxP3+ regulatory T-cells, and PD-1+
immune-cells on sequential slides by geographicallymatching the
ROI selected to score CD3+ T-cells. In total, 3,180 200 µm2 ROI
were manually scored using CaseViewer cell marker overlays.
Permanent records of all ROI and the manually placed scoring
overlays exist. Tumor expression of PD-L1 was scored with a
light microscope using a semi-quantitative scoring method as
described elsewhere (35). Membranous expression of PD-L1 on
tumor cells was considered positive tumor staining. Staining
intensity was scored as weak (1+), moderate (2+), and strong
(3+). Greater than 5% tumor positivity at ≥2+ intensity was
considered positive tumor expression of PD-L1. Immune cell
expression of PD-L1 was also recorded as absent, focal, or diffuse.
Samples with focal or diffuse staining were recorded as positive.
A subset of immunostained slides (n = 100) was second scored,
and a Cronbach’s alpha of 0.92 was achieved.

Statistical Analysis and Probabilistic
Modeling
Software and Data Tidying
Statistical analyses were conducted in R 3.4.0 × 64/RStudio IDE
1.0.143. Packages additional to base R were: caret, e1071, pROC,
MASS, ggplot2, plotly, heatmaply, viridis, RColorBrewer with
relevant dependencies.

Descriptive Variance Analysis
IHC count normality distributions were inspected by
histogram and quantile-quantile (QQ) plots of variables
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TABLE 3 | The difference in immune-profile expression by molecular group and

location within the tumor.

Molecular subgroup Marker p-value

Overall Tumor

center

Invasive

margin

Overall (LS-associated MMRd vs.

Sporadic MMRd vs. MMRp)

CD3 <0.0001 <0.0001 <0.0001

LS-associated vs. sporadic MMRd CD3 0.09 0.4 0.054

LS-associated vs. MMRp CD3 0.0001 0.002 <0.0001

Sporadic MMRd vs. MMRp CD3 0.0024 0.003 0.006

Overall (LS-associated MMRd vs.

Sporadic MMRd vs. MMRp)

CD8 <0.0001 <0.0001 <0.0001

LS-associated vs. sporadic MMRd CD8 0.04 0.2 0.02

LS-associated vs. MMRp CD8 <0.0001 <0.0001 <0.0001

Sporadic MMRd vs. MMRp CD8 0.001 0.001 0.004

Overall (LS-associated MMRd vs.

Sporadic MMRd vs. MMRp)

CD45RO <0.0001 0.08 <0.0001

LS-associated vs. sporadic MMRd CD45RO 0.008 0.2 0.0007

LS-associated vs. MMRp CD45RO <0.0001 0.04 0.0004

Sporadic MMRd vs. MMRp CD45RO 0.04 0.1 0.1

Overall (LS-associated MMRd vs.

Sporadic MMRd vs. MMRp)

FoxP3 <0.0001 <0.0001 <0.0001

LS-associated vs. sporadic MMRd FoxP3 0.04 0.08 0.08

LS-associated vs. MMRp FoxP3 0.0002 0.0009 0.0006

Sporadic MMRd vs. MMRp FoxP3 0.02 0.02 0.03

Overall (LS-associated MMRd vs.

Sporadic MMRd vs. MMRp)

PD-1 <0.0001 <0.0001 <0.0001

LS-associated vs. sporadic MMRd PD-1 0.002 0.04 0.005

LS-associated vs. MMRp PD-1 <0.0001 0.0007 0.0001

Sporadic MMRd vs. MMRp PD-1 0.09 0.05 0.1

LS-associated MMRd, Lynch Syndrome-associated mismatch repair deficient; Sporadic

MMRd, Sporadic mismatch repair deficient; MMRp, mismatch repair proficient. Unless

otherwise stated p values represent Kruskal Wallis with Dunn post hoc, controlled for by

Benjamini-Hochberg FDR.

All statistically significant results (p < 0.05) are in bold.

and linear modeling residuals (Supplementary Appendix 5).
Heteroscedasticity was assessed by Levene’s, Bartlett and
Fligner-Killeen. Parametric variance was inspected by one-way
ANOVA with Tukey’s HSD post-hoc using the Benjamini
Hochberg (FDR) correction. Non-parametric data were
analyzed by Kruskal-Wallis with post-hoc Dunn test and
Benjamini-Hochberg. Comparisons with Games-Howell
assessed effects of heteroscedasticity and unequal sample
sizes as necessary. Statistical adjustments ensured observer
variance or diagnostic vs. hysterectomy sampling did not impact
downstream modeling. Machine learning schemas are depicted
in Supplementary Appendixes 6, 7.

Immune Score Calculations
Ordinal value transformation defined median thresholds for
CD3CT, CD3IM, CD8CT, and CD8IM. The median threshold
methodology is concordant with the original “Immunoscore”
defined by Galon et al. (16). These formed immune scores
I1 and I2. Subsequent scores I3:I10 incorporated additional

markers beyond CD3 and CD8 (these additional markers
were CD45RO, PD-1 and FoxP3; immune score compositions
are outlined in Figure 2). ROI of each patient’s lymphocyte
population per CT and IM location were summed and
recoded as either 0 (low) or 1 (high) with respect to the
cohort’s median. Populated binary substitution matrices were
used to generate immune scores I1:I10, which represent
ten combinations of lymphocyte markers from different
tumor regions.

Original I1:I10 immune score resolutions were increased via
a quaternary substitution approach wherein summed ROI of
a lymphocyte population were recoded as either 0 (0–25%), 1
(25–50%), 2 (50–75%), or 3 (75–100%) with respect to quartile
ranges and used to generate quaternary immune scores (Q-
scores) Q1:Q10. Specific combinations of lymphocyte markers
for Q1:Q10 immune scores exactly match those of the I1:I10
feature selection. Thus, for any given I-score, the corresponding
Q-score presents a higher resolution scoring system.

Statistical Modeling—Immune Scores
Immune scores I1:I10 and Q1:Q10 were assessed for their
predictive classification power of a tumor’s molecular profile.
Three-class predictions (LS-associated MMR-deficient
vs. sporadic MMR-deficient vs. MMR-proficient): A 75
observation equal-class dataset was randomly subsetted from
observation data using molecular profile as the response
variable. Two-class predictions ([LS-associated MMR-
deficient + sporadic MMR-deficient] vs. MMR-proficient):
The molecular profile was recoded into a new two-class response
variable of “MMR-deficient” or “MMR-proficient,” and a 70
observation equal-class dataset was randomly subsetted from
observation data.

Predictive modeling details (partitioning, model construction,
method type, model performance, model tuning and overfitting)
are provided in Supplementary Appendix 6. Predictive power
was assessed by confusion matrices and receiver operating
characteristic (ROC) curves with associated area under curve
(AUC) values [including multiclass generalization of AUC by
Hand and Till (36)].

Statistical Modeling—Biomarker Counts
Predictive modeling was extended to accommodate summed
raw counts of each lymphocyte location as explanatory
variables during model construction in order to compare
efficacies with the 20 single-feature immune scores (I1:I10
and Q1:Q10). Identical three class and two class data subsets
were used as before for model training and testing. For three-
class predictions (LS-associated MMR-deficient vs. sporadic
MMR-deficient vs. MMR-proficient), raw counts of each
lymphocyte location were coordinated into 32-feature selection
cohorts wherein each cohort contained between four and
11 lymphocyte populations (Supplementary Appendix 7,
Figure S10). For two-class predictions ([LS-associated MMR-
deficient + sporadic MMR-deficient] vs. MMR-proficient):
eight feature selection cohorts were constructed from the raw
counts of CD3 and/or CD8 lymphocytes at the CT and/or
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FIGURE 3 | Representative immunohistochemistry images of immune densities across the three molecular cohorts at the Tumor Center (CT) and Invasive Margin (IM).

IM (Supplementary Appendix 7, Figure S11). Model train-
control, tuning, and predictive power assessment proceeded as
previously described.

RESULTS

Cohort Characteristics
In total, 93 EC tumors were included in this study: LS-
associated (n = 25), sporadic MMR-deficient (n = 33), and

MMR-proficient (n = 35) (Figure 1). Patient demographics
and tumor characteristics are shown in Table 1. There was
no significant difference between the three cohorts with
respect to histological subtype, grade or stage of disease, or
whether the tumor sample derived from the hysterectomy
specimen or the diagnostic biopsy. The LS-associated cohort
was significantly younger at diagnosis than the sporadic MMR-
deficient and MMR-proficient cohorts (mean age 52, 67, and
62 years, respectively, ANOVA p = 0.0001); however, there
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FIGURE 4 | Immune cell counts as per their molecular profile. LS-associated MMRd, Lynch Syndrome-associated mismatch repair deficient; Sporadic MMRd,

Sporadic mismatch repair deficient; MMRp, mismatch repair proficient.

was no significant difference between the sporadic MMR-
deficient and MMR-proficient cohorts (p = 0.14 Student t-
test). The LS-associated cohort included MLH1 (n = 6), MSH2
(n = 10), MSH6 (n = 8), and PMS2 (n = 1) pathogenic
variant carriers.

Comparing T-Cell Counts Across Cohorts
Immune cell counts across molecular group and tumor
compartment are summarized in Table 2. There was a significant
difference in CD3+ (p = <0.0001), CD8+ (p = <0.0001),
CD45RO+ (<0.0001), FoxP3+ (p = <0.0001), and PD1+ (p
= <0.0001) T-cell counts between the three molecular cohorts
(Table 3 and Figures 3, 4). PD-L1 immune cell expression
was also significantly different across the three cohorts (p
= 0.04), with the MMR-proficient cohort contributing 63%
of the negative results. PD-L1 tumor expression at ≥5%
was not significantly different between the three cohorts (p
= 0.48). Differences in CD8+, CD45RO+, FoxP3+ and
PD1+ T-cell counts were significant in two-class analysis
between LS-associated vs. sporadic MMR-deficient tumors,

however, there was no difference (p = 0.99) in PD-L1
expression between these two groups. Subgroup analyses
with non-endometrioid tumors excluded, and adjusting
for age differences between the cohorts, did not affect
the results.

Comparing Immune Scores
Across Cohorts
Of note Galon’s “Immunoscore” was not significantly different
between the LS-associated MMR-deficient vs. sporadic MMR-
deficient cohorts. However, Q2, Q4, Q6, Q8, and Q10 were
significantly different across the three cohorts (Table 4 and
Figure 5). These scores informed machine learning-based
predictive models.

Predictive Modeling and Classification
Three-class predictive modeling (LS-associated MMR-deficient
vs. sporadic MMR-deficient vs. MMR-proficient) presented
challenges due to aforementioned masking of LS-associated and
MMR-proficient phenotypes by the sporadic MMR-deficient
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TABLE 4 | Immune score performance in distinguishing the three molecular

cohorts in both two and three class analysis.

Dunn’s Test Kruskal-Wallis & BH (3-class) Kruskal-Wallis

(2-class)

Score LS-associated

vs. sporadic

MMRd

LS-associated

vs. MMRp

Sporadic MMRd

vs. MMRp

MMR Deficient

vs. MMR

Proficient

I1 0.2884 0.0031 0.005 0.00075

I2 0.0738 0.0001 0.005 0.00012

I3 0.4213 0.0045 0.009 0.00129

I4 0.1115 0.0003 0.0049 0.00019

I5 0.1857 0.0021 0.0099 0.00102

I6 0.0583 0.0001 0.0044 0.00007

I7 0.1226 0.0005 0.0072 0.00038

I8 0.0248 <0.0001 0.0087 0.00009

I9 0.0531 0.0002 0.0135 0.0004

I10 0.0189 <0.0001 0.0062 0.00004

Q1 0.3072 0.0008 0.001 0.0001

Q2 0.0461 <0.0001 0.0017 0.00001

Q3 0.3205 0.0054 0.0063 0.00121

Q4 0.369 0 0.0071 0.0001

Q5 0.1414 0.0014 0.0127 0.00103

Q6 0.0202 <0.0001 0.009 0.00008

Q7 0.1461 0.0012 0.0105 0.00081

Q8 0.0155 <0.0001 0.0095 0.00007

Q9 0.0629 0.004 0.0186 0.00078

Q10 0.0087 <0.0001 0.0111 0.00006

LS-associated MMRd, Lynch Syndrome-associated mismatch repair deficient; Sporadic

MMRd, Sporadic mismatch repair deficient; MMRp, mismatch repair proficient.

All statistically significant results (p < 0.05) are in bold.

profile (Figure 5). Standard binary immune scores (I1:I10) were
unable to classify any three-class groupings by machine learning
methods. Our high-resolution quaternary score Q2 was the
only immune score to offer three-class predictive potential;
however this was viable only in neural network models and still
did not approach accuracies above 0.69 by any train control
or cross-validation process. Multinomial logistic regression,
discriminant analysis, and support vector machines were all
unsuccessful in mitigating masking the sporadic MMR-deficient
group presented.

By contrast, when CD3CT, CD8CT, and CD8IM were used
as explanatory features for two-class prediction potential
(MMR-deficient vs. MMR-proficient) neural network and linear
support vector machine models achieved high accuracies. Neural
network modeling with either Q7 or Q8 high-resolution immune
scores provided accuracies of 0.85, wherein immune score
Q7 presented an AUC of 0.965 (sensitivity 70%, specificity
100%, PPV 1, NPP 0.77) (Figure 6A). The equivalent binary
I7 provided an AUC of 0.770 (sensitivity 70%, specificity 80%,

PPV 0.78, NPP 0.27). Fisher Discriminant Analysis provided

accuracies concordant with those derived by neural network
modeling (0.85) when Q7 or Q8 immune scores were used as
explanatory features.

Of note, a 0.8 accuracy was consistently achieved in
two-class analysis (MMR-deficient vs. MMR-proficient) with
the use of only CD8CT T-cell count by three different

classification methods: Feed forward Neural Networks (AUC
0.913); Linear Support Vector Machines (AUC 0.912); and Fisher

Discriminant Analysis (AUC 0.8) with observed concordant
metrics (sensitivity 70%, specificity 90% PPV 0.88 NNP 0.75).
Figure 6B depicts neural network AUCs for the three most
suitable raw count selections. Indeed, CD8CT performed best
across all modeling strategies, whilst inclusion of any additional
immunological markers correlated with decreased accuracy
(detailed in Supplementary Appendixes 6–9).

DISCUSSION

In this study, we found highly significant differences in immune
cell infiltrates in endometrial tumors according to their MMR
status and origin. Most strikingly, LS-associated MMR-deficient
EC had significantly more PD-1+, CD8+, and CD45RO+
infiltrating immune cells at the IM than sporadic MMR-deficient
tumors. Furthermore, machine learning algorithms were able to
discriminate within and between MMR-deficient and proficient
tumors with strong predictive accuracy when high resolution
immune scores were used. Of particular note, tumor center
CD8+ T-cell counts alone were sufficient to reliably predict
the MMR status and origin of endometrial tumors using
these models.

Taken together, these data support the notion that whilst
MMR deficiency is an important predictor of local immune
response in EC, the distinction between an inherited and
sporadic cause of MMR deficiency is critical. Both inherited
and sporadic MMR deficiency lead to an abundance of
FSPs and tumor specific neoantigens, which are thought to
drive anti-cancer immunogenicity (37). Whilst sporadic tumors
arise without chronicity, however, pathogenic MMR carriers
develop clones of MMR-deficient tumor cells that regress
spontaneously throughout life (38). This phenomenon likely
reflects the successful intervention of primed immune effectors
that eliminate tumor clones presenting FSP-epitopes on their
cell surface (39). Consequently, a LS-associated tumor must
develop sophisticated immune evasion mechanisms to avoid
natural clearance, to allow them to grow and present clinically
(24). Our data support this concept since we observed a
significantly higher density of infiltrating immune cell effectors
in LS-associated compared with sporadic MMR-deficient EC.
Furthermore, LS-associated tumors showed significantly higher
counts of CD45RO+ T-cells, indicating the presence of sustained
anti-tumor immune response mechanisms at play. A further
key finding was the significantly higher number of PD-1+
T-cells in LS-associated compared to sporadic MMR-deficient
endometrial tumors. This supports the “chronicity” argument of
LS-associated MMR-deficient EC, and is of clinical significance
given the emergence of PD-1 blockade-based chemotherapeutic
agents, for example pembrolizumab.

Two seminal reports found immune checkpoint inhibitors
are more potent against MMR-deficient tumors (28, 29). LS
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FIGURE 5 | Heatmap outlining the clustering of the molecular groups by immune score. This figure clearly illustrates the broad immune profile of sporadic MMRd loss

ECs, as they are seen to infiltrate around both MMRp and LS-associated MMRd groups. LS-associated MMRd, Lynch Syndrome-associated mismatch repair

deficient; Sporadic MMRd, Sporadic mismatch repair deficient; MMRp, mismatch repair proficient.
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FIGURE 6 | Neural network modeling for two-class response variables of mismatch repair deficient vs. mismatch repair proficient. Models were trained on a 50

observation random subset and tested on a 20 observation validation data subset as described in methods and described further in

(Continued)

Frontiers in Immunology | www.frontiersin.org 11 January 2020 | Volume 10 | Article 3023

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ramchander et al. Immune Landscape of Endometrial Tumors

FIGURE 6 | Supplementary Appendixes 6–9. (A) Immune score predictive accuracy from the tumor core compartment only generated from neural network

modeling. Receiver operating characteristic (ROC) curves are shown with notable AUCs of 0.899 (I1), 0.846 (Q2), 0.965 (Q7), and 0.882 (Q8) depicted with asterisks.

(B) Neural network models constructed using feature counts instead of immune scores. Select ROC curves are shown with AUCs of 0.913 (CD8 CT); 0.786 (CD3 CT,

CD3 IM); 0.784 (CD3 CT, CD8 CT, CD8 IM).

carriers were disproportionately represented in both trials,
with as many as 48% of participants having LS in one of
the studies (29). By contrast, the proportion of LS in CRC
(40) and EC populations (41, 42) is around 3%. Our data
would support the theory that LS-associated MMR-deficient
tumors are more sensitive to immune checkpoint blockade.
Thus, it may be prudent to explore PD-1 blockade in
the context of germline vs. sporadic MMR-deficient tumors
before extrapolating the results of these trials to the general
cancer population.

Differences in infiltrating immune cells between the tumor
groups underpinned the rationale for our machine learning
modeling. In our study, Galon’s “Immunoscore” did not
distinguish LS-associated from sporadic MMR-deficient tumors
despite significant differences in individual immune effector
populations between the two. By contrast, higher resolution Q-
scores were able to reliably distinguish between LS-associated
and sporadic MMR-deficient tumors. We noted considerable
immunological heterogeneity between the tumors of the sporadic
MMR-deficient group; their immune cell counts variously
clustered around the LS-associated MMR-deficient and MMR-
proficient tumors (Supplementary Appendix 8, Figure S14).
Predictive modeling was unable to resolve such variance
into three-class LS-associated vs. sporadic MMR-deficient vs.
MMR-proficient tumors classification with clinically-relevant
discriminatory power. However, neural network modeling was
able to accurately predict a tumor’s MMR status and origin
based purely on CD8+ tumor core count (CD8CT), a finding
with potential for clinical application. As the “Immunoscore”
becomes routinely measured to guide treatment decisions, entry
into clinical trials and individualized prognostic information
(14, 20, 21, 43), a CD8CT threshold density could trigger reflex
MMR testing from a diagnostic biopsy specimen. With the use
of automated IHC and automated scoring software, this process
could be almost entirely automated.

Our work builds on the work by Pakish et al., who also
call for LS-associated and sporadic MMR-deficient tumors to be
considered separate entities in future clinical trials (9). They too
noted higher CD8+ immune cells in presumed LS-associated
compared with sporadic MMR-deficient endometrial tumors,
however they were not able to confirm LS status through
germline sequencing. Two somatic mutations in one of the MMR
genes, or “loss of heterozygosity,” is observed twice as often
as germline mutations in MMR-deficient tumors that do not
show MLH1 hypermethylation (44). As somatic mutations are
an acute event, they may not prime the immune response as
expected in LS. In contrast to our findings, Pakish et al. found
reduced PD-L1 expression in presumed LS-associated MMR-
deficient tumors, but did not measure PD-1+ T-cell density,
which complicates interpretation of their findings. Furthermore,
by failing to identify important tumor compartments when

choosing their ROI, it was not possible for Pakish et al. to
decipher intra-tumoral differences that have been shown to have
prognostic implications in other tumor sites (21). Thus, we chose
ROI by identifying regions of the core and invasive margin of
the tumor with the highest CD3+ T-cell densities and used
sequential sections of the same ROI for all immune cell markers,
to ensure geographically homogeneity. This allowed us to capture
intra-tumoral immune cell interactions, without the need for
multiplex IHC.

Strengths of our study include the large cohort of tumors
from women with known LS. All LS-associated tumors showed
loss of the expected MMR protein(s) on IHC that corresponded
to their germline pathogenic variant. Using the LS tumors as
cases, we were able to match control tumors to important
pathological variables that in themselves could influence immune
response, thus reducing confounding. Immune effectors were
double scored and manually counted and sophisticated machine
learning algorithmswere able to identify CD8+ tumor core count
as a reliable predictor of MMR status and origin, which could
have clinical utility.

Weaknesses of this study include inclusion of only one tumor
from a PMS2 pathogenic variant carrier, who had constitutional
mismatch repair deficiency (32). PMS2-associated EC and
CMMRD are rare clinical entities (31, 45, 46), and thus we would
recommend caution in the extrapolation of our data to these
populations. The histological subtypes of tumors varied across
the cohorts, however, restricting analysis to the endometrioid
tumors only did not change the results. We did not undertake
any in vitro analysis to determine immune cell function, but
included CD45RO+ and PD-1+ markers in our IHC panel,
which are well-established T-cell activation markers (47, 48).
Our two-class machine learning models used a 50-observation
training subset and a 20-observation test subset for validation.
We attempted to mitigate model inaccuracy and overfitting
through cross-validation (and explanatory feature pre-processing
and model tuning where relevant), however we acknowledge
that our dataset may not represent the wider genomic profile
population of mismatch repair pathologies.We are reassured that
multiple different models (2,600 models were tested) produced
concordant outcomes but accept that our model would benefit
from validation with larger datasets. Whilst the LS cohort was
significantly younger than the other cohorts, adjusting for age did
not influence the results. We were not able to compare survival
outcomes in our study due to its small numbers and the inherent
bias of comparing archival LS tumors with prospectively collected
sporadic tumors.

In conclusion, this is the first study looking at the immune
microenvironment in confirmed LS- associated EC. We have
shown that LS-associated and sporadic MMR-deficient ECs are
distinct immunological entities and therefore should be treated
as such in clinical trials. Furthermore, the current evidence for
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PD-1 checkpoint inhibitors should be re-evaluated with LS-
associated and sporadic MMR-deficient EC-specific outcomes
reported. Our data suggest that LS-associated EC might have
a more favorable outcome than the more common sporadic
MMR-deficient EC. Moreover, we have shown the potential
of machine learning modeling to explore differences in tumor
biology. Through such modeling we have found CD8CT cell
count can predict MMR deficiency in endometrial tumors to
a level approaching clinical utility. Indeed, with the increasing
popularity of Galon’s “Immunoscore,” this could enable a novel
means of identifying, and risk stratifying MMR-deficient tumors.
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