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Abstract: Automatisation and digitalisation of laboratory processes require adequate online
measurement techniques. In this paper, we present affordable and simple means for non-invasive
measurement of biomass concentrations during cultivation in shake flasks. Specifically, we investigate
the following research questions. Can images of shake flasks and their content acquired with
smartphone cameras be used to estimate biomass concentrations? Can machine vision be used to
robustly determine the region of interest in the images such that the process can be automated?
To answer these questions, 18 experiments were performed and more than 340 measurements taken.
The relevant region in the images was selected automatically using K-means clustering. Statistical
analysis shows high fidelity of the resulting model predictions of optical density values that were
based on the information embedded in colour changes of the automatically selected region in
the images.

Keywords: software sensor; non-invasive online measurements; pattern recognition; computer vision;
optical density measurements; automatisation

1. Introduction

Today’s trend in many laboratories of the biochemical and biotechnology industries as well as
in academia is towards automatisation and digitalisation. This trend is part of the so called fourth
industrial revolution, where readiness and transparency of data play an important role. Crucial for
basic research as well as low cost production is cultivation in shake flasks, for which, however, means
for automatic data retrieval, particularly, online measurement techniques, are mostly lacking. On the
one hand, such measurements are necessary for monitoring and control of system variables such as
pH, biomass, and temperature, and, ultimately, for process automation and optimisation. On the
other hand, they shall be such that their impact on culture conditions and growth is as minimal as
possible [1–3].

At the end of the day, what industry is interested in during biomass cultivation is greatest
possible yield. Optical density (OD) of the medium is known to be a good proxy for biomass and,
thus, is often used to estimate growth [4], as direct determination, for example, through dry mass
samples is much more elaborate, time consuming and introduces considerable lag, which makes
this technique unsuitable for monitoring, control and automatisation in general. OD is obtained by
measuring the medium’s absorbance of light at a specific wavelength, which, by the Beer–Lambert
law, is proportional to the concentration of a corresponding component. Until recently, OD was not
measured online during cultivation in shake flaks. In 2014, Ude and colleagues presented in [2] a
device for online measurements of pH, pO2 and OD in shake flasks. It consists of a sophisticated
prototype platform with an OD biomass sensor based on backward light scattering. They successfully
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calibrated measurements against cell dry mass and, now, market it through PreSens Precision Sensing
GmbH, Regensburg, Germany.

Since then, further work on online measurement of OD has been conducted and includes, for
example, portable devices for OD measurement in micro-fluidic chips [5] and for low light detection
of bioluminescence [6], where both applications are smartphone-based. Indeed, smartphones as
affordable means have been recently repeatedly employed for colour-based bio-sensing [7], as they
are more accessible and cheaper than analytical laboratory devices [8], particularly, for reading of pH
indicator paper [3,9,10]. Other examples of their employment in the field are detection of environmental
contamination in water samples [11] and of allergen contamination in foods [12]. The latter lies within
the trend towards point-of-care diagnostics using a portable, inexpensive, and user-friendly platform
for the detection of bio-targets, the so-called ‘Lab on a Chip’ [13–15]. Notwithstanding the progress
made with respect to smartphone-based colorimetric tests, most applications require external housing
units or various accessories, which increases device complexity and makes the use more difficult.

In this work, we are interested in affordable and user-friendly means for non-invasive measurement
of biomass concentrations during cultivation in shake flasks, where the produced data can be stored in
electronic format, particularly, in so-called electronic laboratory notebooks, which offer the possibility
to store all data in one place and clearly annotate them. Moreover, the system shall be easily extendable
at a low cost for measuring other system variables such as pH (for example, by detecting change of
indicator paper colour) and pO2 (for example, by counting air bubbles). We envision the use of such
a system in the educational sector and for prototyping, for allowing sterile means of measurement,
being low cost, and enabling process automatisation and optimisation. Importantly, it shall not
be confined to cultivation in shake flasks and generally applicable to monitoring and control in
single-use technologies, which are becoming increasingly popular in terms of economy, convenience,
and quality [16]. More specifically, this paper presents an online OD software sensor, where we
investigate the following research questions:

1. Can images of shake flasks and their biomass content acquired with smartphone cameras be used
to estimate biomass, just as anecdotical evidence that experienced technicians can do so through
visual inspection only suggests?

2. Can machine vision be used to robustly determine the region of interest, the content of the shake
flask, in the images such that the approach suggested for estimating biomass can be automated?

To answer those questions, first, we repeatedly cultivate yeast in shake flasks and, every 30 min,
take samples for measuring OD and acquire images of flasks. Then, we proceed as follows:

1. We determine a regression model for predicting OD through the colour components of the region
of interest in the images and assess its prediction performance.

2. We apply K-means clustering to segment each image into distinct sections at the start of each
experiment and manually mark the one that corresponds to the region of interest. Thereafter,
segments of the subsequent image are compared to it automatically and the most similar one
chosen for use in predicting OD and for comparison with segments of the next image and so on.

2. Materials and Methods

In this section, we first present the yeast strain used and how it has been cultivated in shake flasks
in Section 2.1. Section 2.2 is about colorimetric methods. In Section 2.2.1, we briefly describe how we
obtain OD measurements to estimate biomass concentrations. Next, we detail the image acquisition
procedure in Section 2.2.2 and introduce the concept of a colour space, into which images are mapped,
in Section 2.2.3. To elucidate distinctive features in the images, we apply the K-means clustering
technique in the colour space, which is explained in Section 2.3. We seek to isolate a specific region in
the image, which corresponds to the medium in the flask. We use the values of colour components in
this region to predict OD values through a linear regression model as described in Section 2.4. Finally,
we evaluate our approach using the statistical methods presented in Section 2.5. Throughout the paper,
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all algorithms and analyses are implemented using MATLAB R© Release 2018b, The MathWorks, Inc.,
Natick, Massachusetts, USA.

2.1. Yeast Cultivation

A 1 L shake flask with 250 mL of Yeast Extract Peptone Dextrose (YEPD) medium consisting
of 10 g/L yeast extract (Carl Roth, Karlsruhe, Germany; 2363.4), 5 g/L peptone (Merck, Darmstadt,
Germany 95039-5kg-F), and 10 g/L glucose (Brenntag Schweizerhall AG, Basel, Switzerland; 81585-330)
is autoclaved at 120 ◦C for 20 min. The shake flask of the pre-culture is inoculated with thawed and
mixed cryocultures (2 mL cryovials with 40% glycerol at −80 ◦C) of Saccharomyces cerevisiae. To prevent
foaming, three to four drops of a sterile 20% PolyPropylene Glycol (PPG) solution are added under
sterile conditions. The yeast cells are cultivated in the incubator at 30 ◦C and 160 rpm for 11 h and
then stored at 4 ◦C for inoculation in experiments to follow, where the same conditions and media
are used. Thus, with inocula obtained from the pre-culture, the above procedure is repeated for all
subsequent 18 cultivations. Table 1 summarises how the experiments differ with respect to inocula
volume-size and the location, where images of the flask were acquired (see Section 2.2.2). Note that, for
the reminder of the paper, since in most experiments the exponential growth phase ends after about
9.5 h, to avoid fitting noise when obtaining the regression model (Section 2.4), we omit the last 1.5 h in
the investigation.

Table 1. Summary of experiments: Inoculum size in ml and experiment location are shown.

Experiment # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Size in ml 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Location 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2

2.2. Colorimetry

Generally speaking, colorimetry’s goal is to specify the concentration of coloured compounds in
the medium. One approach is doing so through OD measurements (Section 2.2.1). Here, we aim at
obtaining the same information through colour changes in images of the content of the shake flasks
(Sections 2.2.2 and 2.2.3). Figure 1 depicts the colour change of the medium during cultivation.

(a) Content of flask at t = 0 h. (b) Content of flask at t = 4 h. (c) Content of flask at t = 8.5 h.

Figure 1. Colour change of medium during cultivation of yeast in shake flasks.

2.2.1. Optical Density

OD is measured with a CECIL 1011 spectrophotometer (Cecil Instruments Limited, Cambridge,
United Kingdom). The wavelength, at which absorbance is measured, is set to 600 nm and the YEPD
medium at timepoint t = 0 h is used as reference, that is, the spectrophotometer is then reset. Every
half hour, a 2 mL sample is taken under sterile conditions; the macro cuvette that contains it is placed
in the photometer, and OD is determined and recorded. When OD readings exceed 0.7, the sample is
diluted with water (distilled water with 9 g/L NaCl).
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2.2.2. Image Acquisition

Images are acquired at two locations in the laboratory with different backgrounds, one which
is white and provides a rather bad contrast (Figure 2a) and another which is blue and provides a
rather good contrast (Figure 2b), as this colour is not expected to be much expressed elsewhere in the
images. In addition, the light conditions are different, location 1 (tabletop) is rather unshielded and,
thus, arguably more sensible to changes in light than location 2 that constitutes the floor under the
bench. We use two different smartphones, iPhone 7 and iPhone 6S by Apple Inc. for location 1 and
location 2, respectively. Both are equipped with a 12 MP camera with High Dynamic Range (HDR),
where the former one provides images of size 1200× 1600 pixels, while the latter provides ones of size
768× 1024 pixels, which we consider to be qualitatively equivalent for the purpose of the paper. After
incubation, four images are acquired in quick order every 30 min. Notably, we take care for the focus
to be right, and images are always acquired from nearly the same distance, and the smartphones are
held steadily at nearly the same angle, for which we appreciate the help of a PopGrip from PopSockets
(Boulder, Colorado, USA) (Figure 2c). Nevertheless, images still quite differ as shown in Figure 3,
which highlights the challenges for an image-segmentation procedure and for a method that uses
changes in a medium colour to predict changes in OD.

(a) Location 1. (b) Location 2. (c) PopGrip by PopSockets.
Figure 2. Locations, where images of shake flasks were acquired, and the PopGrip used.

Figure 3. Exemplary images to highlight the variability among those acquired.

2.2.3. Colour Space

A colour space, of which different ones exist, is used to numerically describe colours. We convert
images into the CIE 1976 (L*a*b*) (CIELAB) colour space, which approximates human vision and
perception of lightness. Its development has been driven by scientific theory on how the brain translates
colour stimuli. Thus, this colour space seems best suitable for a method that is derived from visual
inspection by humans. In the CIELAB colour space, colour is defined by three dimensions. It has
dimension L for lightness and dimensions a and b describe the green-red and blue-yellow colour
components, respectively [17]. In MATLAB R©, image information is transformed into the RGB colour
space using imread and into the CIELAB colour space employing rgb2lab. At each measurement
timepoint, for all four images, we compute the mean value of each colour space dimension of the
entire image as reference as well as of the region of interest and then, for all six variables, we take the
mean of all four images for use in making predictions of corresponding OD values. An exemplary
result is shown in Table 2, where for the i-th measurement, we denote the OD value by yi, the colour
components of the reference by Lre fi

, are fi
, and bre fi

and those of the region of interest by Li, ai, and bi.
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Table 2. Measurements 241 to 260 of CIELAB colour components and optical density (OD) values.

Time in h Lre f are f bre f L a b OD

0.0 57.18 2.81 12.78 28.25 14.18 28.82 0.00
0.5 54.04 4.39 14.09 26.83 14.46 27.55 0.01
1.0 53.00 3.71 15.33 27.37 14.15 26.75 0.02
1.5 54.35 5.14 16.27 28.52 15.30 29.13 0.03
2.0 52.92 4.49 15.90 25.93 14.44 28.42 0.04
2.5 53.38 3.71 16.07 24.81 14.90 28.06 0.05
3.0 55.08 2.49 15.50 27.21 13.60 28.92 0.06
3.5 54.51 3.63 15.52 26.50 14.37 27.56 0.08
4.0 56.08 2.61 15.78 28.97 13.12 28.35 0.13
4.5 56.96 3.47 14.76 28.14 13.28 28.61 0.15
5.0 56.49 3.19 15.48 29.88 12.16 28.90 0.89
5.5 55.86 1.71 13.02 28.98 10.47 29.39 0.40
6.0 58.23 1.38 15.12 32.38 9.00 30.09 0.59
6.5 57.56 1.97 16.99 32.73 10.50 32.23 0.64
7.0 56.13 2.36 16.32 34.49 9.28 33.16 1.10
7.5 56.23 0.24 13.41 35.22 6.19 32.16 1.88
8.0 58.41 0.77 17.27 38.79 7.18 35.62 2.83
8.5 56.47 2.21 16.30 38.83 6.00 33.98 4.09
9.0 56.32 1.74 15.46 40.24 5.50 32.35 5.66
9.5 58.49 1.04 16.27 44.93 5.16 35.66 7.18

2.3. K-Means Clustering

The objective of this method is to group together similar numerical data, where similarity is
defined through the Euclidean distance. Particularly, K-means clustering aims at partitioning N
observations into K clusters, where cluster members have in common that their distance to cluster
centre µk, the mean of all their positions, is relatively close, k = 1, 2, . . . , K. Formally, our goal is find
those values of rnk and µk that minimise the following objective function

J =
N

∑
n=1

K

∑
k=1

rnk‖xn − µk‖2. (1)

Here, rnk indicates whether data point xn belongs to cluster k; that is, rnk = 1 if data point xn is
assigned to cluster k and rnj = 0 if j 6= k. To invoke the K-means clustering algorithm, we use kmeans
in MATLAB R© with all options set to default. For more details on the algorithm, see reference [18].
In the following, we describe the algorithmic procedure we employ to determine the region (cluster) of
interest in each image, where observations correspond to pixels that are described in the CIELAB colour
space through a three-dimensional vector; that is, cluster centre c(i) has entries c(i)1 = Li, c(i)2 = ai,

and c(i)3 = bi.
Importantly, Algorithm 1 below expects K, the number of clusters, as input. A method that serves

us well to determine the number of clusters is the elbow method [19]. The number of clusters is chosen
such that adding an additional one does not increase (much) the information gained or, more formally,
such that the ratio of distances between cluster centres to within-cluster distances of all clusters ceases
to change (much). Initially, one observes a steep curve when this ratio is plotted but soon the curve
flattens out rather abruptly. This creates an “elbow” in the graph, after which not much change occurs.
Note that, for speed, we applied the method to the first few images from both locations only, observed
“elbows” in the graphs for K ≤ 7, and then fixed K. We chose K = 9, a slightly higher number for
“safety” instead of repeating the procedure for each and every image. Indeed, visual inspection showed
instances of unsatisfactory segmentation for six or seven clusters.
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Algorithm 1: Determining the region of interest in images.
Input: K.
Set i = 0.
Repeat for all experiments.
• Increment i: Set i = i + 1.
• Segment first image, im1,i, acquired at timepoint t = 0.0 h into K clusters using

K-means clustering.
• User chooses cluster of interest. Its corresponding cluster centre is denoted by c̃.
• Set c̄ = c̃.
• Repeat for t = 0.0 h, 0.5 h, 1.0 h, . . . until t = 9.5 h.

– Reset j: Set j = 0.
– If t > 0.0 then set i = i + 1.
– Repeat at each measurement timepoint for all four images.
◦ Increment j: Set j = j + 1.
◦ Segment image imj,i into K clusters using K-means clustering.
◦ Determine ĉ(j), the cluster whose centre is closest to c̄ by means of the Euclidean

distance.
– Update c̄ and c(i): Set c̄ = 1

4 ∑4
j=1 ĉ(j) and c(i) = c̄.

– Store c(i).

Example

Figure 4 is exemplary of applying K-means clustering to an image, where the first or upper-left
panel corresponds to the region of interest, the content of the shake flask.

Figure 4. Result of applying K-means clustering to an image.

2.4. Linear Regression Models

Let us denote the set of all measurement byM whose elements are given by tuples of the form
mi = {c(i), yi}. To predict the OD value of the i-th measurement, which is yi, from the values of the
CIELAB colour components, we use multi-variate linear regression models of the following form:

ŷi = β0 + β1x(i)1 + β2x(i)2 + . . . + β9x(i)9 . (2)
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Here, ŷi corresponds to model prediction of f (yi), the dependent variable, where function f (·)
transforms values of yi if necessary for obtaining a linear relationship between dependent and
independent variables (Section 2.5.2). The independent variables are given by x(i)j , j = 1, 2, . . . , 9.

Variables x(i)1 , x(i)2 , and x(i)3 are the possibly transformed values of dimensions L, a, and b, respectively,

of cluster centre c(i); in other words, x(i)1 = g1

(
c(i)1

)
, x(i)2 = g2

(
c(i)2

)
, and x(i)3 = g3

(
c(i)3

)
, where

the transformations are denoted by functions g1(·), g2(·), and g3(·). Next, x(i)4 = g1

(
c(20·`+1)

1

)
,

x(i)5 = g2

(
c(20·`+1)

2

)
, and x(i)6 = g3

(
c(20·`+1)

3

)
, where ` =

⌊
i

20

⌋
and b·c is the flooring function; that

is, c(20·`+1) is the cluster centre associated with the first measurement of the corresponding (`+ 1)-th
experiment, as 20 measurements are performed per experiment. The latter is to account for baseline
colour of the medium (that is, without or only little biomass) that might differ between experiments.
Finally, variables x(i)7 = g1(Lre fi

), x(i)8 = g2(are fi
), and x(i)9 = g3(bre fi

). They serve as reference values
to account for changing light conditions during and between experiments.

2.5. Model Performance Assessment

2.5.1. R-Squared Measure

A common measure for the goodness of the fit is known as R-squared. It accounts for the amount
of variation in the target variable explained by the model and is calculated as follows, where yi is the
data to be modelled (here, OD values), f̄ is the mean of all f (yi), function f (·) is as in Equation (2),
and ŷi are model prediction of f (yi):

R2 ≡ 1− ∑i( f (yi)− ŷi)
2

∑i( f (yi)− f̄ )2 . (3)

Values of R-squared close to 1 are considered good fits, that is, most variability in the data is captured
by model predictions. Note that the differences given by f (yi)− ŷi are known as residuals.

2.5.2. Regression Diagnostics: Test for Linearity and Homoscedasticity

A plot of dependent versus independent variables is a useful visual test for the relationship
between the two. If nonlinearity is evident, one should consider applying a nonlinear transformation
to the dependent variables and possibly also to the independent variables. After the transformation,
in the plot of residuals versus predicted values, the points should be symmetrically distributed around
a horizontal line and with a roughly constant variance.

2.5.3. Regression Diagnostics: Test for Independence

Prediction errors or residuals are expected to be random and uncorrelated such that correlation
between an array obtained by ‘stacking’ them and another obtained by ‘stacking’ their time-shifted
version, called autocorrelation, is low; otherwise, the model can be probably improved [20].

2.5.4. Regression Diagnostics: Test for Normality

If normality is violated, then the computed confidence intervals for the predictions are questionable.
We use the one-sample Kolmogorov–Smirnov test to test whether data is normally distributed.

2.5.5. Cross-Validation

We use cross-validated R2-statistics to assess prediction performance of our model. Cross-validation
helps to prevent overfitting by dividing the data into training and testing datasets. Particularly, for all
`, ` = 1, 2, . . . , 18, we train model ` using observation data from all experiments but from experiment `.
Then, using measurements obtained for experiment `, we predict OD values from colour components
through Equation (2). The prediction performance is assessed by means of the R-squared measure.
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To estimate autocorrelation of residuals, we employ leave-one-out cross-validation on randomly
ordered data, which means that we repeatedly use measurements obtained at all timepoints but one to
estimate it through Equation (2).

3. Results and Discussion

3.1. K-Means Clustering in the CIELAB Colour Space

Figure 5 is exemplary of applying Algorithm 1, where we show only nine images. In general,
visual inspections of all results confirmed the correctness of the algorithm.

0.5h 1.5h 2.5h

3.5h 4.5h 5.5h

6.5h 7.5h 8.5h

Figure 5. Result of applying Algorithm 1.

Note that, in general, there isn’t a guarantee that Algorithm 1 will always correctly segment
all images or identify the region of interest, particularly, when the variability between images is
greater, for instance, because they are acquired onsite in the shaker, possibly while still in movement.
Nevertheless, a semi-automatised process is possible through manually either readjusting the choice
of the image segment to focus on or, if the clustering algorithm fails, cropping the image such that only
the region of interest remains.

3.2. Test for Linearity and Homoscedasticity

Figure 6 shows the relationship between OD and colour components of all experiments. The three
panels to the left show data as is, and the right ones show data, where all values have been
log-transformed, which is f (·) = g1(·) = g2(·) = g3(·) = log(·) in Equation (2), where we omitted the
first measurement of each experiment, as for timepoint t = 0 h, the OD value is zero and, thus, cannot
be log-transformed. Clearly, the three panels on the righthand side rather depict a linear relationship
between dependent and independent variables. Thus, we consider a linear relationship between
log-transformed values of OD and log-transformed values of the colour space for the regression model.
For the reminder of the paper and all experiments, we consider the measurement at timepoint t = 0.5 h
to be the first measurement.
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Figure 6. Relationship between optical density (OD) and colour components of all experiments.
The three panels to the right depict values in the log-space.

3.3. Model for Predicting Future OD

Assuming a linear relationship between log-transformed values of OD and log-transformed
values of the colour space that is expressed through a model of the form given by Equation (2),
we obtain predictions for OD-values using the cross-validation scheme described in Section 2.5.5.
Visual inspection of Figure 7, the plot of residuals versus predicted values, seems to reveal slight
violation of linearity and homoscedasticity. However, the Kolmogorov–Smirnov test did not reject the
assumption that residuals are normally distributed.

-6 -5 -4 -3 -2 -1 0 1 2 3
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0.6
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re
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Figure 7. Residuals versus model predictions.

When employing leave-one-out cross validation as explained in Section 2.5.5, autocorrelation
of residuals is within the confidence bounds of ±0.108, the mean of the residuals is roughly 0.01,
and R2 = 0.81. Figure 8 presents measured OD values and their predictions using the scheme
developed in this paper, where we leave one experiment out when obtaining model parameters.
Notably, again, the mean of the residuals is roughly 0.01, and R2 = 0.81; that is, 81% of variations
in the dependent variable are explained through independent variables. Additionally, R2 = 0.80 for
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images from location 1 only and R2 = 0.89 for those from location 2 only. Clearly, this result favours
striving for a setting such as the one in location 2, if permitted by the laboratory environment.
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Figure 8. Observations and model predictions versus time.

4. Conclusions

In this paper, we presented a methodology for predicting OD, and ultimately biomass, during
yeast cultivation in shake flasks by using information embedded in colour images of the flask’s
content. To assess it, yeast was cultivated in shake flasks 18 times. Every time, after incubation,
for 9.5 h and every 30 min, OD was measured and images of the flask were acquired. Importantly,
we employed a rigorous statistical analysis that indicates high fidelity of the OD predictions based on
colour information from the images. Additionally, the clustering technique presented in Section 3.1
allowed for automatically selecting the relevant region in the image, the content of the shake flask,
from which to elucidate the colour information required by the model to make predictions. Thus, we
provide a proof of concept for the usability of colour images for the estimation of biomass and for the
automatisation of the method, for example, through the use of cameras fixed in place inside or outside
the incubator. Clearly, the approach is restricted to neither yeast nor shake flasks and can be applied
during cultivation of other organisms such as Escherichia coli in single-use bioreactor bags, for example.
Moreover, in the future, we will also investigate whether the approach applies well to biomass, which
is still in movement in the shaker, and to closed loop control of growth. In summary, the technique
developed in this paper is simple to use, non-invasive, low-cost, can be readily automated, and
provides data that is ready and transparent. Notably, the measurement system presented consists only
of a smartphone and a few lines of MATLAB R© code, where, instead, free software such as R can also
be used. As with all techniques that measure biomass indirectly, it only requires proper calibration
against mass samples.
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