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Apomorphine effects on the hippocampus

The compound apomorphine (also known as apo-
morphia and sulfomorphide), at present known 
as a non-selective dopamine receptor agonist, was 
first synthesized in 1845 by the Finnish scientist 
Arppe (reviewed in Auffret et al. (2018a)). The ear-
liest pharmacological studies using this compound 
showed physiological effects on the brain and in the 
cardiovascular system and gastric and genitouri-
nary tracts [reviewed in Jenner and Katzenschlager 
(2016), and Auffret et al. (2018a)]. In the brain, apo-
morphine produced stereotyped motor behaviors in 
dogs, epileptiform convulsions in cats and sedation 
in humans (Auffret et al., 2018a, b). In addition, in 
the rat, Ungerstedt et al. (1969) reported that the in-
trastriatal microinjection of apomorphine provoked 
stereotyped motor behavior and blocked the parkin-
sonian symptoms caused by the administration of 
the dopamine receptor antagonist chlorpromazine. 
These data supported the hypothesis that apomor-
phine acts as a dopaminergic agonist on dopami-
nergic receptors located in the dorsal striatum, also 
called the caudate-putamen nucleus (Ungerstedt et 
al., 1969; Auffret et al., 2018a, b). In addition, sev-
eral reports have shown that apomorphine does not 
activate one specifically receptor but functions as a 
non-specific dopamine receptor agonist, activating 
not only pre- but also post-synaptic dopaminergic 

receptors (Arroyo-García et al., 2018). 
Dopamine (DA) receptors are divided in two fam-

ilies (D1-like and D2-like receptors). D1-like recep-
tors include D1 and D5 dopamine receptors, while 
the D2-like family includes D2, D3 and D4 recep-
tors (Flores et al., 1999; Jenner and Katzenschlager, 
2016). Dopamine receptors are widely distributed in 
the brain with D3 receptors found at higher levels in 
the Islands of Calleja (considered part of the limbic 
system) while they are scarce in the caudate putamen 
nucleus (Flores et al., 1996, 1999) and D1 receptors 
found at high levels in the caudate putamen nucleus, 
but not reported in the Islands of Calleja (Flores et 
al., 1996, 1999; Zamudio et al., 2005). Nowadays, it 
is well known that apomorphine activates all the DA 
receptors, and recent reports suggest that apomor-
phine may also have an effect on serotoninergic and 
adrenergic receptors (Ribarič, 2012; Auffret et al., 
2018a, b). 

The effects of apomorphine are clearly dose-de-
pendent, emesis and motor behavior being the 
best-studied effects (Ribarič, 2012; Jenner and 
Katzenschlager, 2016; Auffret et al., 2018a). Other 
well-documented apomorphine effects are sedation, 
hypnosis, sexual dysfunctions and neuroprotection 
(Ribarič, 2012; Jenner and Katzenschlager, 2016; 
Auffret et al., 2018a).
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The therapeutic use of apomorphine has also been 
very broad, from its application in the treatment 
of erectile dysfunction or a mental disorder such 
as alcoholism to its current use in the treatment of 
Parkinson’s disease (PD) (Ribarič, 2012; Jenner and 
Katzenschlager, 2016; Auffret et al., 2018a). Inter-
estingly, while its efficacy in PD was reported more 
than six decades ago (Schwab et al., 1951), its use in 
the treatment of PD began only three decades ago 
by two research groups, one Spanish (Obeso et al., 
1987) and the other one British (Stibe et al., 1987). 
PD occurs mainly in old people with a slightly high-
er incidence and prevalence in males compared to 
females (reviewed in Georgiev et al. (2017)). It is 
well known that PD is due to a reduction of dopami-
nergic transmission to the basal ganglia, especially 
to the caudate-putamen nucleus (reviewed in Jenner 
and Katzenschlager (2016), and Auffret et al. (2018b)) 
and consequently, apomorphine, as a non-specific 
dopamine receptor agonist, is a dopaminergic stimu-
lant that, activating DA receptors, reduces the symp-
toms of PD (tremors, hypokinemia o akinesia and 
muscular rigidity) and is useful in the early stages of 
the disease to reduce resulting motor deficits.

Apomorphine was used unsuccessfully in the 
treatment of addictions (such as heroin or alcohol; 
Ribarič, 2012). However, recently, due to its agonist 
actions on dopamine receptors, apomorphine is used 
to produce behavioral sensitization in rodents as an 
animal model for the study of addictions (Jenner and 
Katzenschlager, 2016; Auffret et al., 2018a). The use 
of an animal model of addiction is a useful tool to 
understand the morphological changes produced by 
some addictive drugs with an effect on dopaminergic 
transmission, such as cocaine and amphetamines.

It has recently been shown that the hippocampus 
receives dopaminergic innervation from the ventral 
tegmental area (VTA) and has a high dopamine re-
ceptor density (Kramar et al., 2014; Rocchetti et al., 
2015; Rosen et al., 2015). This fact prompted our 
group to perform research on this structure, where 
the effects of non-selective and simultaneous acti-
vation of dopamine receptors are almost unknown, 
unlike the prefrontal cortex (PFC) or nucleus ac-
cumbens (NAcc). Different studies have shown that 
apomorphine affects brain functions and cognitive 
processes like learning and memory, which are 
linked to the hippocampus (Gourgiotis et al., 2012; 
McNamara et al., 2014; Haleem and Farhan, 2015). 
We showed that the activation of dopamine recep-
tors in the hippocampus by 20 µM apomorphine 

prevented long-term potentiation (LTP) induction at 
CA3-CA1 synapses, which gave us the first evidence 
of an apomorphine effect on the hippocampus and, 
which has an effect on learning and memory behav-
iors (Arroyo-García et al., 2018). To confirm this, we 
administrated 1 mg/kg of apomorphine for 15 days 
to a group of mice and found that in the Water Mor-
ris Test, the learning and memory decreased in apo-
morphine-treated mice (Arroyo-García et al., 2018). 
Additionally, we studied the effects of apomorphine 
on oxidative stress and morphology and found that 
oxidative stress biomarkers as well as the inflam-
matory response increased, and that the dendritic 
length in the CA1 pyramidal neurons decreased in 
apomorphine-treated animals (Arroyo-García et al., 
2018) (Figure 1). 

While more research is necessary to complete 
these studies, these new results highlight that while 
the simultaneous and non-selective activation of 
dopamine receptors by psycho-stimulants (as apo-
morphine) may be helpful for the treatment of mo-
tor diseases, at the same time, there may be negative 
side effects such as brain damage and impairments 
in learning and memory. 
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Figure 1 Apomorphine effects on the hippocampus. 
The scheme represents the effect of 1 mg/kg apomorphine administration for 15 days. It causes an increase of the oxidative state and in the num-
ber of reactive astrocytes and a decrease in the dendritic length of CA1 pyramidal neurons. Furthermore, apomorphine impairs plasticity (LTP) at 
CA3–CA1 synapses and produces a deficit in learning and memory.


