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Abstract
Radiotherapy as one of the four pillars of cancer therapy plays a critical role in the multimodal treatment
of thoracic cancers. Due to significant improvements in overall cancer survival, radiotherapy-induced heart
disease (RIHD) has become an increasingly recognized adverse reaction which contributes to major radiation-
associated toxicities including non-malignant death. This is especially relevant for patients suffering from
diseases with excellent prognosis such as breast cancer or Hodgkin’s lymphoma, since RIHD may occur decades
after radiotherapy. Preclinical studies have enriched our knowledge of many potential mechanisms by which
thoracic radiotherapy induces heart injury. Epidemiological findings in humans reveal that irradiation might
increase the risk of cardiac disease at even lower doses than previously assumed. Recent preclinical studies have
identified non-invasive methods for evaluation of RIHD. Furthermore, potential options preventing or at least
attenuating RIHD have been developed. Ongoing research may enrich our limited knowledge about biological
mechanisms of RIHD, identify non-invasive early detection biomarkers and investigate potential treatment
options that might attenuate or prevent these unwanted side effects. Here, we present a comprehensive review
about the published literature regarding clinical manifestation and pathological alterations in RIHD. Biological
mechanisms and treatment options are outlined, and challenges in RIHD treatment are summarized.
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Background
Thoracic irradiation is a fundamental part of the
standard therapy for lung, breast, esophageal and thymic
carcinoma, and one of the most common uses of
radiotherapy. Although modern planning and irradiation

techniques have greatly improved since the introduction
of intensity-modulated radiotherapy (IMRT), image-
guided radiotherapy (IGRT) and stereotactic radiotherapy,
adjacent organs at risk limit the application of high
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radiotherapy doses. Simultaneous chemoradiotherapy
and combination of radiotherapy with novel agents
including monoclonal antibodies, tyrosine kinase in
hibitors and checkpoint inhibitors can increase radiation-
induced toxicities.1 Especially patients suffering from
diseases with excellent prognosis such as breast cancer
or Hodgkin’s lymphoma may suffer from delayed side
effects2–6 including radiation-induced heart disease
(RIHD) in a dose-dependent manner.7 The number of
long term survivors after radiotherapy is increasing even
for lung cancer patients due to new targeted therapies
and checkpoint inhibitors.8,9 Therefore, a profound
understanding of RIHD is becoming more important in
the future. While numbers do vary, an increased risk with
up to 62% of cardiac deaths was reported among breast
cancer patients after radiotherapy,10,11 and 4% (50/1261)
of Hodgkin’s lymphoma patients receiving radiotherapy
died from cardiovascular diseases including ischemic
heart disease and myocardial infarction.12,13 Patients who
received thoracic radiotherapy in their childhood have a
5.0 to 18.4-fold increase in the risk to develop RIHD when
average cardiac radiation dose exceeded 5 Gy.14–16

The pathological spectrum of RIHD includes conduc-
tion abnormalities, valvular disease, coronary artery dis-
ease, pericarditis and pericardial constriction or effusion,
cardiomyopathy and myocardial fibrosis.17–20 Although
physical progress allowing for more conformal radiation
techniques have decreased radiation doses to normal
tissues, significant heart doses still can not completely
be avoided.21,22 Until now, no effective treatment has been
established for RIHD, partially because the underlying
mechanisms of the RIHD remain largely unknown.23

Here, we present the clinical manifestations and pos-
sible radiobiological mechanisms of RIHD. Furthermore,
we discuss how a deeper understanding of RIHD might
help to discover strategies in order to reduce the risk of
cardiovascular diseases in thoracically irradiated cancer
patients.

Clinical manifestation
Coronary artery disease

Radiation-induced coronary artery changes have become
a serious reason for morbidity in breast cancer and
other mediastinal malignancy patients treated with
radiotherapy.24 For example, ischemic heart disease
has become the most common reason for cardiac
death in cancer patients after thoracic radiotherapy.11

A retrospective analysis involving 2168 breast cancer
patients who received radiotherapy showed a linear
correlation between radiation dose and coronary artery
changes, showing the risk of coronary events increasing
by 7.4% per Gy without obvious ceiling.11,25 Symptoms
of radiation-induced coronary artery disease are the
same as for regular coronary artery disease including
angina and myocardial infarction, thereby complicating
the differential diagnosis between radiation-induced

coronary artery disease and conventional coronary heart
disease. The diagnosis of radiation-induced coronary
artery disease depends mainly on the history of thoracic
radiotherapy.

Valvular disease

Thoracic radiotherapy may directly affect heart valves,
leading to both stenotic and regurgitant valve diseases.
Pathologic changes involve not only leaflet retraction but
also fibrotic thickening and finally calcification.26 Aortic
and mitral valves are affected more frequently compared
to tricuspid and pulmonic valves. Although valvular
heart changes are found in up to 81% of RIHD patients,
over 70% of affected patients show no symptoms.27,28

Mean development time of asymptomatic valvular
lesions is estimated to be 11.5 years, while the average
time to symptomatic dysfunctional valvular disease
is about 16.5 years.27 Until now, no specific radiation-
induced valvular damage model has been established
in vivo, and further animal data about the radiation-
induced valvular disease are needed.

Conduction system disease

For radiation-induced conduction system injuries, it is
difficult to confirm the causal link to radiotherapy and
to determine the incidence, because conduction abnor-
malities typically are not detected until many years after
radiation. However, reported conduction system diseases
after thoracic irradiation include all degrees of atrioven-
tricular block (AV block), atrioventricular nodal bradycar-
dia and sick sinus syndrome.29 Other conduction anoma-
lies reported to be connected with radiotherapy include
right bundle branch block,30 prolongation of the corrected
QT interval,31 T-wave changes and ST depression.32 So far,
the biological mechanisms underlying radiation-induced
conduction system disease remain unclear as it is chal-
lenging to establish the disease model in animals.

Pericardial disease

In necropsy studies, 70% of RIHD patients were found
to have pericardial abnormalities.33 Hereby, radiation-
induced pericarditis is marked by both protein-rich
exudates in the pericardial sac and fibrin accumulation
in the mesothelial lining pericardial cavity.17,34 Clinical
spectrum of pericardial disease ranges from acute
pericarditis to delayed chronic pericardial effusion,
tamponade and constrictive pericarditis, according to
the severity and the development of the disease.

Myocardial injury

Microvascular impairment by chest radiotherapy may
lead to chronic ischemia, which eventually can result
in myocardial fibrosis.35 Clinically, most patients suf-
fer from restrictive cardiomyopathy leading to diastolic
dysfunction which is partially accompanied by a slight
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reduction of systolic function in the left ventricle.36 Less
than 5% of patients develop a dilated cardiomyopathy
accompanied by reduction of left ventricular ejection
fraction.37 Although the majority of studies associated
with RIHD focus on the myocardial damage, the under-
lying mechanisms of the myocardial injury itself remain
largely unknown. Elucidation of biological mechanisms
underlying RIHD may give the opportunity to attenuate
RIHD both in the early and delayed stage after thoracic
irradiation.

Mechanisms of RIHD
Finding the biological mechanisms of RIHD is challeng-
ing due to many confounding factors, including the dif-
ficulty of sampling and the the long observation time of
over 10 years for clinical development of RIHD. However,
preclinical studies may yield information on pathologic
changes and potential treatments.

The response of tissues to radiotherapy can be esti-
mated using a dose-response model, the so-called lin-
ear quadratic model,38 where the α/β-ratio indicates the
fractionation sensitivity of irradiated cells.19 Cardiomy-
ocytes exhibit a low α/β-ratio (about 2) which is typi-
cal for late-responding normal tissues. Most preclinical
research about mechanisms of RIHD has been performed
using a single high dose (20-30 Gy) or a low number
of fractions, which is an increasingly used fractionation
method for many tumors. However, many clinical irra-
diation protocols still use multiple fractions (∼30) with
a relatively low dose (∼2 Gy) per fraction.39–42 High radi-
ation doses show different biological effects compared
to doses used in normal fractionated treatments; thus,
available data from animal models in which high doses
were used are difficult to compare with the majority of
clinical situations. Moreover, although pathological find-
ings in animals appear to be similar to those in cardiac
tissue samples of human beings, it remains uncertain
how well preclinical in vivo findings correspond to RIHD
in humans.19

Coronary artery disease and vessel injury

Radiation-induced atherosclerosis plays an essential role
in the development of RIHD. While myocardial changes
in response to a high dose of radiotherapy are alike to
those detected in human beings, atherosclerosis does not
occur in regular laboratory animals. Therefore, additional
vascular risk factors are included in these models to
accelerate atherosclerosis formation such as apolipopro-
tein E (ApoE) knock-out, high lipid diet, or high levels of
troponin in plasma.43–46 Heart irradiation in ApoE knock-
out mice was found to induce both elevated microvas-
cular detriment and atherosclerotic plaque formation
in coronary arteries.47 The transcription factor peroxi-
some proliferator-activated receptor alpha (PPARα), an
important regulator of lipid metabolism in heart tis-
sue, was activated in wild-type mice after exposure to

a single radiation dose of 16 Gy40,48; and reduced activa-
tion of PPARα resulted in the sudden death of 40 weeks
old mice.49 Analogously, the increment of PPARα activ-
ity by administrating simvastatin partly prevented the
progress of cardiac fibrosis and hypertrophy in hyper-
cholesterolemic and atherosclerosis-prone apolipopro-
tein E knock-out (ApoE-/-) mice, which exhibited elevated
cholesterol levels and developed age-related atheroscle-
rosis and fibrosis.50 These in vivo findings are consistent
with observations in both tissue specimens and ultra-
sound examination from patients showing vessel wall
lesions after radiation.51,52

Both perivascular and interstitial collagen deposition
in rat myocardium was found increased for several
months after a single radiation dose or a limited number
of fractions.53,54 Irradiation-related myocardial fibrosis
was accompanied by altered microvascular density,
leading to impaired myocardium microvasculature func-
tion.55 Mice with an endothelial cell-specific deletion of
p53 showed a significant increase of cardiac dysfunction
and myocardial necrosis in response to local heart
radiation with 12 Gy, indicating the importance of
myocardial vessels in sustaining cardiac structure and
function after heart irradiation.56

Eventually, atherosclerotic lesions in coronary vessels
caused by irradiation are morphologically identical to
those in patients with regular atherosclerosis and are
marked by intimal proliferation, lipid-rich macrophages
accumulation, and finally plaque formation.57 Risk of
radiation-caused coronary artery alteration is known to
be correlated with radiation dose and duration of radio-
therapy.

Compared to thoracic radiation alone, 10 Gy whole
body irradiation was found to result in pronounced
cardiac vascular density reduction,58 suggesting that
RIHD may be enhanced by irradiation of non-cardiac
structures in the body. This might reflect an “abscopal”
irradiation effect against normal tissue, which is then
not in favour of patients as is the “abscopal” effect
against tumors in the standard literature about radiation
immune effects. However, this hypothetical negative
systemic “abscopal” phenomenon against cardiac tissue
has not yet been systematically investigated.

Conduction system disease and pericardial
disease

Few researchers have focused on the mechanisms of
the conduction system and pericardial disease in RIHD.
Cardiac arrhythmia induced by exposure to ionizing radi-
ation is a long-term consequence. The beat rate of differ-
entiated cardiomyocytes derived from human induced
pluripotent stem cells (iPS) decreased at 48 hours after
irradiation with 5 Gy or 10 Gy. With higher irradiation
doses, alterations in electrophysiological function were
observed.59 In contrast, the beat rate of chicken cardiac
cells raised in a dose-dependent manner for more than
one week after irradiation with 0.5 Gy to 7 Gy. Dura-
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tion of a single action potential was mildly shortened,
and the number of mitotic and S-phase cells decreased
after radiation. Though the number of γ H2AX foci was
found increased after irradiation, no obvious changes
in the quantity of reactive oxygen species (ROS) were
observed.60 Furthermore, the irradiation reactions intra-
cellular and intranuclear in the sinus node P cells and
Purkinje cells remain absent.

Pericardial fibrosis is caused by collagen deposition in
the interstitium and parietal region of the thickened peri-
cardium. These findings in animals are similar to those
observed in patients after radiotherapy.17,49 Radiation-
caused microvascular impairment is believed to result in
increased capillary permeability and quick development
of protein-rich exudates.29

Myocardial fibrosis

Myocardial fibrosis is characterized by collagen depo-
sition throughout the cardiac tissue and finally the
replacement of cardiomyocytes.17,61 Furthermore, myocar-
dial fibrosis may develop under the condition of chronic
myocarditis when functional tissue is substituted by
connective tissue including collagen, fibronectin and
tenascin C as part of an adaptive process.62,63 Animal
models have been established in mice, rats, rabbits and
dogs in which loss of cardiac function and myocardial
fibrosis usually develop from 4 to 12 months after
irradiation.17,64

Irradiation induces both morphological and func-
tional changes in hearts that can be measured by
histology and echocardiography. In one study, heart
weight and heart-to-body weight ratio were found
decreased, while diastolic pressure of the left ventricle
increased after exposure to ionizing radiation.65 After
irradiation, thickening of the left ventricular anterior
wall was observed reducing both the inner diameters
and the volumes of the left and right ventricle.66,67

Both fractional shortening and ejection fraction were
increased in the irradiated hearts, whereas stroke
volume was not changed.65,67

In animal models, a single dose of up to 8 Gy led to
a significant increase in cardiac fibrosis, although higher
total doses with lower dose per fraction seemed to be less
harmful to cardiomyocytes than a lower single dose.67–69

Rat cardiac fibroblasts isolated from irradiated hearts
displayed cytoskeletal remodellings such as actin fila-
ments changes and stress fibres formation.70 Formation
of cytoplasmatic actin stress fibres was associated with
an increased number of myofibroblasts producing colla-
gen71 leading to impaired myocardial contractility.65,67,72

Additionally, cardiomyocytes responded to stress sig-
nals by launching an inflammatory reaction activating
macrophages, which resulted in reduced myocyte con-
tractility both in vitro and in vivo, eventually leading to
impaired diastolic and systolic function.73,74 This inflam-
matory response also reduced the capillary density of

irradiated hearts, which may contribute to myocardial
injury.47,75

Oxidative stress induced by various cytokines and
growth factors including TGF-β,76,77 TNF-α,78–80 IL-1,81 IL-
11,82–84 CTGF,85 PDGFs,86,87 VEGF and FGF88,89 has been
demonstrated to contribute to the induction of fibrosis
(Fig. 1). Many of these factors as well as CK-MB and
BNP were considered to qualify as potential markers
in predicting and evaluating RIHD.90 Overexpression of
TGF-β1 was associated with radiation-induced cardiac
fibrosis, suggesting that increased growth factor levels
may deteriorate RIHD.91–93 Another important mediator
of heart fibrogenesis are factors belonging to the PDGF
family. Some studies have shown that overexpression of
cardiac PDGF-C and PDGF-D by transgenic technology
resulted in extensive cardiac fibrosis,86,87,94 whereas
the PDGF-receptor blocker imatinib (which blocks also
other kinases) significantly attenuated fibrosis in mice.95

Antifibrotic effects of PDGF signalling inhibitors such
as imatinib have also been published for other organs
including the lung and the kidney.96–99 PDGF signalling
generally seems to plays an important role in fibrogen-
esis. The small molecule PDGF tyrosine kinase inhibitor
BIBF 11200 (Ofev) has been approved by the Food and
Drug Administration (FDA) in the USA for the treatment
of idiopathic lung fibrosis. Furthermore, in vivo experi-
ments revealed beneficial effects regarding RIHD when
the pro-fibrotic protein CTGF was blocked.100 Recently,
an interesting study identified circulating microRNAs
(pre-treatment c-miRNA) as biomarkers of radiation-
induced cardiac toxicity in non-small-cell lung cancer,
highlighting the important role of microRNA in RIHD.101

In rodent hearts receiving single high dose irradia-
tion, long term pathological changes are associated with
altered protein expression and impaired cardiac mito-
chondria function.102–104 The mitochondrial transcription
factor, nuclear factor erythroid 2 [NF-E2]-related factor 2
(Nrf2), regulates the expression of various anti-oxidant
enzymes.105 Although the exact mechanisms of the inter-
action between the Nrf2 pathway and mitochondrial
alterations in RIHD are unclear, deficiency of Nrf2 was
observed to reduce the life span of mice receiving tho-
racic radiation, suggesting that increment of Nrf2 levels
may reduce radiation damages including RIHD.42,106–108

Some researchers proposed that cardiac irradiation
can increase the number of mast cells which could
be associated with progression of RIHD53; however, in
other studies, mast cell-deficient rats showed more
severe alterations than controls.109 Furthermore, high
throughput transcriptomic and genetic studies have
identified new molecular signals and pathways related to
the whole fibrotic process after irradiation. Pathogenesis
of cardiac fibrosis includes several molecular pathways,
which can be activated by ionizing radiation110 (Table 1).
However, the exact roles for the various cytokines and
transcription factors in RIHD still need to be clarified,
and it is unlikely to find a unique driver biological
mechanism of RIHD.
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Figure 1. Putative pathway overview how radiation therapy is involved in the development of cardiac fibrosis upon thoracic radiotherapy for can-
cer. RT, radiation therapy; PPA, protein phosphatase; AKT, protein kinase B; TGF-β, transforming growth factor beta; PIP2, phosphatidylinositol
Biphosphate; PI3K, phosphoinositide 3-kinases; ROS, reactive oxygen species; ERK, extracellular signal-regulated kinase; TAK, TGF-β-activated
kinase; MKK, mitogen-activated protein kinase kinase; JNK, the c-Jun NH2-terminal protein kinase; ATF, activating transcriptional factor; CTGF,
connective tissue growth factor; α-SMA, α smooth muscle actin; Ang II, angiotensin II; AMPKα, AMP-activated protein kinase α; MAPK, mitogen-
activated protein kinase; P38, P38 mitogen-activated protein kinase; JIP, JNK-interacting protein; AP-1, activating protein-1; CCN, the first number
of CYR61, CTGF & NOV family; IL, interleukin; INF-α, interferon-α; RhoA, Ras homolog gene family, member A; ROCK, Rho-associated protein
kinase; MRTF, myocardin-related transcription factor; YAP, yes-associated protein; PLC-2, Phospholipase C 2; PkD, Protein kinase D; PKC, Protein
kinase C; SRF, serum response factor; C/EBPβ, CCAAT-enhancer-binding protein β; VEGFR, vascular endothelial growth factor receptors; NF-κB,
nuclear factor-κB; COX-2, cyclooxygenase-2; TNF-α, tumour necrosis factor alpha; IKK, NF-κB kinase; MMPs, matrix metallopeptidases; ECM,
extracellular matrix.

Table 1. Cytokines, signalling pathways and transcription factors involved in cardiac fibrosis.

Cytokines Pathway Transcription factors

TNF-α78–80 CTGF100 MCP-1111 Smad-independent
pathway112

Smad113 PPAR-γ 114 Nrf2.42,105–108

IL-1β81 ET-1110,115,116 IL-1182–84 AMPKα signaling
pathway117

MRTF118,119 AP-1120 ERK121

IL-6122 Ang II111 FGF88 Wnt signaling pathway123 YAP124 NF-κB120 JNK125,126

VEGF88 TGF-β76,77,91,92 PDGF86,87,94 Smad-dependent
pathway113

SRF119 ATF2127 C/EBPβ128

IL, interleukin; TNF-α, tumor necrosis factor alpha; CTGF, connective tissue growth factor; ET-1, endothelin-1; Ang II, angiotensin II; MCP-1, anti-monocyte chemotactic
protein-1; TGF-β, transforming growth factor beta; PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; AMPKα,
AMP-activated protein kinase α; MRTF, myocardin-related transcription factor; YAP, yes-associated protein; JNK,c-Jun N-terminal kinase; SRF, serum response factor;
PPAR-γ , peroxisome proliferators-activated receptor gamma; AP-1, activating protein-1; NF-κB, nuclear factor-κB; ATF2, activating transcriptional factor 2; Nrf2, Nuclear
factor erythroid 2 [NF-E2]-related factor 2; ERK, extracellular signal-regulated kinase; C/EBPβ, CCAAT-enhancer-binding protein β.
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Potential countermeasures
Since early RIHD is mostly asymptomatic, pathologic
changes are often diagnosed in late stages, generally
over 10 years after irradiation. Currently, the only eligi-
ble approach for prevention of RIHD is by reducing car-
diac irradiation doses. Since some exposure will remain
inevitable, pharmacological treatments have been stud-
ied in order to attenuate RIHD.

Previous studies have shown that oxidative stress
plays a significant role in the progression of RIHD.41,42,129

Antioxidants like pentoxifylline (PTX) and α-tocopherol
applied 24 hours to one week prior to local heart
irradiation significantly attenuated radiation-induced
increments of left ventricular diastolic pressure in vivo.
Furthermore, mast cell number in the left ventricle,
collagen deposition and myocardial degeneration were
found to be reduced after application of antioxidants.65,130

Regardless of clinical suitability, these studies suggested
that antioxidants in principal may be able to reduce
radiotherapy-caused collagen deposition and cardiac
fibrosis.65 In another study, colchicine was prophylac-
tically used against radiation-induced coronary artery
impairment by reducing inflammation and hindering
platelet aggregation.131 Additionally, the cytoprotective
agent amifostine was reported to protect against
myocardial fibrosis and loss of function by scavenging
free radicals when applied before single high dose
heart irradiation.132,133 Amifostine is one of few clinically
approved drugs for radiation protection but is rarely used
due to significant adverse effects such as hypotension,
Stevens-Johnson syndrome, erythema multiforme and
epidermal necrolysis.19

Oral administration of molecular hydrogen saturated
water or black grape juice prior to local heart irradiation
reduced RIHD in animal models, probably by free radical
scavenging.134,135 Similarly, melatonin application 15
minutes before radiation decreased both necrosis and
fibrosis by free radical scavenging in a rat model.136 L-
carnitine has also been found to attenuate radiation-
induced cardiac function loss in mice by activating the
p38MAPK/Nrf2 pathway, triggering the expression of
NQO1 and HO1. Additionally, L-carnitine exhibited anti-
apoptotic and anti-oxidative effects in irradiated mice
hearts.137

Cardioprotective drugs, which are used in ischemic
heart disease and chronic heart failure, have been
investigated for RIHD, too. In some studies, statins
have shown promising effects for RIHD,138,139 but in
other studies, atorvastatin (and the anti-platelet drug
clopidogrel) did not ameliorate atherosclerosis induction
after 14 Gy irradiation in ApoE-/- mice.140 Nitric oxide-
releasing aspirin (NCX 4016) and aspirin are known to
attenuate age-related atherosclerosis; however, both
NCX 4016 and aspirin did not significantly reduce
number of atherosclerosis lesions when a single irra-
diation dose of 14 Gy was delivered.141 Moreover,
the angiotensin-converting enzyme inhibitor (ACEI)

captopril has demonstrated beneficial effects regard-
ing RIHD in vivo.142,143 With rheological agent PTX in
combination with α-tocopherol, cardiac fibrosis was
mitigated, and cardiac function was preserved. The
authors reported about inhibition of pathways in which
TGFβ and CTGF were involved. However, induction of
arrhythmia and bradycardia neutralized these beneficial
effects.65,130 Thalidomide was used to reduce infiltration
of inflammatory cells by inactivating macrophages but
did not change long-term radiation damage in mice
receiving a single radiation dose of 16 Gy.144 The tyrosine
kinase inhibitor sunitinib reduced systolic left ventric-
ular inner diameter and volume, when administered
once a day for 14 days after irradiation.129 Rabender
and colleagues investigated the effects of IPW-5371, a
TGF-β receptor 1 inhibitor. Administration of 30 mg/kg
IPW-5371 for 20 weeks preserved cardiac contractile
reserve and resulted in significantly decreased cardiac
fibrosis. Furthermore, IPW-5371 treatment at either 10
mg/kg or 30 mg/kg for 6 weeks extended the survival
time of irradiated mice.145 Mesenchymal stem cells
(MSC) are known for their regenerative abilities in
radiation-induced tissue injuries. Tail vein injection of
bone marrow MSC improved RIHD and may be a new
therapeutic option for myocardial injured patients after
chemo- or radiotherapy.146–150 Whether bone marrow
MSCs or adipose tissue MSCs are superior regarding
their regenerative effects for RIHD is unknown; at least,
radioresistance was shown to be independent of their
tissue of origin.151 In a rat model, palladium alpha-
lipoic acid complex (POLY-MVA) was administrated after
irradiation with 45 Gy delivered in 5 fractions of
9 Gy. POLY-MVA reduced inflammatory infiltration
markers such as CD2 and CD68 in irradiated hearts
and attenuated radiation effects on mitochondria.
However, the reversal of cardiac remodelling was
not observed.152 Moreover, chronic intermittent hypo-
baric hypoxia promoted cardiac function in RIHD and
decreased interstitial and perivascular cardiac fibrosis by
reducing oxidative stress.153 Some other agents such as
tetrahydrobiopterin might protect cardiomyocytes from
radiation-induced injury by decreasing oxidative stress
in vitro.154 Potential countermeasures to mitigate RIHD
are summarized in Table 2. Currently, it seems far away
to find an effective therapy for attenuation of RIHD and
simulatenous tumor sensitisation.

Clinical management
Countermeasures for radiation-induced coronary artery
disease in patients are challenging. Potential therapeutic
concepts are similar to those used in patients with
regular coronary artery disease which include lifestyle
modifications, medical therapy, percutaneous coronary
intervention157 and coronary artery bypass grafting.158

Regarding RIHD, percutaneous coronary intervention is
generally preferable to coronary artery bypass grafting
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Table 2. The potential countermeasures to attenuate the RIHD.

Antioxidants Results Non-antioxidant agents Mechanism Results

Amifostine132,133 + Statins138,139 Cholesterol-lowering
drugs

+

Black grape juice134,135 + Captopril142,143 ACE inhibitor +
Water saturated with
molecular hydrogen134,135

+ Nitric oxide-releasing
aspirin141

Anti-platelet agent -

Tetrahydrobiopterin (in
vitro)154

+ Thalidomide144 Inactivate macrophages -

Melatonin136,155 + Pentoxifylline plus
α-tocopherol65,130

Inhibits intracellular
signals in response to
TGFβ and CTGF

+

L-carnitine137 + IPW-5371145 TGF-β receptor 1 inhibitor +
Chronic intermittent
hypobaric hypoxia153

– MSC146–148 DNA repair +

Palladium lipoic acid
complex152

Targets mitochondrial
complex I

–

– – Sunitinib129 Tyrosine kinase receptor
inhibitor

+

– – L-carnitine137 Inhibiting reactive oxygen
species production and
apoptosis

+

– – Colchicine131 Inhibiting the
inflammation and
anti-platelet-aggregation

+

– – Huangqi Shengmai Yin156 Regulating the
TGF-β1/Smads and MMPs

+

since radiation-induced lung injuries, valvular dis-
eases, internal thoracic artery stenosis and fibrosis
of surrounding structures may increase the risk of
surgical procedures.29,159,160 For patients with irradiation-
caused valvular disease, surgical valve replacement
is generally recommended. Due to perioperative risk
factors, increased long-term morbidity and death
associated with open heart surgery, transcatheter aortic
valve implantation (TAVI) might also be an appropriate
alternative.161

Furthermore, patients with acute pericarditis are
often treated with diuretics and non-steroidal anti-
inflammatory drugs for symptom control, whereas
chronic pericarditis can be treated surgically.17,29

Management of radiation-caused cardiomyopathy is
similar to treatment of other types of cardiomyopathy
and is typically based on symptomatic treatment. Heart
transplantation may be a choice for highly selected
patients in the terminal heart failure stage.162–164 Most
mechanical interventions for fibrosis-related diseases
are helpful to a certain degree, but a more biological
approach that can interfere with fibrogenesis on a
cellular level seems mandatory. Clearly, further pre-
clinical and clinical research is needed to develop new
compounds for RIHD.159,165,166

Conclusion
Despite significant technical and physical improve-
ments of thoracic radiotherapy such as IMRT, IGRT,

stereotactic radiotherapy, proton and heavy ion irra-
diation, RIHD remains a relevant risk. Preclinical and
clinical studies have widely investigated various man-
ifestations of RIHD including coronary vessel, heart
valve, conduction system, pericardium and myocardium
injuries. However, present knowledge of the underlying
biological mechanisms is insufficient, and reported
data from clinical studies are scarce, hampering a
personalized and effective treatment approach for
RIHD.

A deeper understanding of RIHD mechanisms is
essential to initiate appropriate non-invasive screen-
ing methods for diagnosis and monitoring. Potential
diagnostic modalities are specific biomarkers and
radiological techniques such as echocardiography, high
resolution computed tomography (HRCT), magnetic
resonance imaging (MRI), positron emission magnetic
resonance imaging (PET-MRI) and positron emission
computed tomography (PET-CT). Beneficial effects of sev-
eral compounds have been demonstrated in preclinical
studies but data regarding these drugs in RIHD patients
are limited. Some pharmacological drugs may provide
new approaches to treat or prevent RIHD; however,
randomized trials are essential to evaluate the role of
these biological approaches.
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