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Abstract

Taste preference, a key component of food choice, changes with aging. However, it remains

unclear how this occurs. To determine differences in taste preference between rats in differ-

ent life stages, we examined the consumption of taste solutions and water using a two-bottle

test. Male Sprague-Dawley rats of different ages were used: juvenile (3–6 weeks), young

adult (8–11 weeks), adult (17–20 weeks), middle-aged (34–37 weeks), and old-aged (69–

72 weeks). The intakes of the high and low concentration solutions presented simulta-

neously were measured. We observed that the old-aged group had lower preference ratios

for 0.3 M sucrose and 0.1 M MSG in comparison with other groups. The preference ratio for

0.03 mM QHCl was higher in the middle-aged group than in the three younger groups and

higher in the old-aged group than the juvenile group. The taste preferences for HCl and

NaCl did not significantly differ among the age groups. The old-aged group tended to prefer

high concentrations of sucrose, QHCl, NaCl, and MSG to low concentrations, indicating

age-related decline in taste sensitivity. We also aimed to investigate differences between

life stages in the electrophysiological responses of the chorda tympani nerve, one of the

peripheral gustatory nerves, to taste stimuli. The electrophysiological recordings showed

that aging did not alter the function of the chorda tympani nerve. This study showed that

aging induced alterations in taste preference. It is likely that these alterations are a result of

functional changes in other peripheral taste nerves, the gastrointestinal system, or the cen-

tral nervous system.

Introduction

Humans and animals normally prefer sweet, salty, and umami tastes to sour and bitter tastes.

However, taste preferences are easily changed by postnatal factors, including learning, envi-

ronment, and nutritional status. Furthermore, aging itself may result in alterations in taste

preference, as aging is generally accompanied by certain changes in bodily tissues and
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functions. Evidence suggests that taste sensitivity to sucrose is lower in older people [1–7]. Die-

tary and energy requirements change throughout the various life stages [8–10], and basal met-

abolic rate decreases with age in a near-linear manner [11, 12]. The observed decrease in taste

sensitivity with aging could result in older people eating more foods with stronger flavor and,

possibly, higher calories; this could contribute to the development of lifestyle-related diseases.

A better understanding of age-related changes in taste preference may be important for disease

prevention.

Aged (90 weeks old) Fischer-344 rats showed significantly lower intake of food and sucrose

than those aged 20–35 weeks [13]. Decreases in taste sensitivity were observed in male Spra-

gue-Dawley rats aged 28 months (112 weeks) [14]. These studies suggest the possibility of

altered taste thresholds or taste preferences with aging in rodents. The animals in these studies

were given taste stimuli in both younger and older age periods as part of the within-subject

experimental design. Therefore, it is possible that not only alterations in physiological function

but also in consumption experience caused the differences in taste preferences across age

groups. On the other hand, two reports investigated the differences in taste preference between

two separate groups (Sprague-Dawley rats aged 5–12 weeks and 21–22 months; B6C3F1/J mice

aged 10 and 18 weeks), in which the older animals were naïve to the taste stimuli until reaching

the experimental age [15, 16]. These studies revealed a significant reduction of umami prefer-

ence in the older rats [15], and of sucrose preference in the older mice [16]. Thus, it is likely

that taste preferences decrease with aging independent of consumption experience.

Humans and animals have several major stages in their lifetimes, including weaning, repro-

duction, and old age. Transitions between stages are accompanied by changes in dietary and

energy requirements, as well as alterations in hormone secretion. These provide the possibility

that age-related changes in taste preferences are stepwise rather than abrupt. In order to eluci-

date whether aging induces graded shifts in taste preference, we assessed differences in the

consumption of taste solutions (sucrose, saccharin, NaCl, HCl, quinine HCl, and monosodium

glutamate) among five age-separated groups (juvenile, young adult, adult, middle-aged, and

old-aged), which were naïve to the taste stimuli before reaching the experimental age.

Although many studies have examined the alteration of taste preferences with aging in

humans and animals, its underlying mechanisms remain unclear. Gustatory information is

transmitted from the tongue to the central nervous system via the taste nerves, including the

chorda tympani nerve, the glossopharyngeal nerve, the superior laryngeal nerve, and the

greater superficial petrosal nerves in the oral cavity. Previous studies have shown that taste

experience during development influences the function of the chorda tympani nerve [17–20].

These developmental changes in the function of the peripheral gustatory system suggest that

aging results in altered taste nerve activity during different life stages. Therefore, using electro-

physiology, we examined the effect of aging on the responses of the chorda tympani nerve

(which transmits gustatory information from the anterior tongue to the brainstem) to taste

stimuli.

Materials and methods

Age-related changes in taste preference using a 48-h two-bottle test

A 48-h two-bottle test, a standard behavioral test for taste preference, was conducted on 46

male Sprague-Dawley rats (CLEA Japan, Inc., Japan) between 3 and 72 weeks of age and

weighing 95–1050 g. Rats generally have a mean lifespan of 2–3 years that includes two critical

time-points: the end of weaning and reproduction. Therefore, we divided the rats into five

groups: juvenile (3–6 weeks, just after weaning, n = 9), young adult (8–11 weeks, early repro-

ductive phase, n = 8), adult (17–20 weeks, late reproductive phase, n = 9), middle-aged (34–37
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weeks, end of reproduction, n = 10), and old-aged (69–72 weeks, n = 10). We did not use rats

over 74 weeks of age because they carry a high risk of spontaneous disease. The experience of

consuming taste solution is likely to have an effect on subsequent ingestive behaviors. To

avoid this, a different set of rats was used for each age group. The juvenile group was purchased

at 3 weeks. The young adult and the adult groups were purchased one week before the behav-

ioral experiments. As rats of more than 30 weeks old were not available for purchase, the mid-

dle-aged and the old-aged groups were purchased at 30 weeks and raised until the appropriate

age for testing in the animal-breeding facilities of the faculty. All rats were allowed food pellets

(MF, Oriental Yeast, Osaka, Japan) and distilled water (DW) ad libitum, and handled by the

experimenters every day before attaining the appropriate age. Animals were housed individu-

ally in plastic cages suitable for their body mass: 225 × 338 × 140 mm for rats 3–11 weeks old,

and 345 × 403 × 177 mm for rats 17–72 weeks old. Cages were changed once a week. Since

environmental changes could alter animals’ consumption behavior, the taste stimulus was pre-

sented after at least 60 hours of acclimation in the new plastic cage.

The ambient temperature was maintained at 23˚C in a 12:12 h light/dark cycle (lights on

between 8:00 and 20:00). All animal care and experimental guidelines conformed to those

established by the National Institutes of Health and were approved by “Guide for the Care and

Use of Laboratory Animals” in the Osaka Dental University Animal Care and Use Committee

(Permit Number: 12–02045).

After the acclimation, all rats were presented with two bottles in their home cages: one con-

taining DW and the other containing a taste solution. The bottle consisted of a 100-ml plastic

syringe (JS-S00S, JMS Co., Ltd, Tokyo, Japan) and a stainless steel spout (TV-25, CLEA, Tokyo,

Japan). The rats could freely access both bottles and chow for 48 h. To avoid positional prefer-

ence, the positions of the bottles were switched 24 h after the start of the presentation. We

recorded 48-h fluid consumption by measuring the weight of the bottles. The taste solutions

were sucrose (0.3 and 0.5 M), sodium saccharin (saccharin, 5 mM), NaCl (0.1 and 0.3 M), QHCl

(0.03 and 0.3 mM), MSG (0.1 M), and HCl (10 and 50 mM). To exclude the possibility of order

effects, the taste solutions were presented in pseudorandom order, without grouping similar

solutions by concentration. In addition, the presentation order was different among different

rats. The order was one of the following: 1) 0.3 M sucrose, 0.1 M NaCl, 0.3 mM QHCl, 5 mM sac-

charin, 50 mM HCl, 0.1 M MSG, 0.03 mM QHCl, 0.5 M sucrose, 0.3 M NaCl and 10 mM HCl;

2) reverse order of 1); 3) 0.1 M MSG, 50 mM HCl, 5 mM saccharin, 0.3 mM QHCl, 0.1 M NaCl,

0.3 M sucrose, 0.03 mM QHCl, 0.5 M sucrose, 0.3 M NaCl and 10 mM HCl. We spent 4 weeks

(e.g., 3–6 weeks of age in the juvenile group) completing the presentation of all 10 taste solutions.

Age-related changes in preference for low and high concentrations of

taste solutions using a 48-h two-bottle test

It was possible that the differences in the consumption of the taste solutions and water across

the life stages were due to the changes in the taste thresholds. In order to answer to this ques-

tion, we investigated the intake of low and high concentrations of taste solutions in the second

experiment. It included a new series of 38 male Sprague-Dawley rats (CLEA Japan, Inc.,

Japan) aged 3–72 weeks and weighing 125–980 g. We divided the rats into five groups as in the

first experiment: juvenile (n = 8), young adult (n = 8), adult (n = 7), middle-aged (n = 7), and

old-aged (n = 8). The housing conditions were the same as described above.

All rats were presented with two bottles containing the same taste solution for 48 h, one at a

high concentration and the other a low concentration. The taste solutions were 0.3 M vs. 0.5 M

sucrose, 5 mM vs. 50 mM saccharin, 0.03 mM vs. 0.3 mM QHCl, 0.1 M vs. 0.3 M NaCl, 0.1 M vs.

0.3 M MSG, and 10 mM vs. 50 mM HCl. The taste solutions were presented in pseudorandom
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order. The order was one of the following: 1) 0.3 and 0.5 M sucrose, 0.1 and 0.3 M NaCl, 5 mM

and 50 mM saccharin, 0.1 M and 0.3 M MSG, 0.03 mM and 0.3 mM QHCl, and 10 mM and 50

mM HCl; 2) reverse order of 1); 3) 5 mM and 50 mM saccharin, 0.1 and 0.3 M NaCl, 0.3 and 0.5

M sucrose, 0.1 M and 0.3 M MSG, 0.03 mM and 0.3 mM QHCl, and 10 mM and 50 mM HCl.

Rats from this test were subsequently used in the electrophysiological experiments.

Electrophysiological measurements of the responses of the chorda

tympani nerve to taste solutions

The rats were anesthetized with an intraperitoneal injection of 60 mg/kg sodium pentobarbital

(Somnopentyl1; Kyoritsu Seiyaku, Tokyo, Japan). Supplementary injections of 0.3 g/kg ure-

thane were administered as needed to maintain a surgical level of anesthesia. A tracheal can-

nula was implanted and the animal properly secured within a head holder. The chorda

tympani nerve was cut near its entrance into the tympanic bulla and dissected free from the

underlying tissues. An indifferent electrode was positioned nearby in the wound. The whole-

nerve activity was amplified, displayed on an oscilloscope, and monitored using an audio

amplifier. The amplified signals were passed through an integrator with a time constant of 0.3

s and displayed on a slip chart recorder.

After confirmation of stable recording, we applied 5 ml of taste solution to the rat’s tongue

for 30 s. The rat’s tongue was rinsed with DW after completion of taste stimulation. We mea-

sured the entire integrated response during the simulation as the whole nerve response. In

electrophysiological experiments it is possible that any endogenous or exogenous factors may

produce individual differences in the recording of neural activities. Therefore, we normalized

the taste responses by dividing the magnitudes of the responses to each taste stimuli by the

response to 0.1 M NH4Cl, which is generally used as a standard stimulus in electrophysiologi-

cal recordings of peripheral taste nerves.

Statistical analysis

Normalized food intake was calculated by dividing the 24-h food intake by BW (per 100 g) and

analyzed using one-way analysis of variance (ANOVA) and post-hoc Tukey HSD tests. The

data from the electrophysiological experiments were also analyzed using one-way ANOVA.

The previous studies investigating drinking behavior generally used 24-h intake as the behav-

ioral index. To enable a comparison of our results with the prior studies, we calculated the 24-h

intake volume as half of the 48-h intake volume. The taste solution preference ratios in the first

experiment were calculated by dividing the volume of taste solution ingested by the total intake

of DW + taste solution, and analyzed using one-way ANOVA with Tukey’s HSD post-hoc tests.

The preference ratios for higher concentration taste solutions were calculated by dividing the

intake of the higher concentration solution by the total intake of higher + lower concentration

solutions, and analyzed using one-way ANOVA with Duncan’s post-hoc tests. We also analyzed

whether the preference ratios were significantly different from chance level (0.5) using an inde-

pendent t-test. The difference between net intake of DW and each taste solution for each age

group was analyzed by paired t-test. All statistical analyses were performed using Statistica soft-

ware (StatSoft, Inc., Tulsa, OK, USA). A P value< 0.05 was considered significant.

Results

Age-related changes in taste preference using a 48-h two-bottle test

Rats gradually grow larger from post-weaning to before the end of reproduction. Because body

size is closely related to nutritional requirements, we assessed differences in BW and food and
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fluid consumption among the different age groups (Fig 1). Rats in the old-aged group weighed

significantly more than rats in other groups (P< 0.05). The net food intake of the old-aged

group was less than that of the young adult and adult groups (P< 0.001 for both) but was sig-

nificantly greater than that of the juvenile group (P< 0.05). However, the normalized food

intake values revealed lower food intake relative to BW in the old-aged rats than in the juvenile

rats (P< 0.001).

Fig 2 shows how the preference ratio for taste stimuli differed among age groups. The juve-

nile and young adult groups exhibited similar preferences for several taste stimuli, each drink-

ing much more sweet and umami solutions than DW and avoiding bitter and strongly sour

tastes. In contrast, the middle-aged group demonstrated different preferences, with lower pref-

erence ratios for sweet and umami tastes and higher preference ratios for bitter tastes com-

pared to the younger three groups. The old-aged group showed a lower preference ratio for 0.3

M sucrose and 0.1 M MSG (but not 0.5 M sucrose), and higher preference ratio for 0.03 mM

QHCl compared to the juvenile group. One-way ANOVA revealed significant main effects of

Fig 1. General index. (A) Body weight was greater in the old-aged group compared to other groups (*1P < 0.05); (B) The young

adult and adult groups had greater 24-h food intake than other groups (***1 P < 0.001, adult vs. juvenile, middle-aged, and old-

aged; ***2 P < 0.001, young adult vs. juvenile, middle-aged, and old-aged; *2P < 0.05, juvenile vs. old-aged); (C) Food intake

based on body weight (per 100 g) was greater in the juvenile group than in other groups (***3 P < 0.001). Food intakes based on

body weight of the young adult or adult group was greater than those of the middle-aged and old-aged groups (***4 P <0.001).

Data is presented as mean + SEM.

https://doi.org/10.1371/journal.pone.0181650.g001
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age with regard to the following taste solutions: 0.3 M sucrose (F(4, 35) = 2.91, P< 0.05), 0.5

M sucrose (F(4, 35) = 3.19, P< 0.05), saccharin (F(4, 35) = 3.16, P< 0.02), 0.03 mM QHCl

(F(4, 35) = 5.64, P< 0.01), and MSG (F(4, 35) = 3.70, P< 0.05). Post-hoc analyses demon-

strated a significantly lower preference ratio for 0.3 M sucrose in the old-aged group than the

young adult group (P< 0.05). Preferences for 0.5 M sucrose in the middle-aged group were

significantly lower than that in the young adult and the old-aged groups (P< 0.05). The older

two groups (middle-aged and old-aged) exhibited significantly lower preference ratios for 0.1

M MSG than the juvenile group (P< 0.05 for both). The middle-aged group had significantly

greater preference ratios for 0.03 mM QHCl compared to the three younger groups (middle-

aged vs. juvenile, P< 0.01; vs. young adult and adult, P< 0.05). The old-aged group also had it

compared to the juvenile group (old-aged vs. juvenile, P< 0.05).

The preference ratios indicate which solution the animals preferred but do not indicate

the net intake of solutions. As shown in Fig 1, the rats exhibited age-dependent decreases in

Fig 2. Age-related changes in taste preference using a 48-h two-bottle test. Mean preference ratios + SEM for each taste solution. The preference

ratios for 0.3 M sucrose, 0.5 M sucrose, 0.03 mM QHCl, and 0.1 M MSG significantly differed among groups. *P < 0.05, young adult vs. old-aged (0.3 M

sucrose), middle-aged vs. young adult and old-aged (0.5 M sucrose), juvenile vs. old-aged, middle-aged vs. young adult and adult (0.03 mM QHCl), juvenile

vs. middle-aged and old-aged (0.1 M MSG); **P < 0.01, juvenile vs. middle-aged (0.03 mM QHCl). The dotted lines indicate chance level. The gray-colored

bars indicate preference ratios significantly different from the chance level. The P value of the middle-aged group in the 0.03 mM QHCl experiment was 0.06.

https://doi.org/10.1371/journal.pone.0181650.g002
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food intake based on BW. As solution intake volumes typically correlate with pellet intake, it

seemed likely that the different pellet consumption behaviors between age groups influenced

the age-related differences in preference ratios. Therefore, in Fig 3, we show the net intake of

DW and taste solutions. The juvenile, young adult, and adult groups consumed significantly

more of the sucrose, saccharin, and MSG solutions (juvenile, P< 0.001 for all solutions;

young adult, P< 0.001 for sucrose and saccharin, P< 0.01 for MSG; adult, P< 0.001 for 0.5

M sucrose and saccharin, P< 0.01 for 0.3 M sucrose, P< 0.05 for MSG). The young adult

group also consumed more 0.1 M NaCl than DW (P< 0.01). The adult group consumed

significantly less 0.3 M NaCl than DW. On the other hand, the younger three age groups

(juvenile, young adult, and adult) consumed less QHCl and 50 mM HCl than DW (juvenile,

P< 0.001 for all solutions; young adult, P< 0.001 for 0.3 mM QHCl and 50 mM HCl,

P< 0.01 for 0.03 mM QHCl; adult, P< 0.001 for 0.3 mM QHCl and 50 mM HCl, P< 0.05

for 0.03 mM QHCl). The juvenile group also consumed significantly less 10 mM HCl than

DW (P< 0.01). In contrast to the younger three groups, the middle-aged and old-aged

groups did not consume significantly more 0.3 M sucrose and MSG or less 0.3 mM QHCl

than DW.

Fig 3. The 24-h intake for DW and each solution. Mean 24-h intake + SEM from the two-bottle preference test in which two solutions were presented

simultaneously for 48 h. All asterisks indicate comparisons between the taste substance and DW. *P < 0.05, **P < 0.01, ***P < 0.01.

https://doi.org/10.1371/journal.pone.0181650.g003
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Age-related changes in taste preference for low or high concentrations of

taste solutions

In this behavioral experiment, the rats were simultaneously presented with taste solutions at

low and high concentrations. Even when a taste is appetitive (e.g. sweet, salty, or umami), a

taste stimulus that is too strong will not be pleasant. It was hypothesized that older animals

would exhibit a greater preference for higher concentrations if aging elevated the taste

threshold.

Our results demonstrated age-related differences in the preference for higher concentration

taste solutions (Fig 4). Only the oldest age group exhibited a much greater preference for the

higher concentration solutions than the lower concentration solutions. One-way ANOVA

showed a main effect of group for the following taste solutions: sucrose (F (4, 29) = 2.86,

P< 0.05), QHCl (F (4, 26) = 4.12, P< 0.05), NaCl (F (4, 27) = 4.38, P< 0.01), and MSG (F (4,

27) = 3.25, P< 0.05). Post-hoc analysis revealed that the old-aged group significantly preferred

Fig 4. Age-related changes in taste preference for low or high concentrations of taste solutions. Mean preference ratios + SEM for taste solutions

of higher concentrations. The old-aged group exhibited a significantly greater preference for the higher concentration solution of sucrose (*P < 0.05, vs.

juvenile, adult, and middle-aged), QHCl (**P < 0.01, **P < 0.01, and *P < 0.05 vs. juvenile, adult, and young-adult, respectively), NaCl (**P < 0.01,

**P < 0.01, and *P < 0.05 vs. juvenile, young-adult, and middle-aged, respectively), and MSG (** P < 0.01, *P < 0.05, and *P < 0.05 vs. juvenile, young-

adult, and middle-aged, respectively). The dotted lines indicate chance level. The gray-colored bars indicate preference ratios significantly different from

the chance level. The P value of the old-aged group in the 0.03 mM vs. 0.3 mM QHCl experiment was 0.08.

https://doi.org/10.1371/journal.pone.0181650.g004
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the higher concentration solutions of sucrose (vs. juvenile, adult, and middle-aged: P< 0.05),

QHCl (vs. juvenile, adult, and young adult: P< 0.01, P< 0.01, and P< 0.05, respectively),

NaCl (vs. juvenile, young adult, and middle-aged: P< 0.01, P< 0.01, and P< 0.05, respec-

tively), and MSG (vs. juvenile, young adult, and middle-aged: P< 0.01, P< 0.05, and

P< 0.05, respectively). The preference ratio of the old-aged group did not differ from the

young adult group for sucrose, or from the adult group for NaCl and MSG. However, the pref-

erence ratios of the young adult and adult groups were approximately 0.5 (chance level). These

findings indicate that only the old-aged group preferred the high concentrations of sucrose,

QHCl, NaCl, and MSG to the low concentration solutions.

Electrophysiological experiments with the chorda tympani nerve

Based on previous studies, we used 0.1 M NaCl, 0.1 M MSG, 50 mM saccharin, 0.3 M sucrose,

0.3 mM QHCl, 20 mM QHCl, and 50 mM HCl in the electrophysiological experiments. We

used the higher concentration of QHCl because the responses of the chorda tympani nerve to

the lower concentration of QHCl have been reported to be very small [21]. Fig 5 presents

examples of the chorda tympani nerve gustatory responses, clearly showing how the wave-

forms differed among the taste stimuli. However, significant group differences are difficult to

observe. To compare the magnitude of the responses, we show the normalized response mag-

nitude in Fig 6. One-way ANOVA revealed no main effects of group for any of the taste

Fig 5. A representative integrated response of the chorda tympani nerve to 0.1 M NH4Cl, 0.1 M NaCl, 0.1 M MSG, 50 mM saccharin, 0.3 M

sucrose, 0.3 mM QHCl, 20 mM QHCl, and 50 mM HCl for each age group. The horizontal bar indicates a stimulus duration of 30 s.

https://doi.org/10.1371/journal.pone.0181650.g005
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stimuli. These results suggest that aging does not affect gustatory processing in the peripheral

nervous system.

Discussion

In the present study, we examined the taste preferences and gustatory responses of the chorda

tympani nerve in male Sprague-Dawley rats at different life stages. The behavioral experiments

revealed that the old-aged group showed significantly lower preference for 0.3 M sucrose than

the young adult group, and for 0.1 M MSG than the juvenile group. In contrast, the old-aged

group demonstrated significantly higher preference for 0.03 mM QHCl than the juvenile

group. The preference ratio for 0.1 M MSG in the middle-aged group was significantly lower

than that in the juvenile group. The middle-aged group also displayed significantly higher pref-

erence for 0.03 mM QHCl than younger groups (juvenile, young adult and adult groups).

When simultaneously presented with different concentrations of the same taste solution, only

the old-aged rats drank larger volumes of the higher concentrations of sucrose, QHCl, NaCl,

and MSG than the lower concentration solutions. However, the electrophysiological experi-

ments revealed no significant differences between the different age groups with regard to the

responses of the chorda tympani nerve, which is one of the peripheral taste nerves.

With simultaneous presentation of taste solution and DW, the old-aged group had a prefer-

ence ratio of approximately 0.5 for 0.3 M sucrose, indicating that these rats drank similar vol-

umes of 0.3 M sucrose and DW (Fig 3). The old-aged group also tended to have a lower

Fig 6. The relative responses to 0.1 M NH4Cl of the chorda tympani nerve to taste solutions. Mean relative responses of the chorda

tympani nerve (+ SEM) to 0.1 M NaCl, 0.1 M MSG, 50 mM saccharin, 0.3 M sucrose, 0.3 mM QHCl, 20 mM QHCl, and 50 mM HCl. The

responses to each taste solution did not significantly differ among age groups.

https://doi.org/10.1371/journal.pone.0181650.g006

Taste preference changes throughout different life stages in male rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0181650 July 25, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0181650.g006
https://doi.org/10.1371/journal.pone.0181650


preference ratio for saccharin. On the other hand, the old-aged group drank a much greater

volume of 0.5 M sucrose than DW. These results suggest that the old-aged group had difficulty

discriminating between DW and low-concentration solutions of sucrose or saccharin, indicat-

ing an age-related decline in sensitivities for the sweet taste.

As the old-aged group had a decreased preference for normally palatable (sweet and

umami) taste and greater preference for aversive (bitter) taste compared to the other groups,

the results indicate the possibility that the older rats could not detect the taste substances in the

fluids. As shown in Figs 1 and 3, there were clear differences in food and water consumption

among the groups, indicating that aging affects water and energy requirements. The lower

food intake in the middle-aged (34–37 weeks) and old-aged (69–72 weeks) rats suggests an

alteration in ingestive behavior by the end of reproduction. Therefore, we adopted another

technique in which the rats were simultaneously presented with high and low concentrations

of taste solutions. If aging causes deficits in taste detection, the old-aged rats may not be able to

discriminate between high and low concentrations. The comparison between low and high

concentrations of the same taste solutions revealed that the juvenile, adult, and middle-aged

groups drank less 0.5 M sucrose than 0.3 M sucrose. Though sucrose is normally a palatable

taste stimulus, animals exhibit a decreased preference for sucrose at high concentrations [22].

However, in the present study the old-aged rats showed a higher preference ratio to 0.5 M than

0.3M sucrose. These results further support the reduced sweet taste sensitivity in the older rats

compared to the younger rats.

As shown in Fig 2, the old-aged group had a lower preference ratio for 0.1 M MSG than the

younger groups. Furthermore, only the old-aged group preferred the high (0.3 M) concentra-

tion of MSG to the low (0.1 M) concentration. Miura et al. [15] reported reduced umami pref-

erence in aged Sprague-Dawley rats (21–22 months) compared to a young adult group (5–12

weeks). The umami receptor is a heterodimer of taste receptor type 1 member 1 and 3 (T1R1/

T1R3), whereas the sweet receptor comprises taste receptor type 1 member 2 and 3 (T1R2/

T1R3) [23]. Although there are similarities in the peripheral transduction, Sprague-Dawley

rats can reportedly discriminate between umami taste and some sweet tastes [24]. These results

suggest that the old-aged group also had a reduced sensitivity for MSG compared to the other

age groups. In addition, it is suggested that amino acid receptors exist in the duodenum and

intestine. Niijima [25] showed the increased discharge rate of the gastric branch of the vagus

nerve by intestinal stimulation with isotonic MSG, but not NaCl, solution. These results sug-

gest that a long-term presentation of MSG likely produce postingestive effects. Since it seems

that aging cause decreased functions of the duodenum and intestine, the low MSG preference

in the old aged group might be due to aging-induced changes in postingestive effects. We also

found that the old aged rats preferred higher concentrations of NaCl and MSG than lower

ones. If only the declined postingestive effects lower taste preferences of NaCl and MSG, the

old aged rats should avoid the intake of the higher concentration of NaCl and MSG. Therefore,

it is likely that the aging-induced changes in not only the postingestive effects but also the func-

tions of the gustatory nerves other than chorda timpani and central nervous system result in

the alteration in the taste preferences of NaCl and MSG.

Animals and humans normally dislike bitter tastes. However, the middle-aged and old-

aged groups in our study had higher preference ratios (> 0.5) for the 0.03 mM QHCl solu-

tion compared to the other age groups (Fig 2), indicating that the two oldest groups drank

substantially more QHCl than DW. The total intake volumes of 0.03 mM QHCl and DW in

the older groups did not significantly differ from the intake volumes in the younger three

groups (Fig 3), suggesting that the higher preference ratios for the low concentration QHCl

solution in the older groups were not due to abnormal fluid consumption. When the older

groups were presented with the high concentration QHCl solution, they had preference
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ratios of < 0.5. Our findings suggest that the older rats had a low preference for bitter tastes,

as well as sweet and umami tastes. Even with a reduced preference for bitter tastes, the older

rats were still expected to drink less high concentration QHCl solution, which is normally

an aversive taste stimulus [26]. Surprisingly, the preference ratio for the higher to lower con-

centration solution of QHCl in the old-aged group was > 0.5 (Fig 4). This indicates that

rats in the old-aged group preferred 0.3 mM to 0.03 mM QHCl solution. On the other hand,

although the middle-aged rats preferred 0.03 mM QHCl to DW (Fig 2), they did not show

preference for higher concentration QHCl. These results suggest that the rats of 34 weeks or

older (middle- and old-aged rats) have less ability to detect bitterness or feel unpleasantness

for quinine. Moreover, it is assumed that the old-aged rats are unable to detect the differ-

ences in the concentration of the taste solutions.

We expected our results to show age-related changes in the preference for HCl, which is

normally an aversive taste stimulus. A previous study reported a tendency for aged (28 months

old) Sprague-Dawley rats to have less preference for citric acid than younger rats [14]. How-

ever, we found no significant age-related differences in the preference ratios for HCl, both vs.

DW (Fig 2) and when two concentrations were presented simultaneously (Fig 4). The sour

taste is thought to cause the action of protons on taste receptor cells, impacting taste transduc-

tion [27], though the precise mechanism is controversial. The HCl concentration used in our

study may have been too strong of a stimulus to detect age-related differences.

A prior study using Fischer 344 rats demonstrated substantial chorda tympani nerve

responses to taste stimuli even at 30 months of age [28]. The number of taste buds and taste

bud diameter did not correlate with age in rats [29]. These reports support the idea that the

altered taste preference in old-aged rats in the present study was not due to the function of

the chorda tympani nerve. A study in 18-month-old mice, however, reported a significant

reduction in taste bud size, the number of taste cells per bud, the number of taste cells

expressing the sweet taste receptor, and the sweet taste-modulating hormone glucagon-like

peptide-1 [16]. We have not yet examined whether the functions of other taste nerve compo-

nents, such as the greater superficial petrosal nerve, superior laryngeal nerve, and glossopha-

ryngeal nerve, are influenced by aging. Therefore, the results of the present study are not

sufficient to rule out the possibility that aging induce the changes in the function of the

peripheral taste system.

The present study evaluated taste preference using a 48-h two-bottle test method. The

ingestion of taste substances affects subsequent consumption behaviors, referred to as the

post-ingestive effects, via the gastrointestinal tract [30–32]. The perception of taste substances

in the gastrointestinal tract causes changes in the level of feeding-related hormones, such as

insulin and leptin [33]. Gastrointestinal motility [34–37] and levels of feeding-related hor-

mones in the central nervous system [38] are altered with aging. These results might indicate

that aging affects systemic physiological functions.

Taste and olfactory information are thought to converge in the central nervous system.

Aging reportedly leads to alterations in the spontaneous function of the central nervous system

[39, 40]. It is known that there are separable brain substrates underlying “wanting” (closely

related to appetite) and “liking” (closely related to palatability) [41]. Another study reported

that older rats exhibited decreased “wanting” and “liking” for a sweet reward in an incentive

motivation task [42]. The central nervous system is heavily involved in the parameters of

“wanting” and “liking” a sweet reward [41]. These data suggest that the age-related behavioral

differences observed in the present study may be due to age-related changes in the central ner-

vous system functions involved in ingestive behaviors. The future studies will identify the

brain regions and neural circuits involved in the behavioral alterations observed among older

rats.
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Conclusions

The present study revealed that the preference for sucrose and MSG decreases with age,

whereas the preference for QHCl increases. We also found that old-aged rats consumed higher

concentrations of sucrose, NaCl, MSG, and QHCl than younger rats, indicating that aging

causes changes in taste preference. Although the aging-induced changes in taste preference are

likely a result of alterations in the functions of peripheral and central organs, we found no age

differences in the electrophysiological responses of the chorda tympani nerve, a peripheral

taste nerve. This ruled out the possibility that the differences in taste preference among age

groups are a result of altered function of the chorda tympani nerve. Therefore, to clarify the

mechanisms underlying age-related changes in taste preference, future studies should investi-

gate the effects of aging on the activities of other peripheral taste nerves, including the glosso-

pharyngeal, greater superficial petrosal, and superior laryngeal nerves, and the function of the

brain reward system involved in taste hedonics.
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